
TMOS: Redefining the Solution
This paper addresses the F5 TMOS architecture, a collection
of real-time features and functions, purpose-built and
designed as a full-proxy solution with the power and
performance required in today’s network infrastructure.

by KJ (Ken) Salchow, Jr.

Manager, Technical Marketing

F5 White Paper

2

Contents

Contents 2

Executive Overview 3

Packet-based vs. Proxy-based 3

What is a packet-based design? 3

What is a proxy-based design (full proxy)? 4

Redefining the Solution 5

TMOS 5

Taking it to the Next Level 8

TCP Express 8

Fast Application Proxy 9

iRules 10

White Paper
TMOS: Redefining the Solution

3

White Paper
TMOS: Redefining the Solution

Executive Overview
Historically, there have been two ways to build Application Delivery Networking

appliances—build them for performance or build them for intelligence. In the

open market, customers have traditionally selected solutions that exhibit the best

performance. As a result, most vendors have built their devices on faster, packet-

based designs instead of the poorer performing proxy-based architecture. As the

need for intelligence in these devices has grown, vendors find themselves in a

precarious position: the more intelligence they add to the devices in response to

customer demand, the closer they resemble a proxy and the worse they perform.

F5 initially took the packet-based path, but simultaneously started addressing the

root problem—making an intelligent solution that also delivers high performance.

The result is the F5 TMOS® architecture, a collection of real-time features and

functions, purpose-built and designed as a full-proxy solution with the power

and performance required in today’s network infrastructure.

Packet-based vs. Proxy-based
To understand just how unique and powerful TMOS is, it is important to look closely

at the history of these Application Delivery Networking devices, and the dilemma

between speed and intelligence with packet-based and proxy-based solutions.

What is a packet-based design?

A network device with a packet-based (or packet-by-packet) design is located in

the middle of a stream of communications, but is not an endpoint for those

communications; it just passes the packets through. Often a device that operates

on a packet-by-packet basis does have some knowledge of the protocols flowing

through it, but is far from being a real protocol endpoint. The speed of these devices

is primarily based on not having to understand the entire protocol stack, short-

cutting the amount of work needed to handle traffic. For example, with TCP/IP,

this type of device might only understand the protocols well enough to rewrite the

IP addresses and TCP ports; only about half of the entire stack.

As networks became more complex and the need for intelligence increased, more

advanced packet-based designs began to emerge (including the BIG-IP® products

from F5). These devices knew TCP/IP well enough to understand both TCP

connection setup and teardown, modify TCP/IP headers, and even insert data into

3

4

White Paper
TMOS: Redefining the Solution

TCP streams. Because these systems could insert data into TCP streams and modify

the content of the stream, they also had to rewrite the TCP sequence (SEQ) and

acknowledgment (ACK) values for packets going back and forth from the client

and server. F5’s BIG-IP products understood TCP/IP and HTTP well enough to

identify individual HTTP requests and could send different requests to different

servers, reusing connections the BIG-IP device already had open.

While all of this is possible using a very sophisticated packet-by-packet architecture

(BIG-IP devices are some of the most sophisticated of such designs to date), it

required a very complex state tracking engine to understand the TCP/IP and HTTP

protocols well enough to rewrite header contents, insert data, and maintain its own

connections to clients and servers.

Despite this increasing complexity, packet-based designs are still less complex and

faster than traditional proxy-based designs, as they have the advantage of only

requiring a small percentage of the logic required for a full proxy.

What is a proxy-based design (full proxy)?

A full-proxy design is the opposite of a packet-by-packet design. Instead of having

a minimal understanding of the communications streaming through the device,

a full proxy completely understands the protocols, and is itself an endpoint and

an originator for the protocols. The connection between a client and the full proxy is

fully independent of the connection between the full proxy and the server; whereas

in a packet-by-packet design, there is essentially a direct communication channel

between the client and the server (although the device in the middle may

manipulate the packets going back and forth).

Because the full proxy is an actual protocol endpoint, it must fully implement the

protocols as both a client and a server (a packet-based design does not). This also

means the full proxy can have its own TCP connection behavior, such as buffering,

retransmits, and TCP options. With a full proxy, each connection is unique; each can

have its own TCP connection behavior. This means that a client connecting to the

full-proxy device would likely have different connection behavior than the full proxy

might use for communicating with the backend servers. Therefore, a full proxy

allows for the optimization of every connection uniquely, regardless of the original

source and the final destination. Further, a full proxy understands and processes

each protocol as a real client or server would, using layers. Using HTTP as an

example, first the IP protocol is processed, then TCP, then HTTP; and each layer has

no knowledge of the lower layers.

5

White Paper
TMOS: Redefining the Solution

Redefining the Solution
It is common knowledge that proxy-based solutions, or at least the intelligence

offered by them, were the ultimate solution. However, the vastly superior

performance of packet-by-packet designs more than made up for their limited

intelligence. For a while, this was an acceptable trade-off for most

enterprise networks.

As the need for increased intelligence grows, packet-based solutions are quickly

experiencing the same performance restrictions that proxy-based solutions have

always suffered from. And the development complexity of packet-based solutions

is quickly approaching that of proxy-based designs as well. Despite dramatic

increases in hardware and software power, packet-by-packet designs are unable

to keep up with the need for intelligence and performance. It is no longer

acceptable to have to choose between them.

While packet-based solutions had their time, that time is gone. It is now readily

apparent that short-cutting intelligence in lieu of performance did not adequately

provide a viable solution. The real solution is to build a proxy-based solution with

the performance of the packet-based solution.

TMOS
TMOS is a collective term used to describe the completely purpose-built, custom

architecture which F5 spent years and significant investment developing as the

foundation for F5 products going forward. From a high-level, TMOS is:

•	 A Collection of Modules

Each module performs a particular function. For example, there is a

networking driver module, an Ethernet module, an ARP module, an IP module,

a TCP module, and so on. Every component of the system is self-contained,

which helps reduce the complexity of the system and eases future

development. Adding support for new protocols is simply a matter of adding

a new module. This design also allows for easier reuse. If a new application-

level protocol ran on top of TCP/IP, it would be a simple matter to link the

modules together so that the new protocol had access to data from TCP/IP

without understanding the lower-level protocols.

6

White Paper
TMOS: Redefining the Solution

•	 Self-Contained and Autonomous

Many people have observed that a TMOS-based device has a form of Linux

running on it, which can be seen when administering the device using the

command line. It is important to note that this Linux system is not involved in

any aspect of the traffic flowing through TMOS. TMOS has its own dedicated

CPU, memory, and system bus for access to peripheral devices. When a

TMOS-based device receives packets, everything from the wire to the system

bus, from the networking subsystem to the memory management subsystem

are completely self-contained within TMOS. Linux is never involved or

aware of any of it; not even the Linux kernel. The Linux system is used for

management tasks, such as the command line or the web GUI only.

The reason for this is simple: an operating system which is ideal for high speed

traffic management operations is not ideal as a general purpose operating

system. So it makes sense to use a general purpose operating system for

general purpose tasks, like management, and leave the traffic management to

the operating system designed for that purpose—TMOS.

•	 A Real-Time Operating System

A real-time operating system means TMOS does not have a preemptive CPU

scheduler. For general-purpose operating systems, having a preemptive

scheduler in the kernel is very desirable, as all processes can get a fair share of

CPU time, and many of them can run essentially at the same time. In a highly

optimized, special-purpose operating system like TMOS, such a scheduler is

not well-suited because it adds unnecessary overhead. TMOS was designed

and fine-tuned so that each component in the system performs the necessary

operations and then lets the next component run. This significantly reduces

the overhead of CPU scheduling by eliminating interrupts, context switches,

and most of the work a scheduler would typically do. This also allows full

control over when, and in what order, processing occurs.

•	 Both Hardware and Software

Because TMOS is inherently modular in design, it doesn’t matter whether

individual functions are handled by software or by hardware. With TMOS,

everything can be done in software utilizing highly optimized and purpose-

built modules; however resource-intensive operations can also be offloaded

to specialized hardware. For example, TMOS has its own SSL stack and can

process SSL entirely in software, but it is much faster to offload cryptographic

operations to specialized SSL ASICs. Having fully-featured software technology

allows for virtually infinite flexibility and having specialized offload hardware

allows for cost-effective scaling to industry-leading levels of performance.

7

White Paper
TMOS: Redefining the Solution

•	 Event-Driven

The combination of modularity and real-time processing allows TMOS the

unique ability to change its behavior based on real-time, real-world events.

Every event, from client connection initiation through payload processing—

even return traffic from the server back to the client—constitutes an

opportunity for TMOS to change its behavior to match the current

requirement. This functionality makes TMOS the most adaptable and

flexible solution available.

•	 Stateful inspection

The core architecture of TMOS is based on a high speed full proxy which

performs stateful inspection to traffic flows as does a stateful firewall.

While connection traffic is proxied through TMOS, the F5 iRules® engine

has full access (layer 2-7) to that traffic and can set various rules (based on

traffic characteristics, ACLs, or business logic). As an example, rule actions

can be Drop, Block, Redirect, Log, or Transform.

•	 Dynamic Packet Filtering

By default, just like a firewall, TMOS has a “deny all” policy. One important

security advantage of TMOS is that its full proxy completely shadows the

network stack of backend services. The F5 iRules in TMOS allow dynamic

control of application traffic flow such as dynamic control of traffic shaping

policies based on application (not just TCP or network protocol), request,

or response content. Traffic flow can also be filtered, redirected, or blocked

dynamically at the same application layer such as HTTP, or packet by packet,

such as via UDP, SCP, or TCP.

All of these items make TMOS an extremely powerful and adaptable solution.

The combination of modularity in a self-contained, real-time, event-driven operating

system gives TMOS unprecedented capabilities. For instance, TMOS is capable of

utilizing three entirely unique network stacks designed to match deployment

requirements. First, there is the FastL4 stack; a limited-state TCP/UDP or traditional

packet-by-packet design to handle any high-connection rate, but limited

functionality (layer 4 and below) requirements. Then, there is the FastHTTP stack;

a limited-state TCP/HTTP stack representing an extremely advanced packet-by-

packet design to handle high-connection rates with increased HTTP (layer 7)

intelligence requirements. Finally, there is the Fast Application Proxy; the default

full-proxy based stack representing the pinnacle of proxy-based design. The fact that

TMOS is capable of using software and hardware components interchangeably

allows the entire FastL4 stack to be completely offloaded to F5’s Packet Velocity ASIC

8

White Paper
TMOS: Redefining the Solution

(PVA) if the system is equipped with the PVA hardware. The choice of which

approach is best is entirely up to the customer.

By itself, any one of these high-level descriptors would differentiate TMOS from any

existing solution, packet-by-packet or proxy-based. This architecture alone would be

enough to change the application delivery networking market, but even the best

architecture built with sub-standard components results in a sub-standard solution.

The components, or modules, with which TMOS is built makes it a truly

superior solution.

Taking it to the Next Level
What makes the TMOS architecture extraordinary are the custom-built modules

created to support it. Among the most significant are some of the most widely used:

TCP Express™, Fast Application Proxy™, and iRules.

TCP Express

Packet-by-packet designs simply cannot provide what TMOS can with the

TCP Express feature-set. There are companies that have a full proxy, but it is limited

by the fact that it is merely a component on a general-purpose UNIX-based system.

They have no possibility of achieving the performance of a custom-written, real-time

operating system that was designed to provide low-latency, state of the art

networking performance. There is simply no way to effectively bolt-on this type of

functionality after the product is designed—it requires a fundamental architectural

commitment to high performance, low-latency networking.

TCP Express is a collection of TCP efficiency improvements, in the form of internet

standards (RFCs), and hundreds of custom F5 features and tuning based on our

extensive real-world experience. TMOS supports every modern TCP efficiency

improvement, including:

•	 Delayed and Selective Acknowledgements, (RFC 2018)

•	 Explicit Congestion Notification ECN, (RFC 3168)

•	 Limited and Fast Retransmits, (RFC 3042 and RFC 2582)

•	 Slow Start with Congestion Avoidance, (RFC 2581)

•	 Adaptive Initial Congestion Windows, (RFC 3390)

•	 TimeStamps and Windows Scaling, (RFC 1323)

9

White Paper
TMOS: Redefining the Solution

•	 TCP Slow Start, (RFC 3390)

•	 Bandwidth Delay Control and many more (Vegas, NewReno, etc.)

These features, and over a hundred others, are all ways of trying to achieve peak

performance in every connection scenario. Every device TMOS interacts with has a

different network scenario. To get peak performance for all connecting devices,

TMOS has to intelligently react to the unique requirements of each and every device,

for each and every connection. It is not enough to support one or two advanced

TCP optimizations. It is not enough to develop your own optimizations, and to

field-optimize your product. Complete TCP optimization, custom extensions, and

extensive real-world testing, are all needed together, on top of a real-time, latency-

optimized operating system to achieve ideal performance. All of these things must

be done together to achieve significant real-world benefit, which is what F5 has

done with TMOS.

Fast Application Proxy

The Fast Application Proxy component of TMOS, the full-proxy stack, is another key

differentiator. This is what enables TMOS to provide more acceleration and

optimization features than any solution before or since. Typically, inspection or

intelligence logic comes at the cost of speed, and naturally so—the more work that

is required per connection, the fewer connections that can be handled. What makes

the Fast Application Proxy so unique is that by leveraging hardware transparently

when possible, coupled with a custom high-performance real-time operating system

(TMOS), it is able to achieve truly unparalleled performance, while still offering all

the benefits of a real full-proxy design. Additionally, the Fast Application Proxy

provides for the application fluency necessary to implement a host of other TMOS

modules, including:

•	 HTTP Compression

•	 Multi-Store Caching

•	 SSL Acceleration

•	 Fast Cache

•	 Content Spooling

•	 Intelligent Compression

•	 QoS/ToS

•	 L7 Rate Shaping

10

White Paper
TMOS: Redefining the Solution

The pieces all fit together. TMOS provides an architecture that allows the Fast

Application Proxy to provide intelligence with performance; and the Fast Application

Proxy, using the TMOS architecture, allows for the intelligent use of numerous other

modules, both hardware and software, which provide even greater performance.

iRules

iRules are one of the most unique capabilities of TMOS. iRules are scripts created

using the standard Tool Command Language (TCL) with custom F5 extensions that

enable users to create unique functions triggered from TMOS events. While the

rules themselves are easy to create and understand, this module compiles the rules

into byte-code which actually performs actions, such as reading and writing HTTP

cookies, through custom-written, highly optimized function calls in the core of

TMOS. The combination of these two key technologies means that the simple TCL

rule text results in high performance byte-code that does the actual inspection and

manipulation in a way that is native to TMOS, and therefore fast.

Since the initial launch of TMOS, F5 customers have found hundreds of ways of

taking advantage of the power of the iRules engine in TMOS. For example:

•	 DNS rate limiting.

•	 Implementing an SMTP proxy to inspect and direct individual messages.

•	 Re-ordering HTTP cookies for easier parsing on the back-end systems.

•	 Authenticating user connections with a back-end RADIUS server using

credentials stored in a HTTP cookie.

•	 Implementing a simple LDAP parser to inspect parameters of LDAP

bind() requests.

•	 Selectively using SSL re-encryption to the back-end servers only for certain

HTTP URLs. And selectively requiring SSL client certificates based on

HTTP URLs.

•	 Creating and inserting a custom session ID value into an HTTP request, which

the server will echo back in the response, then inspect the response and verify

it matches the request. If not, logging the full session information, and the

last 100 requests.

•	 CORBA/IIOP request multiplexing.

There is no other device in the world that can implement this type of highly

sophisticated logic via their inspection feature-set. These are simple iRules that take

© 2011 F5 Networks, Inc. All rights reserved. F5, F5 Networks, the F5 logo, BIG-IP, ARX, FirePass, iControl, iRules, TMOS, and VIPRION
are registered trademarks of F5 Networks, Inc. in the U.S. and in certain other countries. CS01-00035 0111

F5 Networks, Inc.
Corporate Headquarters
info@f5.com

F5 Networks, Inc. 401 Elliott Avenue West, Seattle, WA 98119 888-882-4447 www.f5.com

F5 Networks
Asia-Pacific
apacinfo@f5.com

F5 Networks Ltd.
Europe/Middle-East/Africa
emeainfo@f5.com

F5 Networks
Japan K.K.
f5j-info@f5.com

White Paper
TMOS: Redefining the Solution

advantage of the unparalleled flexibility of TMOS and its event-driven architecture.

Furthermore, while we can’t attribute it directly to TMOS, iRules, and the

development of iRules has spawned its own development community which exceeds

7,000 members worldwide: DevCentral.

While TCP Express, the Fast Application Proxy, and iRules are only three of the many

unique and highly optimized components built on top of and into TMOS, they

present a wide view into the fact that TMOS does not stop at a groundbreaking

architecture, but also includes the leading-edge components to make that

architecture come to life.

The development of packet-by-packet designs originated out of a need to provide

application delivery networking appliances which provided exceptional performance

as well as intelligence, albeit less intelligence than their proxy-based counterparts.

The ability of these devices to satisfy the need of today’s network has run its course

and most vendors are right back were they started; needing to provide the intelligence

of a full-proxy with the even more increased performance requirements of today’s

networks. The choice of a packet-based architecture has proven short-sighted.

F5 realized early on that the only long-term solution was a proxy-based architecture

designed to provide both performance and unparalleled flexibility to handle

anything that came down the road. The result of that vision, as well as significant

development time and investment, is TMOS. TMOS is the first, completely purpose-

built, modular, self-contained, real-time, event-driven proxy architecture with the

ability to transparently utilize hardware and software unilaterally to achieve the best

performance and intelligence. In addition, TMOS goes beyond a revolutionary

architecture and provides a new standard for each and every component used to

build it. From TCP Express, that ensures the most efficient network-level connections

to both the client and the server, to the Fast Application Proxy that provides

intelligence as well as performance, to iRules that allow for the complete control

and customization of all these functions and all of the numerous application

acceleration, security, and availability components available, TMOS is simply the only

Application Delivery Networking solution that isn’t starting all over again. TMOS is

already the right solution.

mailto:info%40f5.com?subject=
http://www.f5.com/
mailto:apacinfo%40f5.com?subject=
mailto:emeainfo%40f5.com?subject=
mailto:f5j-info%40f5.com?subject=
http://devcentral.f5.com/

