

F5 Networks, Inc. - 1 - © Sep-07

Written by Lori Mac Vittie | Technical Marketing Manager

 XSS Evasion—Trying to hide in the
all-concealing torchlight

Executive Summary

As sites become more interactive, the demand for user control over content as well as the
appearance of that content continues to grow. The result is a growing number of web sites using
so-called Web 2.0 interaction to provide forums, commentary, and feedback to facilitate the
growth of community. While the business benefits appeal to those who would like to see a better
bottom line, the incidence of exploitation of these sites is a growing concern to security

administrators and risk management personnel.

Any site that stores data is at risk for exploitation. However, these interactive sites are a healthy
breeding ground for attacks that attempt to use the data storage capabilities to reach a wide
audience for the purpose of spreading malicious code and enticing users to share sensitive

information.

While threat prevention systems—UTM, Web Application Firewall, intrusion prevention systems,
and intrusion detection systems—have long been capable of detecting attacks designed to steal
or lure users into divulging personal information, attackers have not been sitting idle. Attackers
have learned to evade detection through a number of techniques that are not handled by most
threat prevention systems. By evading detection of their intent, attackers are able to exploit the
growing communities of interactive sites and wreak havoc on unsuspecting users and

organizations.

Evasion detection engines are a new form of protection against such attacks. These engines
recognize attempts at cloaking the malicious code that can result in a successful XSS injection
attack by normalizing requests before applying signature and key word pattern matching,
resulting in the successful detection and subsequent prevention of hidden XSS injection attacks.

If You Store Data, They Will Come

In the early days, web sites were used primarily to disseminate information. Web sites were static
entities that changed only when developers rewrote pages. During the boom days of the Internet
there was an explosion of pseudo-developers—people somewhat skilled in HTML who were far
less expensive than true developers—that helped to offset the rising cost of continually updating

web sites.

Unfortunately, this often led to poorly written HTML that was often not cross-browser compatible.
This eventually led to more forgiving rendering engines in browsers that tried to compensate for

poorly coded web pages.

The boom also saw the rise of the dynamic web site: data-driven sites that pulled content from
databases and content management systems. These sites could be easily updated by non-
technical personnel and enabled the proliferation of ecommerce.

Data-driven sites unfortunately also allowed attackers ways to exploit the basic ability of these
sites to display stored data along with the forgiving nature of browsers. The Cross-site scripting

(XSS) attack was born.

Soon after XSS appeared on the scene, threat prevention systems were also born to combat
attackers. For a time, these systems performed their duties and prevented many attacks from
being perpetrated. At the same time, however, the proliferation of interactive components such as
guest books, chat rooms, message boards, and discussion forums changed the landscape

F5 Networks, Inc. - 2 - © Sep-07

Written by Lori Mac Vittie | Technical Marketing Manager

dramatically and gave attackers easy access to data-driven sites through which they could inject
and ultimately inflict their scripting-based attacks on other browsers.

Again, threat prevention systems plugged these potential holes. But attackers, intent on
spreading their malicious code, discovered ways to evade these systems and continue to
perpetrate their attacks against what is now more commonly known as Web 2.0 sites—
interactive, data-storing, dynamic web sites.

Exploiting Interactivity

XSS attacks are a two step process: first, you have to inject malicious code into a web site and
second, you have to get an unlucky victim to view the infected page. With the explosion of

interactive sites, both steps have become like child’s play for attackers.

In the old days, attackers had to exploit vulnerabilities in languages and applications to inject
malicious code into sites. With the proliferation of sites that include interactive components like
message boards and comment systems, attackers have discovered that injecting malicious script
into sites is a relatively simple task due to the demand from users that enables them to include

formatting and images within their submissions.

Threat prevention systems initially plugged this hole using content filtering and signature-based
databases containing commonly used exploits against applications and languages. As these
holes closed, attackers turned to exploiting the flexibility and forgiving nature of HTML parsers to
evade detection, thus allowing their malicious scripts to pass undetected through security

systems.

There are several common methods used by attackers today to evade detection by threat
prevention systems. They are based on the forgiving nature of HTML parsers and the HTTP
protocol as well as a thorough understanding of the filters and regular expressions often used to
detect these attacks. By modifying the signature of the attack using a variety of mechanisms
allowed by HTML parsers and the HTTP protocol, attackers are able to evade detection of their

malicious intent.

XSS Detection Evasion

Successful injection of XSS attacks began by forcing the output of an HTML script tag that
referenced the remote script desired. This particular attack should be easily prevented by any
modern threat prevention system.

Also easily preventable are the mutations used by attackers. Using the same script injection
techniques, attackers moved to exploiting the flexibility of HTML by injecting scripts into any and

every HTML element that will accept them—which is just about all of them.

Modern threat prevention systems are capable of preventing these injection attempts but only
when they follow a specific pattern that can be matched to known vulnerabilities. Attackers know
that the input validation routines of web applications—especially those that allow and encourage
users to utilize HTML to enhance their interactive experience—are rarely as thorough as they
should be.

So while the basic concepts of XSS injection are still used, they are barely recognizable to most
threat prevention systems because attackers hide their intentions with a number of techniques
that are made possible by lax rendering engines and the failure of threat prevention methods to
catch the injection.

XML Data Islands

XML data island manipulation works based on the ability to use embedded XML as the source for
an HTML element, most often the SPAN or TABLE elements. The XML data field referenced by

F5 Networks, Inc. - 3 - © Sep-07

Written by Lori Mac Vittie | Technical Marketing Manager

the DATAFLD attribute of a SPAN element can be treated as directed by the DATAFORMATAS
attribute of the SPAN, and in the case of an XSS injection attack is almost always treated as
HTML. If the XML element referenced by the DATAFLD attribute contains script, it can be

exploited and used to load an external script that is likely malicious.

The exploitation of XML data islands work because most threat prevention systems examine

HTML and are not equipped to parse and examine XML embedded inside HTML documents.

Threat prevention systems capable of detecting an XSS injection within an XML data island are
generally stymied by the use of other injection evasion detection techniques such as using
comments or obfuscating CDATA within the XML to bypass filters.

White Space

The filters used to detect XSS injection are often based on regular expressions that expect
specific formatting of HTML, including white spaces, carriage returns, and tabs. By decreasing,
increasing, or inserting extra white space the attacker can often evade detection because the
resulting malicious code will not match the pattern expected.

White space-based injection attacks work because the filters in threat prevention systems do not
cover all the possible cases and HTML rendering engines ignore white space contained inside

HTML tags.

HTML Manipulation

Most filters used to detect XSS injection look for malicious code contained within well-formed
HTML, such as containing opening and closing tags where appropriate. By inserting closing tags
where they are not expected, dropping closing tags, or even adding additional opening tags in

places, filters do not expect the attacker can evade detection.

HTML manipulation injection attacks work because filters cannot anticipate the irregular
placement of opening and closing tags on HTML elements, and rendering engines are forgiving

and will often close tags on their own.

Character Encoding

Threat preventing systems require some base data on which to match attacks. That generally
includes specific patterns of characters, usually those that spell out the name of an HTML tag.
By encoding tags in different code sets or base systems—for example, hexadecimal, octal, and

Base64—the attacker can bypass detection.

Original <script src=http://www.myexample.com/jsource.js></script>

URL
Encoded

%3C%73%63%72%69%70%74%20%73%72%63%3D%68%74%74%70%3A%2F%2F%

77%77%77%2E%6D%79%65%78%61%6D%70%6C%65%2E%63%6F%6D%2F%6A%
73%6F%75%72%63%65%2E%6A%73%3E%3C%2F%73%63%72%69%70%74%3E

HTML
Entities

<script src=&#x
68;ttp://www.my
example.com/&#x
6A;source.js></
script>

Base64 PHNjcmlwdCBzcmM9aHR0cDovL3d3dy5teWV4YW1wbGUuY29tL2pzb3VyY2UuanM+P
C9zY3JpcHQ+

Use of different character encodings works because while the filter may not recognize the attack,

the browser will correctly interpret the data during the rendering process.

F5 Networks, Inc. - 4 - © Sep-07

Written by Lori Mac Vittie | Technical Marketing Manager

URL String Evasion

The second part of the XSS-based attacks requires that some data or script be loaded from an
external site. Many threat prevention systems detect the presence of external domains and will
prevent them from being injected. In order to evade the threat prevention system’s ability to block
such URLs from being injected, attackers use a number of methods to hide the URL from being

detected as external.

Such methods include using an IP address instead of a domain name, using URL encoding to
hide the domain name, and encoding the URL numerically as a DWORD, hexadecimal, or octal
string. Some attackers will mix and match these methods, causing further confusion to threat

prevention systems.

URL string evasion works because filters expect a string-based domain name, not a numeric one,
and because modern web browsers are capable of understanding the encoded version of the
domain name or IP address.

The Policy Evasion Detection Engine

In order to successfully detect both the XSS injection attack as well as the evasion of that
detection it is necessary to incorporate evasion detection technology into existing threat

prevention solutions, such as F5’s BIG-IP Application Security Manager (ASM).

ASM now includes sophisticated anti-evasion technology designed to detect and neutralize XSS
injection evasion attacks. This technology, the Policy Evasion Detection Engine (imPEDE), is
capable of recognizing a variety of evasion attempts and subsequently preventing them from

reaching their intended target.

ASM’s imPEDE accomplishes this task by normalizing data that would typically slip through
traditional threat prevention systems that rely on signatures and pattern-matching systems. By
normalizing the data, imPEDE is able to remove the impact of evasion attempts on matching

against signature databases and keywords.

When a request is received, ASM automatically passes that request through imPEDE to remove
extraneous comments and white space, and applies decoding policies. This normalizes the data,
and ASM can then use its existing, proven methods of discovering XSS injection attacks, thus

preventing the evasion from accomplishing its task.

ASM’s imPEDE normalization techniques work because the XSS injection attacks themselves
have not changed, just the manner in which they are embedded within requests. By detecting the
attempts to evade the underlying system, imPEDE enables ASM’s proven methods of preventing
XSS injection to continue to be successful at protecting applications and data stored in corporate

databases.

imPEDE further enhances security without degrading performance—a common concern
regarding the deployment of threat prevention systems and web application firewalls in general—
by employing policy-based detection. imPEDE enables policy to determine what URLs should be
examined and which ones are assumed threat-free. Most commonly, policies are applied to URLs
that submit data but not necessarily those simply retrieving and displaying data, as those are

least likely to contain potential threats from attackers.

imPEDE’s policy-based approach is flexible, enabling the administrator to determine what should
and should not be protected. This can be further be enhanced by ASM’s ability to monitor and
report upon site changes that may include new URLs or changes to the behavior of existing URLs.
This allows administrators to make decisions regarding the level of security necessary on a per
URL basis as the site changes, making site based exploration a much simpler and easier task.

F5 Networks, Inc. - 5 - © Sep-07

Written by Lori Mac Vittie | Technical Marketing Manager

Conclusion

A purely signature or keyword matching-based threat prevention system cannot properly deal
with evasion attacks. While these techniques are a good basis for preventing known threats from
reaching applications, such a static method of threat detection cannot continue to expect to be
successful against the evolving dynamic nature of web application attacks, in particular XSS

injection.

Advanced technology, such as ASM’s imPEDE, is required in order to detect the evasions used
today to penetrate through existing threat prevention solutions. These solutions, such as IPS or
stand-alone web application firewalls, provide protection primarily at the web application layer
and cannot address the broader issue of application delivery security. ASM, when coupled with
the network and application transport layer security of an application delivery platform and
integrated into an Application Delivery Network, offers a holistic solution for ensuring the secure,

fast, and available delivery of applications.

