
Understanding Advanced  
Data Compression
Nearly all WAN optimization appliances store and use 
previously transferred network data to achieve high 
compression ratios, while leveraging advanced compression 
routines to improve application performance. How they 
achieve these gains, and the limitations of certain  
routines, vary widely and can significantly affect the 
improvements and benefits associated with WAN 
application delivery services.
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Introduction
The increasingly distributed nature of users and the prevalence of teleworkers, 

coupled with emerging application deployment models that leverage external 

cloud computing, introduce additional stress on existing network connections 

in the form of more data being exchanged more often. Employee productivity 

can be dramatically affected by slow networks that result in poorly performing 

applications. Business continuity plans—no matter how carefully thought out  

and implemented—can go awry when backups fail to complete, take more time 

than expected, and cause some applications to go unprotected.

Organizations have turned to WAN optimization to combat the challenges of 

assuring application performance and help ensure timely transfer of large data sets 

across constrained network links. Many WAN optimization solutions are focused 

wholly on network-layer optimizations and operate based on rigid configurations. 

Not only are these solutions inflexible, but they also fail to include optimizations 

that can further enhance the performance of applications commonly delivered 

over WAN links.

Implementation Approaches
Packets versus Sessions 

To date, most network compression systems have been packet-based. Packet- 

based compression systems buffer packets destined for a remote network with 

a decompressor. These packets are compressed either one at a time or as a group 

and then sent to the decompressor where the process is reversed (see Figure 1). 

Packet-based compression has been available for many years and can be found in 

routers and VPN clients.

Packet-based compression systems have additional problems. When compressing 

packets, these systems must choose between writing small packets to the network 

and performing additional work to aggregate and encapsulate multiple packets. 

Neither option produces optimal results. Writing small packets to the network 

increases TCP/IP header overhead, while aggregating and encapsulating packets 

adds encapsulation headers to the stream.
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“… within 12 months roughly  
half of [168 enterprise IT 
professionals who were 
surveyed] will be using WAN 
optimization technology to 
help them to successfully deliver 
applications to branch offices. 
The technologies that they will 
use include techniques such 
as compression, deduplication, 
caching, quality of service, and 
protocol acceleration.”

Source: “Keys to Unlocking 
IT Value Through WAN 
Optimization,” Dr. Jim Metzler 
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Packet
Compressor

Figure 1: Packet-based compression

Unlike previous compression solutions, F5® BIG-IP® Local Traffic Manager™ (LTM) 

and BIG-IP® Application Acceleration Manager™ (AAM) operates at the session 

layer (Figure 2). This enables BIG-IP AAM to apply compression across a completely 

homogenous data set while addressing all application types, resulting in higher 

compression ratios than comparable packet-based systems.

Session
Compressor

Figure 2: Session-based compression

Furthermore, by operating at the session layer, packet boundary and repacketization 

problems are eliminated. Session layer compression enables a BIG-IP AAM-enabled 

BIG-IP LTM device to easily find matches in data streams that at Layer 3 might be 

many bytes apart, but at Layer 5 are contiguous. System throughput is also increased 

when compression is performed at the session layer through the elimination of the 

encapsulation stage.

Dictionary Size 

One limitation all compression routines have in common is limited storage space. 

Some routines, such as those used by GNUzip (gzip), store as little as 64 kilobytes 

(KBs) of data. Others techniques, such as disk-based compression systems, can store 

White Paper 
Understanding Advanced Data Compression



5

as much as 1 terabyte of data. To understand the impact of dictionary size, a basic 

understanding of cache management is required.

Similar to requests to a website, not all bytes transferred on the network repeat with 

the same frequency. Some byte patterns occur with great frequency because they 

are part of a popular document or common network protocol. Other byte patterns 

occur only once and are never repeated again. The relationship between frequently 

repeating byte sequences and less frequently repeating ones is seen in both Zipf’s 

and Heaps’ laws.

Heaps’ Law 

Heaps’ law states that the number of unique words (V) in a collection with N words 

is approximately Sqrt[N]. A plot graph of data that exhibits Heaps’ Law will have a 

slope of approximately 0.5. 

Zipf’s Law 

Zipf’s law provides a mathematical formula for determining the frequency 

distribution of words in a language. 

r = rank of a word 

N = total number of words in the collection (not number of unique words) 

r * freq(r) = A * N 

Zipf’s law states that the frequency of any word in a collection is inversely proportional 

to its rank in the frequency table. The most frequent word will occur twice as often 

as the second most frequent, and so on. A plot graph of data that exhibits Zipf’s law 

will have a slope of -1. 

All modern, dictionary-based compression systems leverage uneven distribution  

by storing more frequently accessed data and discarding less frequently accessed 

data. Through this type of optimization, a dictionary that stores less than 10 percent 

of all the byte patterns can achieve a hit ratio well in excess of 50 percent. The 

effect of this uneven distribution of byte patterns is evident in the effectiveness 

of common compression programs. For example, while gzip stores only 64 KB of 

history, it averages approximately 64 percent compression. However, bzip2 stores 

between 100 KB and 900 KB of history and averages 66 percent compression. The 

Zipf’s and Heaps’ laws are 
linguistics-derived mathematical 
equations used to predict the 
repetitiveness of a vocabulary 
subset in a finite text. Both laws 
are applicable outside linguistics 
to describe observed patterns of 
repetitiveness in data. Both are 
often used in data deduplication 
and compression algorithms as 
aids to predict and optimize the 
elimination of repeating byte 
patterns.
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reason gzip and bzip2 perform so well despite lacking a substantial data store is  

that the most frequently occurring sequences of bytes represent the majority of 

bytes on a network.

Blocks versus Bytes 

Block-based systems, such as Riverbed Technology’s Steelhead appliances, store 

segments of previously transferred data flowing across the WAN. When these 

blocks are encountered a second time, references to the blocks are transmitted 

to the remote appliance, which then reconstructs the original data.

A critical shortcoming of block-based systems is that repetitive data almost never 

is exactly the length of a block. As a result, matches are almost always only partial 

matches, which leave some of the repetitive data uncompressed. Figure 3 illustrates 

what happens when a system using a 256-byte block size attempts to compress  

512 bytes of data. 

256 Bytes Cached Block

392 Bytes of Previously Transferred Data

256 Bytes Cached Block

1 Block Matched = 256 Bytes Saved

512 Bytes of Network Data

Figure 3: Block-based data reduction

Similar to Riverbed’s approach of using previously transferred data to reduce 

network utilization, BIG-IP LTM with BIG-IP AAM builds a dictionary of previously 

transferred bytes using the F5 Transparent Data Reduction™ (TDR) feature. Unlike 

the Steelhead appliances, though, BIG-IP LTM and BIG-IP AAM matches and sends 

references with byte-level granularity. Figure 4 illustrates how BIG-IP AAM addresses 

the same 512 bytes of data.

Unlike block-based systems, the entire repeating pattern is matched and compressed 

by BIG-IP AAM. In the previous examples, instead of matching only 256 bytes of 

data, BIG-IP LTM and BIG-IP AAM matched and reduced all 392 bytes of repetitive 

data. This level of granularity enables BIG-IP AAM to achieve greater levels of 

compression than competing block-based systems—not only on documents, but 
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also on application layer protocol headers.

392 Bytes of Previously Transferred Data

392 Bytes Segment Matched

392 Bytes Matched = 392 Bytes Saved

512 Bytes of Network Data

Figure 4: Transparent data reduction

Static versus Adaptive Compression 

Most compression capabilities on WAN optimization devices are statically configured. 

This means the algorithm, whether optimal for the network link and conditions 

or not, is always applied to the data being transferred across the WAN. Unique 

to F5 devices is symmetric adaptive compression, which automatically picks the 

right compression algorithm to maximize compression while maintaining high 

throughput. This feature is native to F5 TMOS® architecture and is part of a larger 

symmetric optimization feature set known as iSession®. 

As noted in Figure 5, the performance of compression algorithms varies greatly; 

furthermore, performance is highly dependent on the type of data being exchanged. 

Symmetric adaptive compression automatically selects a high-compression codec 

for slow link speeds; it will never select a compression codec that is too slow for 

the link. It also includes a CPU saver mode for data that is known not to compress 

well. This feature is advantageous to organizations that have multiple WAN links 

with varying speeds: CPU saver mode minimizes concern over less-than-ideal WAN 

optimization that can result from differences in WAN characteristics. 
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Figure 5: Comparison of compression algorithm throughput performance  
with BIG-IP version 8900

Application versus Network 

By virtue of their beginnings as network-focused solution sets, WAN optimization 

solutions have traditionally focused on the network. These solutions optimize a few 

application layer protocols, but those protocols are generally focused on the transfer 

of large data sets from shared file systems such as Common Internet File System 

(CIFS), Microsoft’s file access protocol, and Samba. 

BIG-IP LTM and BIG-IP AAM provide specific policies for file sharing across CIFS, to 

optimize traffic between servers running Microsoft Exchange Server and clients running 

Microsoft Office Outlook, and for optimizing web applications. These optimization 

policies reduce chattiness of the protocols and add web application–specific 

acceleration options that can improve response time and overall performance of 

applications delivered via the WAN. These optimizations and acceleration techniques 

are possible because of TMOS, which enables WAN optimization and application 

acceleration solutions to share a unified internal architecture. This architecture 

enhances the ability to apply multiple techniques to the same data, ensuring it 

performs as well as possible. 
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Does Throughput Matter? 

While achieving a high compression ratio is vital to improving application 

performance on networks with limited bandwidth, system throughput also plays  

an important role. The performance gains from a given compression technology can  

be assessed by considering the technology’s expected compression ratio, the device’s 

peak compression throughput, and the network bandwidth. If the compression 

ratio is too low, the network will remain saturated and performance gains will be 

minimal. Similarly, if compression speed is too low, the compressor will become 

the bottleneck. 

TDR, as implemented in BIG-IP LTM and BIG-IP AAM, has been optimized to 

maintain high throughput. While the Riverbed Steelhead 5520 peaks at 540 Mbps,  

BIG-IP LTM and BIG-IP AAM can sustain speeds of up to 10,000 Mbps with a single 

appliance (BIG-IP 8900). When TDR is coupled with symmetric adaptive compression 

capabilities, BIG-IP LTM and BIG-IP AAM can sustain up to 10,600 Mbps with the 

same single appliance.

Conclusion
Achieving substantial application performance gains through compression requires 

a good compression algorithm and a system architecture that is designed for 

performance. The compression system must precisely match repetitive patterns  

to achieve high compression ratios. When possible, the most efficient compression 

algorithm based on the network link should be applied automatically. This system 

must manage stored data and incoming application traffic to maximize effectiveness, 

and it should optimize and accelerate the performance of applications commonly 

accessed via a WAN link (see Figure 6). Finally, this system must do all this quickly 

to minimize latency and continue to fill the network. 
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Figure 6: How BIG-IP LTM with BIG-IP AAM optimizes applications and data transfers 

BIG-IP LTM and BIG-IP AAM and the TDR feature were designed from the ground 

up to meet these demands that a system not only provide significant compression 

to improve data transfer rates, but also simultaneously accelerate and optimize 

applications delivered over the WAN. By leveraging the capabilities afforded by 

deployment on a unified application delivery platform, BIG-IP LTM and BIG-IP 

AAM can apply compression algorithms dynamically, optimize and accelerate web 

application and email access, reduce bandwidth utilization, and minimize the time 

required to transfer large data sets across constrained WAN links.
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