
Understanding Advanced
Data Compression
Nearly all WAN optimization appliances store and use
previously transferred network data to achieve high
compression ratios, while leveraging advanced compression
routines to improve application performance. How they
achieve these gains, and the limitations of certain
routines, vary widely and can significantly affect the
improvements and benefits associated with WAN
application delivery services.

by Lori MacVittie

Senior Technical Marketing Manager, Application Services

F5 White Paper

2

Contents

Introduction 3

Implementation Approaches 3

Packets versus Sessions 3

Dictionary Size 4

Heaps’ Law 5

Zipf’s Law 5

Blocks versus Bytes 6

Static versus Adaptive Compression 7

Application versus Network 8

Does Throughput Matter? 9

Conclusion 9

White Paper
Understanding Advanced Data Compression

3

Introduction
The increasingly distributed nature of users and the prevalence of teleworkers,

coupled with emerging application deployment models that leverage external

cloud computing, introduce additional stress on existing network connections

in the form of more data being exchanged more often. Employee productivity

can be dramatically affected by slow networks that result in poorly performing

applications. Business continuity plans—no matter how carefully thought out

and implemented—can go awry when backups fail to complete, take more time

than expected, and cause some applications to go unprotected.

Organizations have turned to WAN optimization to combat the challenges of

assuring application performance and help ensure timely transfer of large data sets

across constrained network links. Many WAN optimization solutions are focused

wholly on network-layer optimizations and operate based on rigid configurations.

Not only are these solutions inflexible, but they also fail to include optimizations

that can further enhance the performance of applications commonly delivered

over WAN links.

Implementation Approaches
Packets versus Sessions

To date, most network compression systems have been packet-based. Packet-

based compression systems buffer packets destined for a remote network with

a decompressor. These packets are compressed either one at a time or as a group

and then sent to the decompressor where the process is reversed (see Figure 1).

Packet-based compression has been available for many years and can be found in

routers and VPN clients.

Packet-based compression systems have additional problems. When compressing

packets, these systems must choose between writing small packets to the network

and performing additional work to aggregate and encapsulate multiple packets.

Neither option produces optimal results. Writing small packets to the network

increases TCP/IP header overhead, while aggregating and encapsulating packets

adds encapsulation headers to the stream.

3

“… within 12 months roughly
half of [168 enterprise IT
professionals who were
surveyed] will be using WAN
optimization technology to
help them to successfully deliver
applications to branch offices.
The technologies that they will
use include techniques such
as compression, deduplication,
caching, quality of service, and
protocol acceleration.”

Source: “Keys to Unlocking
IT Value Through WAN
Optimization,” Dr. Jim Metzler

White Paper
Understanding Advanced Data Compression

4

Packet
Compressor

Figure 1: Packet-based compression

Unlike previous compression solutions, F5® BIG-IP® Local Traffic Manager™ (LTM)

and BIG-IP® Application Acceleration Manager™ (AAM) operates at the session

layer (Figure 2). This enables BIG-IP AAM to apply compression across a completely

homogenous data set while addressing all application types, resulting in higher

compression ratios than comparable packet-based systems.

Session
Compressor

Figure 2: Session-based compression

Furthermore, by operating at the session layer, packet boundary and repacketization

problems are eliminated. Session layer compression enables a BIG-IP AAM-enabled

BIG-IP LTM device to easily find matches in data streams that at Layer 3 might be

many bytes apart, but at Layer 5 are contiguous. System throughput is also increased

when compression is performed at the session layer through the elimination of the

encapsulation stage.

Dictionary Size

One limitation all compression routines have in common is limited storage space.

Some routines, such as those used by GNUzip (gzip), store as little as 64 kilobytes

(KBs) of data. Others techniques, such as disk-based compression systems, can store

White Paper
Understanding Advanced Data Compression

5

as much as 1 terabyte of data. To understand the impact of dictionary size, a basic

understanding of cache management is required.

Similar to requests to a website, not all bytes transferred on the network repeat with

the same frequency. Some byte patterns occur with great frequency because they

are part of a popular document or common network protocol. Other byte patterns

occur only once and are never repeated again. The relationship between frequently

repeating byte sequences and less frequently repeating ones is seen in both Zipf’s

and Heaps’ laws.

Heaps’ Law

Heaps’ law states that the number of unique words (V) in a collection with N words

is approximately Sqrt[N]. A plot graph of data that exhibits Heaps’ Law will have a

slope of approximately 0.5.

Zipf’s Law

Zipf’s law provides a mathematical formula for determining the frequency

distribution of words in a language.

r = rank of a word

N = total number of words in the collection (not number of unique words)

r * freq(r) = A * N

Zipf’s law states that the frequency of any word in a collection is inversely proportional

to its rank in the frequency table. The most frequent word will occur twice as often

as the second most frequent, and so on. A plot graph of data that exhibits Zipf’s law

will have a slope of -1.

All modern, dictionary-based compression systems leverage uneven distribution

by storing more frequently accessed data and discarding less frequently accessed

data. Through this type of optimization, a dictionary that stores less than 10 percent

of all the byte patterns can achieve a hit ratio well in excess of 50 percent. The

effect of this uneven distribution of byte patterns is evident in the effectiveness

of common compression programs. For example, while gzip stores only 64 KB of

history, it averages approximately 64 percent compression. However, bzip2 stores

between 100 KB and 900 KB of history and averages 66 percent compression. The

Zipf’s and Heaps’ laws are
linguistics-derived mathematical
equations used to predict the
repetitiveness of a vocabulary
subset in a finite text. Both laws
are applicable outside linguistics
to describe observed patterns of
repetitiveness in data. Both are
often used in data deduplication
and compression algorithms as
aids to predict and optimize the
elimination of repeating byte
patterns.

White Paper
Understanding Advanced Data Compression

6

reason gzip and bzip2 perform so well despite lacking a substantial data store is

that the most frequently occurring sequences of bytes represent the majority of

bytes on a network.

Blocks versus Bytes

Block-based systems, such as Riverbed Technology’s Steelhead appliances, store

segments of previously transferred data flowing across the WAN. When these

blocks are encountered a second time, references to the blocks are transmitted

to the remote appliance, which then reconstructs the original data.

A critical shortcoming of block-based systems is that repetitive data almost never

is exactly the length of a block. As a result, matches are almost always only partial

matches, which leave some of the repetitive data uncompressed. Figure 3 illustrates

what happens when a system using a 256-byte block size attempts to compress

512 bytes of data.

256 Bytes Cached Block

392 Bytes of Previously Transferred Data

256 Bytes Cached Block

1 Block Matched = 256 Bytes Saved

512 Bytes of Network Data

Figure 3: Block-based data reduction

Similar to Riverbed’s approach of using previously transferred data to reduce

network utilization, BIG-IP LTM with BIG-IP AAM builds a dictionary of previously

transferred bytes using the F5 Transparent Data Reduction™ (TDR) feature. Unlike

the Steelhead appliances, though, BIG-IP LTM and BIG-IP AAM matches and sends

references with byte-level granularity. Figure 4 illustrates how BIG-IP AAM addresses

the same 512 bytes of data.

Unlike block-based systems, the entire repeating pattern is matched and compressed

by BIG-IP AAM. In the previous examples, instead of matching only 256 bytes of

data, BIG-IP LTM and BIG-IP AAM matched and reduced all 392 bytes of repetitive

data. This level of granularity enables BIG-IP AAM to achieve greater levels of

compression than competing block-based systems—not only on documents, but

White Paper
Understanding Advanced Data Compression

7

also on application layer protocol headers.

392 Bytes of Previously Transferred Data

392 Bytes Segment Matched

392 Bytes Matched = 392 Bytes Saved

512 Bytes of Network Data

Figure 4: Transparent data reduction

Static versus Adaptive Compression

Most compression capabilities on WAN optimization devices are statically configured.

This means the algorithm, whether optimal for the network link and conditions

or not, is always applied to the data being transferred across the WAN. Unique

to F5 devices is symmetric adaptive compression, which automatically picks the

right compression algorithm to maximize compression while maintaining high

throughput. This feature is native to F5 TMOS® architecture and is part of a larger

symmetric optimization feature set known as iSession®.

As noted in Figure 5, the performance of compression algorithms varies greatly;

furthermore, performance is highly dependent on the type of data being exchanged.

Symmetric adaptive compression automatically selects a high-compression codec

for slow link speeds; it will never select a compression codec that is too slow for

the link. It also includes a CPU saver mode for data that is known not to compress

well. This feature is advantageous to organizations that have multiple WAN links

with varying speeds: CPU saver mode minimizes concern over less-than-ideal WAN

optimization that can result from differences in WAN characteristics.

White Paper
Understanding Advanced Data Compression

8

Deflate LZO Adaptive

Multiple Connections (64) Single Connection

2080

323

2740

509

2870

1212

Figure 5: Comparison of compression algorithm throughput performance
with BIG-IP version 8900

Application versus Network

By virtue of their beginnings as network-focused solution sets, WAN optimization

solutions have traditionally focused on the network. These solutions optimize a few

application layer protocols, but those protocols are generally focused on the transfer

of large data sets from shared file systems such as Common Internet File System

(CIFS), Microsoft’s file access protocol, and Samba.

BIG-IP LTM and BIG-IP AAM provide specific policies for file sharing across CIFS, to

optimize traffic between servers running Microsoft Exchange Server and clients running

Microsoft Office Outlook, and for optimizing web applications. These optimization

policies reduce chattiness of the protocols and add web application–specific

acceleration options that can improve response time and overall performance of

applications delivered via the WAN. These optimizations and acceleration techniques

are possible because of TMOS, which enables WAN optimization and application

acceleration solutions to share a unified internal architecture. This architecture

enhances the ability to apply multiple techniques to the same data, ensuring it

performs as well as possible.

White Paper
Understanding Advanced Data Compression

9

Does Throughput Matter?

While achieving a high compression ratio is vital to improving application

performance on networks with limited bandwidth, system throughput also plays

an important role. The performance gains from a given compression technology can

be assessed by considering the technology’s expected compression ratio, the device’s

peak compression throughput, and the network bandwidth. If the compression

ratio is too low, the network will remain saturated and performance gains will be

minimal. Similarly, if compression speed is too low, the compressor will become

the bottleneck.

TDR, as implemented in BIG-IP LTM and BIG-IP AAM, has been optimized to

maintain high throughput. While the Riverbed Steelhead 5520 peaks at 540 Mbps,

BIG-IP LTM and BIG-IP AAM can sustain speeds of up to 10,000 Mbps with a single

appliance (BIG-IP 8900). When TDR is coupled with symmetric adaptive compression

capabilities, BIG-IP LTM and BIG-IP AAM can sustain up to 10,600 Mbps with the

same single appliance.

Conclusion
Achieving substantial application performance gains through compression requires

a good compression algorithm and a system architecture that is designed for

performance. The compression system must precisely match repetitive patterns

to achieve high compression ratios. When possible, the most efficient compression

algorithm based on the network link should be applied automatically. This system

must manage stored data and incoming application traffic to maximize effectiveness,

and it should optimize and accelerate the performance of applications commonly

accessed via a WAN link (see Figure 6). Finally, this system must do all this quickly

to minimize latency and continue to fill the network.

White Paper
Understanding Advanced Data Compression

F5 Networks, Inc.
Corporate Headquarters
info@f5.com

F5 Networks, Inc. 401 Elliott Avenue West, Seattle, WA 98119 888-882-4447 www.f5.com

F5 Networks
Asia-Pacific
apacinfo@f5.com

F5 Networks Ltd.
Europe/Middle-East/Africa
emeainfo@f5.com

F5 Networks
Japan K.K.
f5j-info@f5.com

©2013 F5 Networks, Inc. All rights reserved. F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other countries. Other F5 trademarks are identified at f5.com.
Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or affiliation, express or implied, claimed by F5. CS01-00009 0513

Application Layer
Acceleration

Step 1

Raw Data

Optimized Data

Data Deduplication

Step 2

Symmetric Adaptive
Compression

Step 3

SSL Encryption

Step 4

TCP Optimization

Step 5

Bandwith Allocation

Step 6

Figure 6: How BIG-IP LTM with BIG-IP AAM optimizes applications and data transfers

BIG-IP LTM and BIG-IP AAM and the TDR feature were designed from the ground

up to meet these demands that a system not only provide significant compression

to improve data transfer rates, but also simultaneously accelerate and optimize

applications delivered over the WAN. By leveraging the capabilities afforded by

deployment on a unified application delivery platform, BIG-IP LTM and BIG-IP

AAM can apply compression algorithms dynamically, optimize and accelerate web

application and email access, reduce bandwidth utilization, and minimize the time

required to transfer large data sets across constrained WAN links.

White Paper
Understanding Advanced Data Compression

mailto:info%40f5.com?subject=
http://www.f5.com
mailto:apacinfo%40f5.com?subject=
mailto:emeainfo%40f5.com?subject=
mailto:f5j-info%40f5.com?subject=

