Deploying the BIG-IP Edge Gateway for Layered Security and Acceleration Services
Table of Contents

Using the BIG-IP Edge Gateway for layered security and acceleration services

- Prerequisites and configuration notes ... 1
- Product versions and revision history ... 1
- Configuration example ... 2
- Configuration flow .. 2
- Performing the initial configuration tasks .. 3

Configuring access and acceleration for mobile users

Configuring authenticated remote network access ... 6
- Creating an AAA resource .. 8
- Creating a Connectivity Profile .. 10
- Creating a Webtop .. 10
- Creating the Rewrite profile ... 11
- Creating an Access Profile .. 11
- Editing the Access Profile with the Visual Policy Editor 12
- Configuring network entry points .. 14
- Creating the profiles .. 14
- Creating the virtual servers .. 16

Configuring site-to-site WAN optimization for application access across data centers ... 19
- Prerequisites and configuration notes ... 19
- Configuring the WAN Optimization module .. 19
- Creating the iSession profile .. 19
- Configuring BIG-IP WOM using the Quick Start template 20

Configuring authenticated access to accelerated web applications 23
- Creating an AAA server ... 23
- Creating the SSO configuration ... 23
- Creating an Access Profile ... 24
- Editing the Access Profile with the Visual Policy Editor 25
- Creating the profiles ... 26
- Creating the virtual server ... 27
- Configuring the WebAccelerator .. 29
Using the BIG-IP Edge Gateway for layered security and acceleration services

Welcome to the accelerated remote access deployment guide. This guide shows how to configure the BIG-IP Edge Gateway to accelerate secure access to application resources. Using the configuration in this guide, the BIG-IP Edge Gateway performs client security checks, optimizes remote access connections and accelerates application access.

With the BIG-IP Edge Gateway, it is now possible to layer remote access and acceleration for network streams and web application objects. Edge Gateway enables you to achieve the fastest access times, using the least bandwidth and traversing the most expeditious path between application clients and servers.

This deployment places the BIG-IP Edge Gateway in an existing DMZ and connects networks of like security levels. The BIG-IP Edge Gateway will provide authentication, authorization, auditing, prelogon inspection services, and accelerate access to remote users of applications presented in a DMZ.

For more information on the BIG-IP Edge Gateway, see http://www.f5.com/products/big-ip/solution-modules/edge-gateway.html

Prerequisites and configuration notes

The following are prerequisites for this solution.

♦ The management port is configured and the web based configuration interface is accessible

♦ For WebAccelerator, we recommend you review the applications in your environment to determine if there is an existing WA policy and choose the best candidates for acceleration.

♦ For WAN Optimization, determine all the protocols used by your application that will need to be optimized (FTP, HTTP, CIFS, MAPI, etc).

♦ For Access Policy Manager you need to know where authentication and authorization services (RADIUS, Active Directory, LDAP etc) are on your network, as well as map your organization's security policy to prelogon checks.

Product versions and revision history

Product and versions tested for this deployment guide:

<table>
<thead>
<tr>
<th>Product Tested</th>
<th>Version Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIG-IP Edge Gateway</td>
<td>v10.2</td>
</tr>
</tbody>
</table>
Configuration example

The following diagram shows a logical configuration example of our deployment.

Configuration flow

The following chart for configuring remote access using an Access Policy (read from the bottom to the top) illustrates the setup of Network Access within Edge Gateway. The information about Web Application is included for reference but is not part of the setup for Network Access.

![Configuration flow diagram]

Figure 1 Configuration flow
Performing the initial configuration tasks

The first task is to perform the initial configuration tasks. Here we configure the BIG-IP system with required VLAN and Self IP address information. Complete these procedures only if you do not already configured these objects on the BIG-IP LTM.

Creating a VLAN

First we create a VLAN on the BIG-IP LTM system.

To create a VLAN

1. On the Main tab, expand Network, and then click VLANs. The VLANs screen opens.
2. Click the Create button. The new VLAN screen opens.
3. In the Name box, type a unique name for the VLAN. In our example we use `edge-vlan`.
4. In the Tag box, you can optionally type a tag. In our example, we leave this blank, and the BIG-IP LTM automatically assigns a tag.
5. In the Resources section, from the Available list, select the interface that will have access to tagged traffic, and add it to the Untagged box by clicking the Add (<<) button. In our example, we select `1.14`.
6. Click the Finished button.

Creating self IP addresses

Self IP addresses are the IP addresses owned by the BIG-IP LTM system that you use to access the VLAN. The next step in this configuration is to create a self IP address that is used in the local end point BIG-IP configuration.

To create a self IP address

1. On the Main tab, expand Network, and then click Self IPs. The Self IP screen opens.
2. Click the Create button. The new Self IP screen opens.
3. In the IP Address box, type a static IP address that resides on the VLAN you created in the preceding procedure.
4. In the Netmask box, type the corresponding subnet mask.
5. From the VLAN list, select the VLAN you created in Creating a VLAN. In our example, we select `edge-vlan`.
6. From the **Port Lockdown** list, select **Allow Default**.

7. Click the **Repeat** button. Repeat steps 1-6 with the following exception:
 - In Step 6, from the **Port Lockdown** list, select **Allow None**.

8. Click **Finished**.

9. Repeat this entire procedure on the remote endpoint BIG-IP system.

Configuring Routes

The next task is to create the Routes on the BIG-IP system. Each Edge Gateway needs to be able to route to the other Edge Gateway, as well as have a route for the remote network where application services reside. We assume that the firewall is the default route (.1).

Additionally, each Edge Gateway should be able to route to application and AAA servers via the local internal firewall (.254).

For WAN optimization to occur properly between sites, each Edge Gateway will also need a route to the remote networks via the appropriate next hop gateway. In our example, we add a route for 10.10.2.0/24 via 192.168.2.1 in Datacenter 1.

To create the route

1. On the Main tab, expand **Network**, and then click **Routes**.

2. Click the Create button.

3. From the **Type** list, select **Route**.

4. In the **Destination** box, type the IP network address of the remote network you wish to reach.

5. In the **Netmask** box, type the associated Netmask.

6. From the **Resource** list, make sure **Use Gateway** is selected.

7. From the Gateway Address list, select **IP Address**, and then type the IP address of the next hop gateway used to access this network (see Figure 2).

8. Click **Repeat**. Repeat this procedure three times to create routes for the following:
 - The remote network
 - The default gateway
 - The internal network

9. Click **Finished**.
Figure 2 *New Route configuration*
Configuring access and acceleration for mobile users

To configure remote access and acceleration, a Device Wizard is included in the product that assists in the setup of Network Access. In this guide, we describe the steps to complete the configuration manually. In this section we cover three scenarios:

1. Configuring authenticated remote network access, on page 6
2. Configuring site-to-site WAN optimization for application access across data centers, on page 19
3. Configuring authenticated access to accelerated web applications, on page 23

Configuring authenticated remote network access

The authenticated remote network access scenario results in a configuration where users are able to authenticate to the BIG-IP Edge Gateway and access private network resources via a private network tunnel between the client and the BIG-IP Edge Gateway.

Use the following procedures to configure authenticated remote network access.

To configure remote access

1. On the Main tab, expand Access Policy, and then click Network Access.
2. Click the Create button.
3. In the Name box, type a name for this Network Access Profile. In our example, we type London_Remote_Access. You can optionally type a description.
4. In the General Settings section, next to Lease Pool, click the Add (+) button. The Lease Pool is the pool of IP Addresses that clients receive when they connect to the VPN.
 a) In the Name box, type a name for the Lease pool. In our example, we type London_Lease_Pool.
 b) Click the IP Address Range button.
 c) In the Start IP Address and End IP Address boxes, type the appropriate IP addresses. In our example, we allow addresses from 10.0.1.1 to 10.0.1.255.
 d) Click the Add button.
5. Click the **Finished** button. You return to the Network Access list.

![Figure 3](image.png) **Figure 3** Configuring the Lease Pool

6. If necessary, from the **Lease Pool** list, select the lease pool you just created. In our example, we select **London_Lease_Pool**.

7. To enable optimization on the client tunnel itself, from the **Compression** list, select **GZIP Compression**. This allows both the web browser client and the BIG-IP Edge client to take advantage of compression between the client and the remote access server.

 Note: If DTLS is configured (UDP based communication between client and Remote Access Server) GZIP compression is automatically disabled on a per-user-session basis. If D/TLS and Gzip compression are both enabled and the client is unable to connect with D/TLS, Gzip compression will be used on a per-user-session basis.

![Figure 4](image.png) **Figure 4** Configuring Network Access
8. From the **Client Settings** list, select **Advanced**.

9. In the **Traffic Options** section, you can choose to Force all traffic through the tunnel, or use split tunneling. With Split Tunneling enabled, the administrator needs to indicate which subnets should be routed through the VPN tunnel. If Split tunneling is not allowed, all traffic will go through the tunnel.

 a) If you want all traffic to go through the tunnel, click **Force all traffic through tunnel**, and continue with Step 10.

 b) If you want to use split tunneling, click **Use split tunneling for traffic**. The split tunneling options appear.

 - In the **LAN Address Space** section, type the IP address and Mask of the LAN Address space that should go through the tunnel. In our example we indicate that 192.168.0.0/16 is all LAN space. To allow clients to access applications in Datacenter 2, be sure that you add another entry for the DMZ subnet in the remote datacenter. We configure WOM to accelerate this access later on in this guide.

 - In the **DNS Address Space** section, type the DNS name(s) that are used in the target LAN.

 - In the **Exclude Address Space** section, type the IP address and Mask of any address space that should be excluded. For example, if a portion of 192.168.0.0/16 should be excluded, it can be entered here. In our example, we indicate that 192.168.10.0/24 is excluded.

10. The remaining options are also administrative, configure the settings as applicable to your configuration. In our testing and architecture we generally recommend the following settings:

 a) In the **Client Side Security** section, we select **Prohibit routing table changes during Network Access Connection**.

 b) In the **Reconnect To Domain** section, we select **Synchronize with Active Directory policies on connection establishment**.

 c) In the **DTLS** section, check the box to enable DTLS. We recommend using DTLS protocol for optimum performance.

 *Note: DTLS uses UDP port 4433 by default. Arrange to open this port on firewalls as needed.

 For DTLS, a UDP Virtual Server is required (described in Creating the virtual servers, on page 16).*

11. Click **Finished**.

Creating an AAA resource

The Edge Gateway does not have a built-in authentication store therefore an authentication source must be specified. You can configure AAA in two ways:
- **Central AAA**
 With central AAA, all of the Edge Gateways in your configuration point at a single authentication source.

- **Local AAA**
 With local AAA, each Edge Gateway connects to a local AAA resource, where the resources are replicated from site to site.

To create an AAA server

1. On the Main tab, expand **Access Policy**, and then click **AAA servers**.
2. Click the **Create** button.
3. In the **Name** box, type a name for this profile. In our example, we type **Seattle_LDAP_server** because we traverse the wide-area-network back to Seattle to perform authentication.
4. From the **Type** list, select the appropriate authentication method. For this example, we select **LDAP**.
5. In the **Configuration** section, type the appropriate information relevant to your authentication method. In our LDAP example, we provide the Host name for the LDAP server, the Admin DN, and the Admin Password. We leave the timeout at default.
6. Click **Finished**.

![Access Policy AAA Servers New Server](image)

Figure 5 New AAA server configuration
Creating a Connectivity Profile

The next task is to create a connectivity profile.

To create a connectivity profile
1. On the Main tab, expand Access Policy, and then click Connectivity Profile.
2. Click the Create button.
3. In the Name box, type a name for this profile. In our example, we type London_Connectivity.
4. Configure the rest of the options as applicable to your configuration. In our example, we leave all settings at the default.
5. Click Finished.

Creating a Webtop

In the BIG-IP Edge, a Network Webtop is used to deliver the BIG-IP Edge client components to the user's web browser session.

To create a Webtop
1. On the Main tab, expand Access Policy, and then click Webtops.
2. Click the Create button.
3. In the Name box, type a name for this webtop. In our example, we type London_Webtop.
4. From the Type list, select Network Access.
5. If you want the browser window to be minimized to the system tray for Windows hosts, check the Enabled box.
6. Click Finished.

![New Webtop configuration](image)

Figure 6 New Webtop configuration
Creating the Rewrite profile

If you are providing access to applications separately from a network tunnel you will need to create a Rewrite Profile. The Rewrite profile allows BIG-IP Edge Gateways APM component to act as a reverse proxy.

To create the Rewrite profile

1. On the Main tab, expand Access Policy, and then click Rewrite Profiles.
2. Click the Create button.
3. In the Name box, type a name for this profile. In our example, we type edge-Rewrite.
4. Leave the Client Caching Type list at the default (CSS and JavaScript).
5. Click the Finished button.

Creating an Access Profile

The Access Profile ties together the other configuration elements to create a Network Connection VPN Tunnel. The Access Profile is where the Visual Policy Editor (VPE) is located, which allows for workflow design to ensure appropriate security levels for each client access.

To create an Access Profile

1. On the Main tab, expand Access Policy, and then click Access Profiles.
2. Click the Create button.
3. In the Name box, type a name for this profile. In our example, we type London_Access_Policy.
4. In the Settings section, configure the options as applicable for your configuration. In our example, we leave all of the settings at their defaults. Note that depending on licensing, the number of concurrent users may be limited. The other timeouts are administrative choices.
5. In the Configuration section, configure the settings as applicable to your environment. In our example, we accept all of the defaults. We are not using Single-Sign-On configurations or specific Logout URIs. However, we do leave Secure Cookie checked.
6. In the Language Settings section, if you are configuring the Edge Gateway in a language other than English, configure as applicable for your language. In our example, we accept English as the default language.
7. Click Finished.
Editing the Access Profile with the Visual Policy Editor

The next task is to open the London Access Policy and edit the Access Policy using the Visual Policy Editor (VPE). The VPE is a powerful visual scripting language that offers virtually unlimited options in configuring an Access Policy. For detailed information on the VPE please see the product documentation.

In the following procedure, we configure a policy using the Visual Policy Editor. However, Device Wizards provide an easy way to create more interesting policies, including ones that check for virus software and other prerequisites before allowing a user to logon. In this guide, it is our goal to get you oriented with the concepts of the Visual Policy Editor. In our example, we create a Login Page, LDAP auth, and assign the resources allowed.

To edit the Access Profile

1. On the Main tab, expand Access Policy, and then click Access Profiles.
2. Locate the Access Profile you just created, and in the Access Policy column, click Edit. The Visual Policy Editor opens.
3. Click the + symbol between Start and Deny. A box opens with options for different actions.
4. Click the Logon Page option button, and then click the Add Item button at the bottom of the box.
5. Configure the Properties as applicable for your configuration. In our example, we leave the settings at the defaults. Click the Save button.
6. Click the + symbol between Logon Page and Deny.
7. In the Authentication section, click the LDAP Auth option button, and then click the Add Item button.
8. From the Server list, select the AAA Source you created in Creating an AAA resource, on page 8 (see Figure 7).
9. Add SearchDN and SearchFilter items as applicable for your configuration.
10. Click the Save button. You now see two paths, Successful and Fall Back.
11. Click the **Deny** box from the path leading from Successful. The Select Ending box opens.

12. Click the **Allow** button, and then click **Save**. In our example, we leave the fallback as Deny.

13. Click the + symbol between **LDAP Auth** and **Allow**.

14. In the General Purpose section, click the **Resource Assign** option button, and then click **Add Item**.

15. Click the **Add new entry** button.

16. Click **Set Network Access Source**, and then click the option button for the Network Access Source you created in To configure remote access, on page 6. In our example, we click **London_Remote_Access**. This associates the Lease Pool and other settings. Click the **Update** button. You return to the Resource Assign page.

17. Click **Set Webtop**, and then click the option button for the Webtop you created in Creating a Webtop, on page 10. In our example, we click **London_Webtop**. Click the **Update** button.

18. Click the **Save** button. The Resource Assignment window closes and you return to the Visual Policy Editor main page.

At this point you have the basics for a functional access policy.

19. Click the yellow **Apply Access Policy** link in the upper left part of the window. You always have to apply an access policy before it takes effect.
Configuring network entry points

The next task is to create the external virtual server that allows users to initiate their connection to the SSL VPN from either the web browser or the BIG-IP Edge Client for Windows. In our example, we have chosen to allow DTLS as a connection method and we will create two virtual servers, one for TCP 443 and one for UDP 4433.

The first task is to create profiles that are used by the virtual servers.

Creating the profiles

The next step is to create the profiles. Although you may use the default profiles, we strongly recommend you create new profiles based on the default parent profiles. By creating new profiles, you may easily modify the profile settings specific to your deployment without altering default global behaviors.

Creating TCP profiles

The next task is to create the TCP profiles. We recommend creating tcp-lan-optimized and tcp-wan-optimized profiles.

Creating the LAN optimized TCP profile

The first TCP profile we create is the LAN optimized profile.

To create a new LAN optimized TCP profile

1. On the Main tab, expand Local Traffic, and then click Profiles. The HTTP Profiles screen opens by default.
2. On the Menu bar, from the Protocol menu, select TCP.
3. Click the Create button. The New TCP Profile screen opens.
4. In the Name box, type a name for this profile. In our example, we type `edge_tcp_lan`.
5. Modify any of the settings as applicable for your network. See the online help for more information on the configuration options. In our example, we leave the settings at their default levels.
6. Click the Finished button.

Creating the WAN optimized TCP profile

The next task is to create the WAN optimized TCP profile.

To create a new WAN optimized TCP profile

1. On the Main tab, expand Local Traffic, click Profiles, and then, on the Menu bar, from the Protocol menu, select TCP.
2. Click the Create button. The New TCP Profile screen opens.
3. In the Name box, type a name for this profile. In our example, we type `edge_tcp_wan`.
4. Modify any of the settings as applicable for your network. See the online help for more information on the configuration options. In our example, we leave the settings at their default levels.
5. Click the Finished button.

Creating the HTTP profile

The next profile to create is the HTTP profile. This profile is required for the VPN to function. This should be a simple HTTP profile with no optimization (compression or caching).

To create the HTTP profile

1. On the Main tab, expand Local Traffic, click Profiles, and then click the Create button.
2. In the Name box, type a name for this profile. In our example, we type `edge-http`.
3. Modify any of the settings as applicable for your network, but do not enable compression or RAM Cache (both are disabled by default when using the http parent profile).
 See the online help for more information on the configuration options. In our example, we leave the settings at their default levels.
4. Click the Finished button.
Creating a Client SSL profile

The next step is to create an SSL profile. This profile contains SSL certificate and Key information for offloading SSL traffic. The first task is to import the certificate and key (for this Deployment Guide, we assume that you already have obtained the required SSL certificates, but they are not yet installed on the BIG-IP LTM system. If you do not have a certificate and key, see the BIG-IP documentation).

To import a key or certificate

1. On the Main tab, expand Local Traffic.
2. Click **SSL Certificates**. This displays the list of existing certificates
3. In the upper right corner of the screen, click **Import**.
4. From the **Import Type** list, select the type of import (**Certificate** or **Key**).
5. In the **Certificate** (or **Key**) **Name** box, type a unique name for the certificate or key.
6. In the **Certificate** (or **Key**) **Source** box, choose to either upload the file or paste the text.
7. Click **Import**.
8. If you imported the certificate, repeat this procedure for the key.

The next task is to create the SSL profile that uses the certificate and key you just imported.

To create a new Client SSL profile

1. On the Main tab, expand **Local Traffic**, click **Profiles**, and then, on the Menu bar, from the **SSL** menu, select **Client**.
2. Click the **Create** button.
3. In the **Name** box, type a name for this profile. In our example, we type **edge_https**.
4. In the Configuration section, click a check in the **Certificate** and **Key** Custom boxes.
5. From the **Certificate** list, select the name of the Certificate you imported in the **Importing keys and certificates** section.
6. From the **Key** list, select the key you imported in the **Importing keys and certificates** section.
7. Click the **Finished** button.

Creating the virtual servers

The next task is to create the virtual servers for TCP 443 and UDP 4433.
To create the virtual server

1. On the Main tab, expand Local Traffic, and then click Virtual Servers. The Virtual Servers screen opens.
2. Click the Create button. The New Virtual Server screen opens.
3. In the Name box, type a name. We type edge-tcp-443.
4. In the Destination section, select the Host option button.
5. In the Address box, type the IP address. We use 10.133.20.200.
6. In the Service Port box, type 443, or select HTTPS from the list.
7. In the Configuration section, select Advanced from the list.
8. From the Protocol Profile (Client) list, select the profile you created in Creating the WAN optimized TCP profile, on page 15. In our example, we select edge_tcp_wan. This is optional.
9. From the Protocol Profile (Server) list, select the profile you created in Creating the LAN optimized TCP profile, on page 14. In our example, we select edge_tcp_lan.
10. From the HTTP Profile list, select the profile you created in Creating the HTTP profile. In our example, we select edge-http.
11. From the SSL Profile (Client) list, select the SSL profile you created in Creating a Client SSL profile. We select edge_https.

![Figure 9 New virtual server configuration (truncated)](image)
12. In the Access Policy section, from the **Access Profile** list, select the name of the policy you created in *Creating an Access Profile*, on page 11. In our example, we select **London_Access_Policy**.

13. From the **Connectivity Profile** list, select the profile you created in *Creating a Connectivity Profile*, on page 10. In our example, we select **London_Connectivity_Profile**.

14. Leave the **Rewrite Profile** list set to **None**.

![Access Policy](image)

Figure 10 Access Policy section of the virtual server configuration

15. **Do not** configure any of the options in the WAN Optimization section.

16. Click the **Finished** button (this virtual server does not have any Resources).

17. Repeat this entire procedure for the UDP virtual server with the following exceptions.
 - In Step 3, give this virtual server a unique name.
 - In Step 5, use the appropriate IP address.
 - In Step 6, in the **Service Port** box, type **4433**.
 - After Step 7, from the **Protocol** list, select **UDP**.
 - All other settings are the same.
Configuring site-to-site WAN optimization for application access across data centers

In this section, we configure the site-to-site WAN optimization for application access across data centers scenario with the WAN Optimization Module component of BIG-IP Edge Gateway. The WAN Optimization Module accelerates application traffic between datacenters. In our example the remote access function is provided centrally and applications are distributed among datacenters. Much of the configuration in this section is completed is completed on both the local and remote BIG-IP systems.

Prerequisites and configuration notes

The following are notes specific to the WAN Optimization module.

- This configuration in this section is written with the assumption that application servers in each location are presented in the DMZ at each location. BIG-IP WOM will not be used to cross security layer boundaries.
- The BIG-IP Edge Gateway should not advertise its local internal application server network. Rather the BIG-IP Edge Gateway at each location should advertise the DMZ subnet addresses.
- Each DMZ should route to its local Edge Gateway to access remote DMZ and client access subnets, if not using SNAT.

Configuring the WAN Optimization module

Use the following procedures to configure the WAN Optimization module.

Creating the iSession profile

In this procedure, we create an iSession profile. The iSession profile tells the system how you want to optimize traffic; encryption, deduplication and compression are controlled in the iSession profile. Creating a custom iSession profile for each application is a best practice.

To create the iSession profile

1. On the Main tab, expand Local Traffic, and then click Profiles.
2. On the Menu bar, from the Services menu, select iSession.
3. Click the Create button.
4. In the Name box, type a name for this profile. In our example, we type edge-isession.
5. Click the **Custom** box for **Reuse Connection**, and then select **Disabled** from the list.

6. Leave the other settings at the default levels.

7. Click the **Finished** button.

Figure 11 iSession profile configuration

Configuring BIG-IP WOM using the Quick Start template

The next procedure uses the Quick Start Template to configure the WAN Optimization module.

Note: The Quick Start Template is only available in BIG-IP WOM version 10.2 or later.

To configure the WAN Optimization Module using the Quick Start template

1. On the Main tab of the local BIG-IP system, expand **WAN Optimization**, and then click **Quick Start**. The Quick Start configuration screen opens.

2. In the **WAN Self IP Address** box, type the BIG-IP self IP address you provisioned for iSession endpoint in this data center.

3. From the **Discovery** list, select **Enabled**.
4. In the Select VLANs section, select the VLAN you configured and place it in the LAN and WAN VLAN boxes.

5. Choose the iSession profile you created above.

6. For authentication and Encryption we recommend that you use the default profiles.

7. From the Create Optimized Applications list, select the applications and protocols you wish to accelerate between datacenters. If your application protocol is not on this list you may create a new application optimization policy by clicking Click this link to create other optimized applications.

8. Click Apply.

The next part of this procedure is to configure the Advertised routes.

9. Configure the Advertised Routes in datacenter 1:
 a) On the Main tab, expand WAN Optimization, and then click Advertised Routes.
 b) Click the Create button.
 c) In the Address box, type the local DMZ subnet address for this datacenter.
 d) In the Netmask box, type the corresponding subnet mask.
 e) You can optionally type a descriptive Label.
 f) Leave the Mode set to Included.
 g) If you are not using SNAT for remote access clients, create another advertised route for the network access subnet you created above.

10. Configure Advertised Routes in datacenter 2:
 a) On the Main tab, expand WAN Optimization, and then click Advertised Routes.
 b) Click the Create button.
 c) In the Address box, type the local DMZ subnet address for this datacenter.
 d) In the Netmask box, type the corresponding subnet mask.
 e) You can optionally type a descriptive Label.
 f) Leave the Mode set to Included.
 g) Click Finished.

Important

Repeat this procedure in each data center.
After performing this procedure on both BIG-IP systems, continue with the following procedure, in which you connect your two BIG-IP systems together via an iSession tunnel by identifying each remote endpoint. If dynamic discovery was left on (as in step 3), you will only perform the following procedure on one of the BIG-IP systems. If you did not, you must repeat this procedure on the remote BIG-IP system.

To configure the remote endpoints in data center 1

1. On the Menu bar, click **Remote Endpoints**. The remote endpoints configuration screen appears.
2. Click the **Create** button.
3. In the IP **Address** box, type the IP Address of the remote endpoint iSession Self IP Address for the BIG-IP Edge Gateway in Datacenter 2.
4. Accept default values.
5. Click **Finished**.

Configure Remote Endpoints in datacenter 2

1. On the menu bar, click **Remote Endpoints**.
2. Click the **Create** button.
3. In the IP **Address** box, type the IP Address of the remote endpoint iSession Self IP Address for the BIG-IP Edge Gateway in Datacenter 1.
4. Accept default values,
5. Click **Finished**.
Configuring authenticated access to accelerated web applications

In this section, we configure the authenticated access to accelerated web applications scenario, using the BIG-IP APM to authenticate users and then connect them to an accelerated web application. This ensures that application connections coming into your DMZ are authenticated before being passed onto the application. You can optionally require prelogon checks.

For the configuration in this section, you must have a license for BIG-IP LTM, APM and WebAccelerator. For more information on licensing options, talk to your sales representative.

Creating an AAA server

The first task is to create an AAA server. To create the AAA server, use the procedure Creating an AAA resource, on page 8. Give the AAA server a unique name. Configure all other settings as applicable for your implementation.

Creating the SSO configuration

The next task is to create a Single Sign-On Configuration that defines the credentials that are cached.

To create the SSO configuration

1. On the Main tab, expand Access Policy, and then click SSO Configurations.
2. Click the Create button.
3. In the Name box, type a name for this profile. In our example, we type SanJose-SSO.
4. From the SSO Method list, select the appropriate SSO method. In our example, we select HTTP Basic.
5. In the Username Source box, type the user name source. In our example, we leave the default: session.sso.token.last.username.
6. In the Password Source box, type the user name source. In our example, we leave the default: session.sso.token.last.password.
7. From the Access Management Method list, select None.
8. Click Finished.
Creating an Access Profile

Next, we create an Access profile.

To create an Access Profile

1. On the Main tab, expand Access Policy, and then click Access Profiles.
2. Click the Create button.
3. In the Name box, type a name for this profile. In our example, we type SanJose_Access_Policy.
4. In the Settings section, configure the options as applicable for your configuration. In our example, we leave all of the settings at their defaults. Note that depending on licensing, the number of concurrent users may be limited. The other timeouts are administrative choices.
5. In the Configuration section, from the SSO Configuration list, select the SSO configuration you created in Creating the SSO configuration, on page 23.
6. Configure the rest of the settings in the Configuration as applicable to your environment. In our example, we accept all of the defaults. However, we do leave Secure Cookie checked.
7. In the Language Settings section, if you are configuring the Edge Gateway in a language other than English, configure as applicable for your language. In our example, we accept English as the default language.
8. Click Finished.
Editing the Access Profile with the Visual Policy Editor

The next task is to edit the Access Policy using the Visual Policy Editor (VPE). The VPE is a powerful visual scripting language that offers virtually unlimited options in configuring an Access Policy. For detailed information on the VPE please see the product documentation.

The following is just an example, you can add more or different prelogon checks as applicable to your configuration.

To edit the Access Profile

1. On the Main tab, expand Access Policy, and then click Access Profiles.
2. Locate the Access Profile you just created, and in the Access Policy column, click Edit.
 The Visual Policy Editor opens in a new window.
3. Click the + symbol between Start and Deny. A box opens with options for different actions.
4. Click the Logon Page option button, and then click the Add Item button at the bottom of the box.
5. Configure the Properties as applicable for your configuration. In our example, we leave the settings at the defaults.
6. Click the Save button.
7. Click the + symbol between Logon Page and Deny.
8. In the Authentication section, click the LDAP Auth option button, and then click the Add Item button.
9. From the Server list, select the AAA Source you created in Creating an AAA server, on page 23.
10. Add SearchDN and SearchFilter items as applicable for your configuration.
11. Click the Save button. You now see two paths, Successful and Fall Back.
12. Click the Deny box from the path leading from Successful. The Select Ending box opens.
13. Click the Allow button, and then click Save. In our example, we leave the fallback as Deny.
14. Click the yellow Apply Access Policy link in the upper left part of the window. You always have to apply an access policy before it takes effect.
15. Click the Close button on the upper right to close the VPE.
Creating the profiles

The next step is to create the profiles. Although you may use the default profiles, we strongly recommend you create new profiles based on the default parent profiles. By creating new profiles, you may easily modify the profile settings specific to your deployment without altering default global behaviors.

Creating TCP profiles

The next task is to create the TCP profiles. We recommend creating tcp-lan-optimized and tcp-wan-optimized profiles.

Creating the LAN optimized TCP profile

The first TCP profile we create is the LAN optimized profile.

To create a new LAN optimized TCP profile

1. On the Main tab, expand Local Traffic, and then click Profiles. The HTTP Profiles screen opens by default.
2. On the Menu bar, from the Protocol menu, select TCP.
3. Click the Create button. The New TCP Profile screen opens.
4. In the Name box, type a name for this profile. In our example, we type edge_tcp_lan.
5. Modify any of the settings as applicable for your network. See the online help for more information on the configuration options. In our example, we leave the settings at their default levels.
6. Click the Finished button.

Creating the WAN optimized TCP profile

The next task is to create the WAN optimized profile.

To create a new WAN optimized TCP profile

1. On the Main tab, expand Local Traffic, click Profiles, and then, on the Menu bar, from the Protocol menu, select TCP.
2. Click the Create button. The New TCP Profile screen opens.
3. In the Name box, type a name for this profile. In our example, we type edge_tcp_wan.
4. Modify any of the settings as applicable for your network. See the online help for more information on the configuration options. In our example, we leave the settings at their default levels.
5. Click the Finished button.
Creating the HTTP profile

The next profile to create is the HTTP profile. This profile is required for the VPN to function. This should be a simple HTTP profile with no optimization (compression or caching).

To create the HTTP profile

1. On the Main tab, expand Local Traffic, click Profiles, and then click the Create button.
2. In the Name box, type a name for this profile. In our example, we type edge-http.
3. Modify any of the settings as applicable for your network, but do not enable compression or RAM Cache. See the online help for more information on the configuration options. In our example, we leave the settings at their default levels.
4. Click the Finished button.

Creating a Client SSL profile

If your configuration requires offloading SSL transactions on the BIG-IP, the next task is to create an SSL profile. This profile contains SSL certificate and Key information for offloading SSL traffic.

The first task is to import the certificate and key, see To import a key or certificate, on page 16.

To create a new Client SSL profile

1. On the Main tab, expand Local Traffic, click Profiles, and then, on the Menu bar, from the SSL menu, select Client.
2. Click the Create button.
3. In the Name box, type a name for this profile. In our example, we type edge_https.
4. In the Configuration section, click a check in the Certificate and Key Custom boxes.
5. From the Certificate list, select the name of the Certificate you imported in the Importing keys and certificates section.
6. From the Key list, select the key you imported in the Importing keys and certificates section.
7. Click the Finished button.

Creating the virtual server

The next task is to create the virtual server.
To create the virtual server

1. On the Main tab, expand Local Traffic, and then click Virtual Servers. The Virtual Servers screen opens.

2. Click the Create button. The New Virtual Server screen opens.

3. In the Name box, type a name for this virtual server. In our example, we type SanJose-vs.

4. In the Destination section, select the Host option button.

5. In the Address box, type the IP address of this virtual server. In our example, we use 10.133.20.200.

6. In the Service Port box, type 443, or select HTTPS from the list.

7. In the Configuration section, select Advanced from the list. The Advanced configuration options appear.

8. From the Protocol Profile (Client) list, select the name of the profile you created in Creating the WAN optimized TCP profile, on page 26. In our example, we select edge_tcp_wan. This is optional.

9. From the Protocol Profile (Server) list, select the name of the profile you created in Creating the LAN optimized TCP profile, on page 26. In our example, we select edge_tcp_lan.

10. From the HTTP Profile list, select the name of the profile you created in the Creating the HTTP profile section. In our example, we select edge-http.

11. If you created an optional SSL profile, from the SSL Profile (Client) list, select the SSL profile you created in the Creating a Client SSL profile section. In our example, we select edge_https.

12. In the Access Policy section, from the Access Profile list, select the name of the policy you created in Creating an Access Profile, on page 24. In our example, we select SanJose_Access_Policy.

13. Leave the Rewrite Profile list set to None.

14. Do not configure any of the options in the WAN Optimization section.

15. Click the Finished button (this virtual server does not have any Resources).
Configuring the WebAccelerator

In this section, we configure the WebAccelerator to accelerate application traffic.

For this configuration, we assume you have already created the necessary BIG-IP configuration objects (monitor, pool, profiles, virtual server) for your application. If you have not created these objects, see the F5 deployment guide appropriate for your configuration (http://www.f5.com/solutions/resources/deployment-guides.html).

Creating an HTTP class

In this procedure, we create an HTTP class with Web Acceleration turned on.

To create the HTTP class

1. On the Main tab, expand WebAccelerator, and then click Class Profiles.
2. Click the Create button.
3. In the Name box, type a name for this class. In our example, we type application-class.
4. From the WebAccelerator list, make sure Enabled is selected.
5. In the Hosts row, from the list select Match Only. The Host List options appear.
 a) In the Host box, type the host name that your end users use to access your application. In our example, we type sharepoint.example.com.
 b) Leave the Entry Type at Pattern String.
 c) Click the Add button.
 d) Repeat these sub-steps for any other host names users might use to access the application.
6. The rest of the settings are optional, configure them as applicable for your deployment.
7. Click Finished.

Configuring a WebAccelerator application

The next procedure is to create a WebAccelerator Application for your particular application. The Application provides key information to the WebAccelerator so that it can handle requests to your application appropriately.
To create a new Application

1. On the Main tab, expand WebAccelerator, and then click Applications. The Application screen of the WebAccelerator UI opens in a new window.

2. Click the New Application button.

3. In the Application Name box, type a name for your application. In our example, we type `sharepoint-application`.

4. In the Description box, you can optionally type a description.

5. From the Local Policies list, select the appropriate application from the list. In our example, we select Microsoft SharePoint Services 2007.

6. In the Requested Host box, type the host name that your end users use to access the application. This should be the same host name you used in Step 5a in the preceding procedure. In our example, we type `sharepoint.example.com`.

 If you have additional host names, click the Add Host button and enter the host name(s).

7. Click the Save button.

Modifying the virtual server

The next task is to modify the existing virtual server for your application to use the HTTP class you created.

To modify the Virtual Server to use the Class profile

1. On the Main tab, expand Local Traffic, and then click Virtual Servers. The Virtual Servers screen opens.

2. From the Virtual Server list, click the name of the virtual server you created for your application.

 The General Properties screen for the Virtual Server opens.

3. On the Menu bar, click Resources.

4. In the HTTP Class Profiles section, click the Manage button.

5. From the Available list, select the name of the HTTP Class Profile you created in Creating an HTTP class, on page 29, and click the Add (<>) button to move it to the Enabled box. In our example, we select `application-class`.

6. Click the Finished button. The HTTP Class Profile is now associated with the Virtual Server.

If you are creating a new virtual server for your application, be sure to associate the HTTP Class profile with virtual server.