@

=

<

\?QQ/

2019
APPLICATION
PROTECTION
REPORT

2ND EDITION

BAFFIN BAY

NETWORKS

[Sentia

Authors

Ray Pompon is a Principal Threat Research Evangelist

with F5 Labs. With over 20 years of experience in Internet
security, he has worked closely with federal law enforcement
in cyber-crime investigations. He was directly involved in
several major intrusion cases, including the FBI undercover
Flyhook operation and the NW Hospital botnet prosecution.
He is the author of IT Security Risk Control Management: An
Audit Preparation Plan published by Apress books.

Sander Vinberg is a Threat Research Evangelist for F5 Labs.
He has worked in information security, geopolitical risk, and
linguistic consulting. He holds a master’s degree from the
University of Washington in Information Management, as
well as bachelor’s degrees in History and African-American
Studies from the University of Chicago.

Contributors

Sara Boddy | Director, F5 Labs
Debbie Walkowski | Threat Research Evangelist, F5

David Warburton | Senior Threat Research Evangelist, F5

Business and Data Partners

BAFFIN BAY NETWORKS is a team of dedicated researchers
monitoring and investigating emerging attacks, advanced
persistent threats, and the organizations and individuals
responsible for them. They also develop research tools to
identify, investigate, and track ongoing attacks and emerging
threats. Working with Baffin Bay Networks, we analyzed
global intrusion and honeypot data collected from web
attacks on 21,010 unique networks over 2017.

CYENTIA INSTITUTE is a cybersecurity research services
firm. They deliver high-integrity, high-quality, data-driven
research which provides security companies with meaningful
marketing content to build mindshare, drive sales, and attain
greater visibility in competitive markets. In doing so, it seeks
to advance cybersecurity knowledge and practice for the
community at large.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

PHP—PRETTY HEAVILY POUNDED

THE RELATIONSHIP BETWEEN BREACH CAUSES AND INDUSTRY SECTORS
FORMJACKING INJECTIONS GET MEANER

ACCESS CREDENTIAL ATTACKS

ATTACKER’S EYE ON THE API

THE FUTURE OF APPLICATION SECURITY

INTRODUCTION
Modeling the New Attack Surface

PHP RECON RUNS RAMPANT
Sensor Network Reveals the Lowest Common Denominators
Findings
Coordinated Campaign Against phpMyAdmin
Two IP Addresses Doing All of the Dirty Work

BREACH TRENDS IN 2018
Top Threats
Sorting Breaches by Cause
Industry Profiles
What Does All this Mean?

INJECTION FOR A DECENTRALIZED AGE
Again, We Ask: What Is an App?
Injection Still?

New Software Supply Chain, Old Attacks
What the Data Say
Mitigating the Risk of Injection Attacks

ACCESS ATTACKS’ ENDURING PREVALENCE
Phishing
Credential Stuffing and Brute Force Attacks
Email Hacks

Mitigating the Risk of Access Attacks

2019 APPLICATION PROTECTION REPORT

10
il

14
14
14
15
15

16
16
17
20
21

24
24
24
26
27
29

34
34
35
37
39

TABLE OF CONTENTS

APIS AND THE NEW-OLD PROBLEM OF VISIBILITY 44
APl Usage 44
How Does an API Fit Into a Network? 45
What Makes an APl a Good Target? 45
What Kinds of APIs Get Hacked and Why? 46
Public Records Review 50
Incidents (Not Breaches) 50
Mitigating the Risk of API Attacks 50
FINAL THOUGHTS 56
PHP Recon Shows That We Can’t Ignore the Trailing Edge 56
The Big Picture with Breach Trends 56
The Future of Injection and Decentralized Web Content 58
Putting Access Attacks in Perspective 58
The Future of API Security 59
Service Level Agreements Coming for Third-Party Services? 60

WE WANT TO KNOW WHAT YOU THINK 60

2019 APPLICATION PROTECTION REPORT

Executive Summary

Welcome to F5 Labs’ second annual Application Protection
Report, a comprehensive investigation of the threats facing
applications today and what organizations can do to protect
their apps. This year, we have newer, deeper insights from within
F5, combined with threat intelligence from Baffin Bay Networks
and its global network of over 1,500 sources. We also worked
with the Cyentia Institute, the pioneers of security research, who
created Verizon's Data Breach Investigations Report. We've got
a lot of data-driven insights that we're excited to share!

As always, we focus on applications because that's what our
adversaries do. Applications are the battlefield of information
security. As the meeting point of users and networks, they are
the defining value proposition for most businesses, and the
gateway to that which attackers value most: data.

2019 APPLICATION PROTECTION REPORT 4

EPISODE 1

PHP—Pretty Heavily Pounded

Since F5 Labs began examining sensor traffic in 2017, the widespread programming language
PHP has continually stood out as a favored attack vector, particularly for the less sophisticated
end of the attacker spectrum. In 2017, PHP was targeted in 58% of indiscriminate web attacks. In
2018, we saw this rise to 81%. Based on the paths this traffic was looking for, we believe that most
of this traffic was looking for old (and probably neglected) systems MySQL databases with known

vulnerabilities, such as PHP database management systems.

The simple takeaway is that if you’re using PHP, you’re being scanned for weaknesses. Make sure
you’re patched up, with a careful eye towards known PHP exploits like cve-2018-12613 and cve-
2018-20062. And if you’ve got any PHP-enabled admin interfaces online, you need to lock them
down tight. The higher-level takeaway is that traffic like this is a reminder that old vulnerabilities
never quite go away. It is easy to watch the threat landscape change and

become focused on new threats. However, reconnaissance campaigns that are seeking systems
with eight-year-old vulnerabilities demonstrate that we are always building on top of our past, and

the new threats and new vulnerabilities that come on the scene do not erase the old ones.

EPISODE 2

The Relationship Between Breach Causes
and Industry Sectors

To determine which tactics were resulting in actual breaches, we examined public breach
disclosures that organizations provided to U.S. state attorneys general from 10 states. We looked
at 761 unique events in 2018, and 1,025 in 2019. Access-related breaches made up the largest
proportion for both years, at 47% in 2018 and 52% in 2019, with web breaches next at 17% in 2018
and 19% in 2019.

The nature of the breaches depended on how different industry sectors tend to collect and store
their valuable data assets. Organizations from industries that depend on ecommerce,

like retail, are more likely to be breached by web attacks, whereas other industries such as finance
and healthcare are more likely to be compromised by access attacks. We will explore each of these
two most prevalent attack types in more detail below, with an emphasis on

how they have evolved in response to changes in how applications are built and how people

interact with them.

2019 APPLICATION PROTECTION REPORT

EPISODE 3

Formjacking Injections Get Meaner

Injection attacks took a front seat in breaches in both 2018 and 2019, largely due to the prevalence
of formjacking attacks. Formjacking uses code injected by an attacker to siphon payment card
information from an online form and deliver it to the attacker. We found 83 breaches that were
attributable to formjacking in 2018, and 145 in 2019.

While formjacking is not a new technique, it has become more lucrative in the last few years
because of a trend of decentralization in web applications. More and more web applications

are using third-party services that run in the client browser to deliver mission critical business
functions, and payment card processing is one of the most prevalent services to be outsourced.
This allows attackers to target third-party services with injection attacks whose malicious payload

runs on the client browser, unbeknownst to both the main application owner and the victim.

THE RISK OF THESE KINDS OF ATTACKS IS MAGNIFIED WHEN
THE TARGET WEB APPLICATION USES THIRD-PARTY CODE
RUNNING OFFSITE.

The recent rise of formjacking indicates that any organization that accepts payment card
information over the web is going to have their shopping cart targeted, regardless of sector.
The risk of these kinds of attacks is magnified when the target web application uses third-party
code running offsite. We strongly recommend thorough testing and watching of all third-party

components on sites with forms accepting critical information.

EPISODE 4

Access Credential Attacks

While injection played a significant role in the breaches that were caused by web attacks, those
breaches were far surpassed by the number of access-related breaches. In 2018, 47% of all
breaches we looked at were attributable to some kind of access attack, and 52% were in 2019.
The percentage of breaches that were specifically caused by compromises of email systems rose
from 20% to 33% between 2018 and 2019. Even though organizations often go to great lengths
to protect known sensitive information in hardened databases, there is often also a huge amount
of sensitive information like passwords, personal information and intellectual property, sitting

unencrypted in email.

The number of phishing breaches actually dropped, from nearly 20% of breaches in 2018 to 14%
in 2019. We suspect that this is more due to differences in reporting than a true drop in phishing,

since we know that phishing has grown more sophisticated across the attacker spectrum.

2019 APPLICATION PROTECTION REPORT

7

Brute force attacks are another type of access attack that have raised questions in 2018 and 2019.
Brute force attacks have low success rates, but are simple and cost attackers almost nothing in
terms of effort, so they remain popular. Even when they fail, they can impede victims’ network
performance, resulting in indirect denial-of-service attacks. Furthermore, as more organizations
have implemented systems to recognize blatant brute forcing, some attackers have adapted by
moving to “low-and-slow” techniques that are more difficult to identify without the most advanced

web application firewalls (WAFs).

AS MORE ORGANIZATIONS HAVE IMPLEMENTED SYSTEMS TO
RECOGNIZE BLATANT BRUTE FORCING, SOME ATTACKERS HAVE
ADAPTED BY MOVING TO “LOW-AND-SLOW" TECHNIQUES THAT
ARE MORE DIFFICULT TO IDENTIFY WITHOUT THE MOST ADVANCED
WEB APPLICATION FIREWALLS (WAFS).

Because access attacks bring force to bear on the interface between users and systems, many
of the controls that would theoretically stop attacks also result in preventing legitimate access

as well. As a result, they can be significantly more difficult to mitigate in practice than in theory.
While multifactor authentication represents a significant improvement, it can be challenging to
implement. Therefore, we recommend substantive monitoring and logging practices, updating
password policies according to contemporary guidelines that are significantly more user-friendly,

and working to reduce the amount of sensitive information at rest in email.

EPISODE 5

Attacker’s Eye on the API

Application programming interfaces (APIs) are like user interfaces for other machines. They allow
applications or sub-application services to connect with one another to exchange data, which

offers significant opportunities for integration and improved scaling. As part of the broader trend
of decentralization, APIs have played an increasingly prominent role in emerging patterns of web

architecture.

However, because they are not intended for human use, and because they are often set up and
put into production quickly, they have come to represent an easy path for attackers to circumvent
controls and gain access to data. Often APIs are set up with no authentication at all, or with overly
broad permissions, which means that a shrewd attacker who knows how to find it can exfiltrate

data quickly and quietly.

In 2018 and 2019, API breaches fell into three categories: large web applications with hundreds of

APls, mobile applications, and misconfigured applications lacking authentication. Mitigating the

2019 APPLICATION PROTECTION REPORT

risk that APIs pose requires many of the same controls and practices that we would employ for any

web application: inventory, access control, encryption, and vulnerability management.

The Future of App Security

Our analysis of the 2018 threat landscape has illuminated ways that known risks have transformed
as a result of widespread changes in web environments. The broad trend of decentralization, along
with the added abstraction and infrastructural complexity that that entails, has given new life to
simple practices like injection or circumventing authentication. Conversely, nothing we saw in the
breach reports or sensor data indicated that truly new or particularly sophisticated techniques were

resulting in breaches, or at least the breaches we saw.

SINCE APIs ARE OFTEN SET UP AND PUT INTO PRODUCTION QUICKLY,
THEY HAVE COME TO REPRESENT AN EASY PATH FOR ATTACKERS TO
CIRCUMVENT CONTROLS AND GAIN ACCESS TO DATA.

Underneath these widespread movements toward disintegration, however, the correlation between
industries and attack vectors shows that even amidst broad changes in how web applications are
designed and run, security programs need to be designed with a granular understanding of where
and how valuable data are stored. In other words, the transformations reshaping web applications
only serve to strengthen the argument for risk-based security programs. With that in mind, F5

Labs will continue to collect, analyze and deliver the most actionable and contextually rich threat

intelligence for security practitioners everywhere.

If you have feedback, data to share, requests for topics, or thoughts about our approach,

please let us know. You can reach us on Twitter @f5labs, or email us at F5LabsTeam@f5.com.

2019 APPLICATION PROTECTION REPORT 8

FIGURE 1

2019 ATTACKS BY TOP
10 DESTINATION PORTS

This chart shows the

top ten target ports by
honeypot traffic volume.
While not every port
shown here is used
exclusively for application
traffic, these data still
demonstrate the degree
to which known-malicious
traffic focuses on a

small number of ports
that are associated with
applications.

Introduction

In day-to-day conversation, we still tend to describe the Internet as being composed of “sites.”
However, today web applications, not sites, are the engines that drive both Internet traffic and
business. Webmail, ecommerce, social media, online banking, eLearning, web search, and media
streaming all happen through web applications. Unlike static web sites, web applications do not
just process requests for existing HTML files on a server and deliver them; they also accept user
input, process it, and return data. Because they transmit, store, and process data, they are also
the single most attacked asset on the Internet and account for a wide range of compromises. In
a separate F5 Labs breach trends report, our research showed that applications were the initial

targets in 53% of breaches over the past decade.

In short, this report series focuses on applications because they have quietly but inexorably taken
center stage as the defining component of the Internet. This might sound obvious, but the security
industry isn’t really keeping up with the trends (for more on this topic, see our three-part series on

the gap between theory and practice in information security).! Attackers, on the other hand, are on

top of it. As you’ll see in this report, the only things that attackers focused on more in 2019 than
web applications were the users connecting to those applications—and then only as a first step to

gain access to data.

FIGURE 1: 2019 TOP 10 ATTACKED PORTS GLOBALLY

*RFB/VNC: 5900 |

MS SMB: 445

Telnet: 23

SSH: 22

SIP:5060

MS SQL: 1433

HTTP: 80

HTTPS: 443

NetBIOS: 137

APPLICATIONS ARE

THE NUMBER ONE
ATTACK TARGET.

MySQL: 3306

“**Attack campaign not ‘normal attack traffic. SIP.5060 beganin 2018 and ended in Q2 2019, VNC 5900 began June 2019

2019 APPLICATION PROTECTION REPORT

10

https://www.f5.com/labs/articles/threat-intelligence/lessons-learned-from-a-decade-of-data-breaches-29035
https://www.f5.com/labs/articles/threat-intelligence/lessons-learned-from-a-decade-of-data-breaches-29035
https://www.f5.com/labs/articles/cisotociso/4-areas-where-infosec-facts-and-fiction-clash--mind-the-gap-pt--

1

Modeling the New Attack Surface

At the heart of the Application Protection Report series is the aggregation and sharing of big-
picture data. We believe that all information security needs to be risk-based. Everyone at F5

Labs has worked in security in one form or another, and we understand the realities at play

in the industry, so we mean no rebuke. However, as a community, we need to move beyond
compliance, checklists, anecdotes, hunches, astrology, and tea leaves for building security
programs. At the same time, information systems themselves are not naturally forthcoming with
information, organizations often don’t share unless they have to, and we don’t usually know what
risks our individual organizations face until we’ve already been hacked. This is what makes threat

intelligence the leading edge of risk-based security, and this is why we work the way we do.

As we were developing the 2018 report last year, we realized that we needed to reconceptualize
how we think about applications and their attack surface. The result was a conceptual model

that uses tiers to display the various transmission and processing functions necessary for an
internetworked application to run. We mapped different attack techniques to the different
application tiers (and found, unsurprisingly, that it was a many-to-many mapping), and developed
a model of attack surfaces that is two-dimensional, containing breadth as well as depth. This is far

more effective than just counting how many machines had a specific vulnerability.

Because the app tiers capture the complexity and interdependence of contemporary applications,
they now underpin all of our research, from tactical threat pieces to our strategic CISO-to-CISO
series. They also helped us structure the questions and analyses that we used to analyze each
specific risk that we examined for this report. You will see us refer to the app tiers throughout this

report to help tie each piece of intelligence into a broader picture.

2019 APPLICATION PROTECTION REPORT

https://www.f5.com/labs/articles/cisotociso/apps-are-like-onions--they-have-layers

FIGURE 2: APPLICATION STRUCTURE AND THE ATTACKS AT EACH LAYER

To protect your apps, you need to understand how they'e structured and how they work—and the
threats that target each layer.

\
<

~N
m

& O

JJJ
SN
E5 A

CLIENT-SIDE ATTACKS ‘fy
- Malware \ %V
« Man-in-the-browser ‘ & z
- Session hijacking ’ wﬁp
- Cross-site request forgery \ & 0{

e

« Cross-site scripting

//
Lt
>

\>—%
7]

WEB APPLICATION
ATTACKS

- API attacks

- Cross-site scripting

« Injection

« Cross-site request forgery
- Malware

« Abuse of functionality
- Man-in-the-middle

- Credential theft

«» Credential stuffing

« Phishing

« Certifcate spoofing

- Protocol abuse

WEB APPLICATION
ATTACKS

« Man-in-the-middle

- Key disclosure

- Eavesdropping

« DNS cache poisoning
« DNS spoofing

« DNS hijacking

« Protocol abuse

« Dictionary attacks

DDoS ATTACKS

« SYN, UDP, and HTTP floods
« SSL renogotiation

- DNS amplification

i - Heavy URL

FIGURE 3: PMA CAMPAIGNS VERSUS DOMAIN-ONLY TRAFFIC

Coordinated campaigns targeting seven phpMyAdmin paths compared with traffic targeting web servers
with no specified paths.

“Note that the data show a gap between March and June 2018 when Loryka's port 80 sensors went dark.

/
/phpmyadmin2
/phpmyadmin3
/phpmyadmin4d
/pma2011/
/PMA2011/
/pma2012/
/PMA2012/

FREQUENCY OF

TARGET PATH
CONNECTION
ATTEMPTS/DAY

2019 APPLICATION PROTECTION REPORT

EPISODE 1

PHP Recon Runs Rampant

As mentioned earlier, PHP is a widespread and powerful server-side language that’s been used
in 80% of sites on the web since 2013.2 It underpins several of the largest web applications in
the world, including WordPress and Facebook.® This prevalence, particularly among beginning
web developers, also makes it a big target. One of our most valuable partners provided us with

information that elaborated just how big a target it is.

Sensor Network Reveadls the Lowest Common
Denominators

Baffin Bay Networks, with its distributed network of more than 1,500 sensors around the world,

provides a rare view of the threat landscape. Because these sensors neither advertise nor provide
any actual service, we can assume that all traffic that they see is either malicious or misconfigured.
The global nature of the sensor network allows us to compare different geographical locations and

get a sense of patterns across time, space, target types, and payloads.

Generally speaking, sophisticated threat actors do not like to reveal their hands, and so tend

not to spew traffic all over the Internet looking for targets. The Baffin Bay data, therefore, tell us
more about reconnaissance campaigns, unsophisticated attacks, and people looking for targets
of opportunity than it does about the leading edge of threat intelligence. However, this “trailing
edge” of the threat landscape still represents a significant risk to organizations because of the
inevitable difficulties in managing vulnerabilities and complex environments over time and space.
No organization is immune to these unsophisticated campaigns and as such, they represented a

good place for us to start digging.

Findings

From a security standpoint, 2017 was a bad year for PHP. As part of our 2018 report, which focused
on trends in 2017, we found that PHP represented 69% of the exploits that Exploit DB published.
Our data partner Baffin Bay found that 58% of the web attacks they observed in the wild targeted

PHP as their primary attack vector.

The early data indicate that 2018 was just as bad. PHP had almost the same representation (68%)
in published exploits on ExploitDB as it had in 2017. In the wild, we saw an even greater proportion
of PHP-related traffic. Baffin Bay sensors found that 81% of the malicious traffic they detected was
focused on PHP in one form or another. The implication is that PHP will likely remain one of the

Internet’s weakest links and broadest attack surfaces for the foreseeable future.

On closer examination, the Baffin Bay data also shed some light into the specific tactics of
attackers who target PHP, as well as some low-cost steps to mitigate some of the risks posed to

one of the web’s most prevalent platforms. Baffin Bay sensors identify connection attempts and

2019 APPLICATION PROTECTION REPORT 14

https://www.f5.com/labs/search?q=PHP

15

capture the source IP and target URL, among other things.

The target domain or target IP address is not significant, since attackers often cycle through
millions or billions of targets looking for opportunities to attack. However, the back half of the
target URL contains the target file or path, the specific location on a web server that the attacker is
targeting across all of its target IP addresses. This tells us much about an attacker’s goals

and tactics.

Coordinated Campaign Against phpMyAdmin

The first thing that stood out about the Baffin Bay dataset was that while there was a great deal of
variation in the target paths—with more than 100,000 unique values in the dataset—a huge portion
of traffic was focused on just seven paths or filenames. All seven are commonly used for managing
phpMyAdmin (also known as PMA), which is a PHP web application used for managing MySQL
databases. Of the ~1.5 million unique events that Baffin Bay captured targeting more than 100,000
different URL paths, 667,000 (42%) were targeted at PhpMyadmin.

Two IP Addresses Doing All of the Dirty Work

When we dug deeper, we found that 87% of the traffic pointed at these common PhpMyadmin
paths came from just two IP addresses, out of more than 66,000 IP addresses that hit Baffin Bay
sensors. In fact, the two IP addresses in question represented a huge proportion (37%) of the total
traffic. Furthermore, all of the traffic from these two IP addresses was pointed at the seven PMA
paths. By contrast, no other single IP accounted for anything near as much traffic, nor did any other

IP feature traffic patterns over time matching these two, even when they targeted these paths.

WHEN WE DUG DEEPER, WE FOUND THAT 87% OF THE TRAFFIC
POINTED AT THESE COMMON PHPMYADMIN PATHS CAME FROM JUST
TWO IP ADDRESSES, OUT OF MORE THAN 66,000 IP ADDRESSES.

The two IP addresses in question have been allocated to systems on a North American university
campus since before the beginning of the campaign. There are a handful of published exploits
regarding the specific versions of phpMyAdmin referenced in these paths, such as 2011-4107 and
2013-3241.*However, to our knowledge all of them require prior authentication to phpMyAdmin,
which means that in all likelihood the traffic targeting these paths was looking for poorly controlled

authentication portals.

In sum, our investigation of Baffin Bay’s sensor data revealed the specifics of the unsophisticated
end of the threat spectrum: PHP continues to lead the pack in terms of providing rich, soft targets,

and situational awareness remains important in terms of mitigating both vulnerabilities and threats.

2019 APPLICATION PROTECTION REPORT

EPISODE 2

Breach Trends In 2018

Our data breach analysis is based on U.S. state-level breach notifications that organizations are
legally obligated to provide whenever personally identifiable information under their control

is exposed either to attackers or to the public. Data in this form have some limitations—most
specifically that these are legal documents, not technical ones, and lawyers often include only
the minimum legally obligated amount of detail in order to protect their clients. Furthermore,
the obligation to report varies from state to state. Some states mandate reporting for breaches
involving their citizens, while others require reporting for any organization that operates in their
state. Nevertheless, the legal underpinning for these notifications also means that they are the

closest thing we have to verifiable and comparable breach data.

For 2018 and 2019, we looked at breaches reported to 10 states representing 21.4% of the U.S.
population: California, Washington, Wisconsin, Vermont, New Hampshire, lowa, Maryland, Oregon,

Idaho, and Delaware. Here are the conclusions we drew.

Top Threats

In our 2018 report, we found that two threat vectors—code injection and phishing—had become
significant and growing problems. Payment card skimming via injection (also known as formjacking)
was the single greatest threat to applications. These attacks exploit injection vulnerabilities to

load payment card skimmer scripts into payment forms. Attacks of this type constituted 21% of the
breaches we analyzed, and included many of the most significant injection-based breaches in 2017.
Most of the compromised payment forms and shopping cart applications ran on PHP; additionally,
we found that PHP exploit attempts made up 58% of the total attack traffic observed in 2017 by

Baffin Bay sensors.

Phishing and other access control attacks were the second greatest threat, representing 14%

of all 2017 breaches that we analyzed. However, over 2018 and 2019, phishing and formjacking
have traded places back and forth. In 2018, phishing, at 21% of known-cause breaches, surpassed
formjacking at 12%, but in 2019, phishing only accounted for 14%, while formjacking constituted
16.6%. (This is more likely due to changes in breach reporting than significant changes in tactics,

given that the vague breach mode ‘email compromise’ grew from 20% to 33% from 2018 to 2019.)°

Specific exploits and tactics may shift slightly, but it looks as though the two weakest points on the

Internet—people and PHP-based payment card forms—are set to retain their unenviable crowns.

2019 APPLICATION PROTECTION REPORT 16

17

Sorting Breaches by Causes

As noted above, breach notification letters usually lack technical detail. Thirteen percent of breach
letters in 2018 did not attribute a specific cause, including the four largest breaches by number of
exposed records, and 15% had no cause in 2019. As a result, the breach notifications as a whole

provide a sense of overall trends as opposed to specific diagnoses.
Here are the significant breach cause categories as we found them, with our notes in parentheses:

ACCESS-RELATED BREACH CAUSES INCLUDED:
- Email (yes, we also found this annoyingly vague)
« Phishing that resulted in access to email (no other details noted)
« Phishing to gain access to login credentials
« Social engineering by email to gain access (yes, this is probably the same as phishing)
« Brute forcing of credentials
- Credential stuffing
« Stolen access credentials (possibly from a phishing attempt?)
« Access credentials stolen from a third party (could be related to credential stuffing)
« Social engineering by telephone to gain access credentials (“Hi, I’'m the county

password inspector.”) ©

WEB BREACH CAUSES INCLUDED:
- Web app code injection attacks (also known as formjacking, Magecart, or skimmer
malware)
« Web hacking (no other details noted)

- Web application hacking

ACCIDENTAL BREACH CAUSES INCLUDED:
- Sending information to unintended recipients (wrong attachment or wrong recipient)
« Lost, stolen, or misplaced physical assets (mostly laptops in cars)

« Access misconfigurations that allowed unauthorized access

PHYSICAL SECURITY BREACH CAUSES INCLUDED:
« Physical infiltration (mostly burglary and laptops stolen out of cars)

- Point-of-sale device attacks and the placing of physical skimmer devices

INSIDER BREACH CAUSES INCLUDED:
« Malicious data exfiltration
- Intentional misconfiguration or sabotage (more on this)

- Insiders at trusted third parties that abuse their authorized access

2019 APPLICATION PROTECTION REPORT

https://www.f5.com/labs/articles/cisotociso/intentionally-insecure--poor-security-practices-in-the-cloud

FIGURE 4: 2018-2019 U.S. BREACHES BY CAUSE

Distribution of causes of U.S. breaches in 2018, by breach count. The lack of detail in the
breach reports means that there is partial overlap between many of these categories.

2019 —

o1.8%

13% 6.1%

ACCESS-RELATED ACCIDENTAL PHYSICAL

2018 ——

49.1%

14% 5%

MALWARE BREACH CAUSES INCLUDED:
« Any use of malware to manipulate or gain control of remote systems

« Ransomware attacks (which triggers a breach notification in some venues)

THIRD-PARTY HACKED refers to specific incidences where a cyber-related breach at a third

party led to unauthorized access to organizational data.

PHISHING (NO OTHER DETAILS GIVEN) are cases where phishing was mentioned but it was

not clear whether the phishing was used to obtain access credentials, or to drop malware.

We found that access-related breaches, at 47% in 2018 and 52% in 2019, constituted the largest
proportion of known breach causes. The subcategories within access-related breaches have
significant overlap, but all of them are reducible to either some form of social engineering (as

in the case of phishing) or credential abuse. This is partly a reflection of the strength of other
technical controls: if it were easier to circumvent authentication completely, we would not see so
many attackers getting in this way. As it stands, real breaches show that, at present, humans and

their access structures remain the weakest entry points.

18

https://www.f5.com/labs/articles/cisotociso/third-party-security-is-your-security
https://www.f5.com/labs/articles/cisotociso/third-party-security-is-your-security

FIGURE 5: U.S. BREACH METHODS BY SECTOR, 2018-2019

2018

kbt

LAW FIRM INSURANCE EDUCATION SERVICES FINANCE TECH HEALTH NON-PROFIT FOOD MANUFAC- PUBLIC RETAIL
TURING

I ACCESS-RELATED WEB I AcCIDENTAL B PHysICAL INSIDER MALWARE THIRD-PARTY COMPROMISED

Uil

LAW FIRM INSURANCE EDUCATION SERVICES FINANCE TECH HEALTH NON-PROFIT FOOD MANUFAC- PUBLIC RETAIL
TURING

ACCESS-RELATED
BREACHES

I ACCESS-RELATED WEB I ACCIDENTAL B PhysicAL INSIDER MALWARE THIRD-PARTY COMPROMISED

19 2019 APPLICATION PROTECTION REPORT

Industry Profiles

While the lack of details in the dataset prevent us from identifying more specific trends, we were
able to group the breaches into two rough target/vector profiles that corresponded to the two most

common breach causes identified above.

INDUSTRY PROFILE 1:
ORGANIZATIONS THAT ACCEPT PAYMENT CARDS ON THE WEB

One of the profiles was centered on a pattern of industries that tended to be compromised by
payment form injection. The retail sector, which relies heavily on ecommerce transactions, had
particularly high and growing rates of compromise by injection. The proportion of retail breaches
that were injection attacks was 72% in 2018 and 82% in 2019. In 2018, there were a few other
sectors, such as manufacturing and governments, that also tended to be breached this way.”

However, in 2019 the retail sector stood alone as a significant formjacking target.

In short, for organizations that accept credit cards for online payment, payment form injection
attacks such as Magecart are a significant risk and specific controls must be put into place to

prevent and monitor for these attacks.

INDUSTRY PROFILE 2:
ORGANIZATIONS WITH IDENTITY DATA USABLE FOR FRAUD

The other profile we identified centers on organizations that are significantly more likely to be
compromised through phishing or illicit email access. In both 2018 and 2019, this pattern included
sectors like accounting, finance, law firms, health, education, and non-profits. These sectors
differed over time and between one another in the second and third most likely breach modes, but
all sectors in this profile were disproportionately likely to experience a breach through phishing,

credential abuse, or other kinds of email compromise.

In many of these cases, the breach notification letter mentioned how unauthorized parties found
unencrypted personal information within the organization’s email caches. Even though most
security policies explicitly prohibit users from storing data of this nature in email boxes for exactly

this reason, we are seeing that it is still common and still presents a risk.

2019 APPLICATION PROTECTION REPORT 20

21

What Does All this Mean?

These trends make sense from the standpoint of how organizations in different sectors tend to
store and transmit valuable assets. For sectors whose business models emphasize ecommerce,
the ecommerce applications themselves represent a path to the goods that is relatively direct
and unimpeded unless otherwise controlled. It is no surprise that the initial Magecart campaigns
were directed against Magento storefronts. Magento runs on PHP, which, as we noted

previously, presents rich targets to attackers.

By contrast, organizations in the second profile, coming from industries such as finance,
healthcare, and education, can afford to store sensitive assets far from web front ends. Getting
to the good stuff on such networks often entails complex, multi-stage attacks that require an
initial foothold—which is almost always what phishing and email breaches provide. While it is
certainly possible to find valuable information in email (and we saw some breaches happen
this way in 2018), data exfiltration from human-structured data such as email is comparatively
laborious and usually only worth the effort for small, value-dense data, such as intellectual
property or political communications. For large-scale, profit-minded attacks, email is often just

the first step in a broader campaign to reap valuable personal information.

FOR ALL THEIR LIMITATIONS, PUBLIC BREACH
REPORTS SUCH AS THESE ARE UNIQUELY VALUABLE
IN THAT THEY ARE LEGALLY VETTED, VERIFIED DATA
POINTS ABOUT SUCCESSFUL ATTACKS.

For all their limitations, public breach reports such as these are uniquely valuable in that

they are legally vetted, verified data points about successful attacks. In a world in which
unambiguous information about other organizations’ security is rare, they allow us to sort out
both the rudimentary attacks that most mature organizations should expect to withstand and
the leading-edge advanced tactics that are normally reserved for nation-states. They enable us
to focus instead on the threats that are most likely to hit “regular” organizations. With that said,
we will now explore these tactics—injection and access attacks—in greater detail to understand

what you can do to stop them.

2019 APPLICATION PROTECTION REPORT

EPISODE 3

Injection for a Decentralized Age

Injection has taken on new significance as a result of accelerating trends in how websites are
constructed. We will unpack these trends, link them to new attack data, and offer tactics for
mitigating this new-old risk. But first, to place it all in context, we need to revisit some big-

picture questions.

Again, We Ask: What Is an App?

As we pointed out in the introduction, to a user, an application may appear to be a single
thing: a program running on a server somewhere with a user interface. In reality, most
applications on the Internet are swarms of microservices and sub-applications all converging

at the last minute into a coherent user experience.

These embedded services can include things like user analytics, chat features, debugging
tools, social media sharing capabilities, advertising, and enhanced animation. Increasingly,
these microservices are being linked to and run from external third-party sites. In other
words, the active web code is running on a server that has nothing to do with the “primary”

application.

While the pace of this trend is accelerating, microservices and sub-applications are not
actually a new thing. At the 2014 RSA Conference keynote, noted security researcher Dan
Geer said, “While writing this, the top level page from cnn.com had 400 out-references to

85 unique domains, each of which is likely to be similarly constructed and all of which move
data one way or another.”® By 2016, researchers at University of lllinois, Urbana Champagne
found that 64% of website resources were loaded from an external domain.® In 2019, a simple

scan of the F5 main web page reveals 70 external domain references.®

This tendency to assemble distributed content and functions at the browser is, in itself, not

a bad thing. It saves server bandwidth and processing while freeing developers from having
to reinvent wheels. It also, however, broadens the attack surface for that old and venerable
vulnerability classification, injection. For that reason, we will revisit what makes injection such
a durable flaw, and why its latest incarnation makes third-party content such a significant

problem.

Injection Still?

Traditionally, when tech people hear about web injection, they think of SQL injection, which

is a common form, but is far from the whole picture. Injection is a broad category of attacks
that can manifest differently depending on the context. These attacks occur when an attacker
secretly adds, or injects, their own instructions into an existing authorized application

execution process. Injection can sit almost anywhere in an attack chain, from the initial

2019 APPLICATION PROTECTION REPORT 24

FIGURE 6

COMMON INJECTION
ATTACK PATH

The path that both malicious
code and valuable financial
information take during an
injection attack, now that
third-party services are such
a common component for
web applications.

1
ATTACKER FINDS

PHP VULNERABILITY

ON A WIDGET

contact with the target to the final exploit." It is often used as a way to circumvent authentication,
but there are also many injection exploits that depend on the attacker already being
authenticated.” The insertion point for the payload can be at the server level,”* the web application
itself,”® or, as we are seeing more and more, in third-party application modules or content (more

on this below).”® In some cases, the injected code resides in a Content Delivery Network (CDN)."” It

also is feasible to do a man-in-the-middle injection into a CDN."®

The goal of the injection payload can vary widely, as well. Some injection exploits allow
attackers to execute commands within the operating system (OS)."” Some are used to circumvent
authentication, as we mentioned earlier.?° Some inject code, such as malware, or other objects,

including code for escalation of privilege.?

A subtype of injection vulnerability that warrants a specific mention is file inclusion, in which

an attacker injects a path to malicious files, either local or remote, that the server processes at
runtime.?? In these cases, only a few lines of code need to be injected since the majority of the
exploit runs away from the victimized server. And, while we generally treat cross-site scripting
(XSS) vulnerabilities as separate because they exist in a specific context, they are also a form of

injection in which the injection payload is a step to compromising another visitor to the site, not the

site itself.
3
CODE RUNS ON
2 WIDGET
ATTACKER INJECTS
MALICIOUS CODE
INTO WIDGET
S o> T
o
MALICIOUS
N CODE
i
i
A :
' i
' i
: A :
1 ' 1
1 ' 1
1 ' 1
0 C i
.. @) <loczscoococssooos J
5 4
PAYMENT CARD CUSTOMER
INFO IS SENT OFFSITE ENTERS
TO ATTACKER PAYMENT CARD
INFO ON SITE

25 2019 APPLICATION PROTECTION REPORT

However, the most impactful form of injection at the moment is known as formjacking. A
formjacking attack siphons information that users put into online forms such as login screens
or payment forms and delivers it to a location under the attacker’s control. Most of the time the
information sought by attackers is login credentials or financial information such as payment

card numbers.

Formjacking is not a new type of attack, but it has exploded in popularity over the last two
years, primarily in the form of Magecart attacks. The name Magecart originally stems from

a name collectively assigned to the different threat actor groups who carried out the initial
exploits of a shopping cart vulnerability on the Magento ecommerce platform (Magento +
Shopping Cart = Magecart).?® These exploits, which vary subtly over time and from group to
group, mostly rely on a vulnerability in Magento, which runs on PHP. The vulnerability itself
boils down to an inherent flaw in PHP’s unserialize() function that allows attackers to inject PHP
objects, including executing arbitrary PHP code for formjacking.?* Although formjacking is not
limited to PHP systems, PHP is highly targeted by attackers, and formjacking remains one of

their preferred tactics.

0 IN 2019, FORMJACKING PAYMENT CARDS WAS
RESPONSIBLE FOR 71% OF WEB BREACHES AND
O 12% OF KNOWN BREACHES IN TOTAL.

In 2018 we reported that of the analyzed breaches that were based on web attacks (as opposed
to phishing or other vectors), 70% were formjacking, or injections of malicious code on websites
for payment card theft. We predicted that, because of their profitability and difficulty of
detection, formjacking attacks against ecommerce platforms would grow, and so it has proven.
In 2018, formjacking was responsible for 71% of web breaches and 12% of known breaches in
total. In 2019 they became even more prevalent, making up 87% of web breaches and 17% of

total breaches.

New Software Supply Chain, Old Attacks

As alarming as these numbers are for our industry, they only hint at a deeper problem. As
webpages pull content from increasingly disparate and nebulous sources, we’re seeing more
content getting injected in the browser from third-party add-ons. These exploited third-party
tools run in the same computing context as the main web application and often request
sensitive content, such as credit card numbers in payment input fields. Compared with other
types of injection, this has some significant advantages for attackers, which are illustrated by

the 2017 breach of [24]7.ai, a customer experience software and services company.

In autumn 2017, a number of large enterprises, including Delta Airlines, Sears, Kmart, and Best

Buy, experienced coordinated breaches of customer financial information. The total number

2019 APPLICATION PROTECTION REPORT 26

27

of exposed records is thought to number in the hundreds of thousands. The source of the breach
was an unspecified piece of malware that was delivered to the target sites through a compromised
customer service chatbot module created by [24]7.ai, one of the industry leaders in customer

service automation tools.

Even though this attack is outside of the timeframe of this report, it encapsulates many of the

factors that make it difficult to prevent formjacking today:

VISIBILITY

Standard web application firewalls (WAFs) protect the primary site by examining traffic between
the client and the app server. Third-party scripts, however, are loaded directly by the client
browser, completely bypassing perimeter security controls. The WAF may see that a script,

such as an advertisement loaded from an ad network, is included as part of the app page, but

it will not see the contents of that script. Traditional security tooling will view it as completely
legitimate. Furthermore, sites that deliver malware or receive skimmed financial information tend

to have legitimate encryption certificates on look-alike domains. In the case of [24]7.ai, the target

enterprises almost certainly had no indication from their own network monitoring surfaces. We
know that they were notified by [24]7.ai, the third-party service provider, about the breach, not the

other way around.

TARGETING

Because more web applications are outsourcing critical functions such as ecommerce, the vendors
become an outsized target, specifically because their code is called by such a wide range of
customers. Attackers know that if they compromise a single vendor for a microservice, they stand
to skim data from a huge pool of potential victims, often across multiple industries. This acts as a

force multiplier for attackers.

What the Data Say

The 2018 breaches that we examined revealed 83 breaches attributable to formjacking attacks
on web payment forms. In terms of number of breaches, nearly half of these came from the retail
industry. However, in terms of number of stolen records, the transportation industry, including
companies like Delta, British Airways, and Amtrak, was responsible for 60% of the stolen payment
cards. In 2019, of the 145 formjacking breaches, 61% targeted retail, with manufacturing and

services taking most of the rest.

The lesson is clear: for any organization that accepts payment cards via the web, their shopping
cart is a target for cyber-criminals. Furthermore, formjacking has emerged as a reliable technique
for extracting high value data like financial information specifically because of the decentralization

trend in web content and services.

2019 APPLICATION PROTECTION REPORT

https://www.f5.com/labs/articles/threat-intelligence/2019-phishing-and-fraud-report

FIGURE 7: 2018-2019 FOMJAGKIW BREACHES BY INDUSTRY

The distribution of formjacking breaches by industry
(by breach count, not record count).

\

FINANCE

HOTELS

S—
e

PUBLIC/GOVERNMEN

o

MANUFACTURING
BUSINESS SERVICES

RETAIL

29

Mitigating the Risk of Injection Attacks

We hope it’s clear by now that injection is a tricky devil. While no checklist will ever be enough on
its own to control against such a mutable attack type, the suggestions that follow will get you off on

the right foot.

INJECTION DETECTION

Injection vulnerabilities can be detected during development but are more difficult to detect in
deployed systems. Because injection flaws can be exploited in any stage of an attack, finding and
evaluating their impact depends on context. Often attackers use lower-priority vulnerabilities such
as cross-site scripting (XSS) to gain an initial foothold to inject malicious JavaScript into a website.?®

In other cases, attackers can inject PHP commands into an application programming interface (API)

or server-side applet, as in the case with Magento and the Magecart campaign.?®

As we mentioned previously, the risk of these kinds of attacks is magnified when the target web
application uses third-party code running offsite. It is more difficult to detect changes to third-party
code, harder to whitelist source IP addresses for content, and given the growth in malicious use of

encryption, harder to inspect traffic.

TAMPERING OF SCRIPTS HOSTED DIRECTLY WITHIN A BUCKET WOULD
LEAD TO COMPROMISE OF EVERY SITE THAT LINKED TO THAT SCRIPT.

Many sites, even high-profile ones that receive a huge amount of traffic, link to scripts posted
directly in Amazon S3 buckets or other cloud storage solutions. With the huge number of S3

buckets that are deliberately configured to have weak or no authentication, this poses another

significant risk: tampering of scripts hosted directly within a bucket would lead to compromise
of every site that linked to that script. This is a similar campaign strategy to the one we explored
above with the [24]7.ai campaign. The growing use of third-party content also means that attackers

can exploit vulnerabilities across their targets’ customer lists to achieve a huge impact overnight.

INVENTORY

As always, a proper inventory is a cornerstone of managing risk. Conducting an inventory of web

applications in your environment with a specific focus on auditing for third-party content will tell
you about your supply chain attack surface (at least with respect to software). This, however, can
be extremely complex when the providers of our script libraries, advertising, and our resources will
themselves link to yet more third parties. Also, consider that some of these third parties, such as
web widgets or user trackers, will have a lower security stance than your average ecommerce site,

which must meet PCI DSS standards.

2019 APPLICATION PROTECTION REPORT

https://www.f5.com/labs/articles/threat-intelligence/reviewing-recent-api-security-incidents
https://www.f5.com/labs/articles/cisotociso/intentionally-insecure--poor-security-practices-in-the-cloud
https://www.f5.com/labs/articles/cisotociso/the-little-mistake-that-causes-a-breach
https://www.f5.com/labs/articles/bylines/to-protect-your-network-you-must-first-know-your-network

FIGURE 8: FREQUENCY OF VULNERABILITY SCANNING

Frequency of app vulnerability scanning reported by over 3,000 IT security
professionals surveyed.

ANNUALLY

TWICE A YEAR

EVERY 3 MONTHS

EVERY MONTH

EVERY WEEK

EVERY TIME THE CODE CHANGES

TESTING IS NOT PRE-SCHEDULED

UNSURE

NONE

PATCHING

Patching your environment is also a critical part of managing risk as things change. While patching
won'’t necessarily fix the flaws in third-party content that present the newest form of risk, it will

make it harder to escalate from an initial foothold into a substantive compromise. Since injection is
such a versatile technique, patching applications running in your own environment is still critical to

preventing escalation from a compromised third-party asset.

SCANNING

Similarly, vulnerability scanning not only remains important, but takes on a new dimension. Many
CISOs have recognized for years that it is important to run external scans in addition to internal
ones to get the “hacker’s eye view.” 2’ The fact that so much content is now being assembled at the

client side makes this even more important.

CHANGE CONTROL

Monitoring for code changes on the site, regardless of where that code is hosted, will provide an
added degree of visibility irrespective of whether new vulnerabilities are emerging. This means

monitoring GitHub and AWS S3 buckets as well as native code repositories.

2019 APPLICATION PROTECTION REPORT 30

https://www.f5.com/labs/articles/cisotociso/how-we-patch-vulnerabilities-at-f5

31

MULTIFACTOR AUTHENTICATION

Given that injection is so often used to bypass authentication to gain access to web server code,
multifactor authentication should be implemented on any system that can connect to high-
impact assets. Ideally, application-layer encryption can also supplement TLS/SSL to maintain
confidentiality at the browser level. Many well-known web application firewall (WAF) products

have this capability.

WEB APPLICATION FIREWALLS

More broadly, modern WAFs will provide greater control over who connects to your systems, how
they connect, and how their user input is protected. While technology is rarely a simple solution,

and a firewall is only as good as the team that sets it up, modern WAFs offer a level of application-
layer visibility and control that can help mitigate the distributed and polymorphic risk that injection

presents.

SERVER TOOLS

There are also a number of server software tools at your disposal. You can set up a Content
Security Policy (CSP) to block unauthorized code injections into a website or application.?® On
top of that, you can add Subresource Integrity (SRI) web methods to verify that those third-party
apps have not been altered.?®° Both of these tools require some work to properly fit to a web

application.3° This is where a good, flexible WAF can help.

MONITORING

Monitor for newly registered domains and certificates that include your brand name. These are

often used to host malicious scripts while appearing genuine to end users.*

FORMJACKING ILLUSTRATES THE WHACK-A-MOLE PRINCIPLE

Despite fundamental changes in the structure of web applications, significant progress in security
tooling, and the fact that it is a well-understood type of attack, injection has endured as a go-to
vulnerability type for attackers for decades. On one level, this is due to its flexibility, for which the
rise of formjacking is a timely reminder. On another level, however, its persistence is partly due to
the fact that it exploits interactions between systems and people, and controlling people is much

more difficult than controlling systems.

As long as user input is part of how a system generates value, there will always been an affordance
for injection. This, in turn, brings us to the question of human users, which were the biggest single
source of breaches in 2018 and 2019.

2019 APPLICATION PROTECTION REPORT

https://www.f5.com/labs/articles/threat-intelligence/fighting-back-against-phishing-and-fraud-part-2

Formj 's perslstence is partly due to the fact thut it
' nteractions between systems and people. Controlling
people is much more difficult thun controlling systems

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

FIGURE 9: 2018 AND 2019 ACCESS BREACHES BY CAUSE-U.S.

The sample text from breach notification letters for each category shows the overlap
between categories and the difficulty doing of root cause.

)

“We have learned that an unauthorized third party Q

appeared to have gained access to employee
email accounts and that some of those messages
may have contained personal information

belonging to some customers.” 2019 k 2018
N RLLMMNL \
\S\;\\ \ \
attack resulting in emails and attachments \\
from employee email accounts may have been \\i\\:\\ N\ z\:\\\

potentially accessed by an unauthorized person.” \

\
N
\

- NN
N N\ NN
\ 8 N
Ny \ RRONAN N
N N N NN
RAMBN LM
NN NN N\
N N
N N
NN NN AN
N\ Ny NN
N\ \ N \
NN NN R
N NN \
\ N\ NN N
N N N
\ N
NN NN NN
NN N NN
NN NN N
\ \
N N N
NN \ N\ N
N N N \
NN \ \ \
NN N N
\
»
N\

W

o

“We were the victim of an email phishing

oy
-

)

\
e

2019

2.2% 22%

0 . \
\ \
CREDENTIAL STUFFING \\\\\\\\\\\\ \\\\\\\\\\\\

[+ + BRUTE FORCE 2019 2018

“We’ve learned that an unauthorized third party
obtained usernames and passwords to login

to some accounts. We’ve determined that
unauthorized parties may have obtained usernames

Zr:;jar:jzss\f\‘l’ordsfrom other companies’ security \\\ \ \\
\\\\\\ \\ \\\\\\
% |\ °
\

\% \lLO/o
2019 o~

A
(@\ STOLEN CREDENTIALS

“We learned that an unauthorized third party
gained access to a third party site
we use using our employees credentials.”

g,

EPISODE 4

Access Attacks’ Enduring Prevalence

Access tier attacks are any that seek to circumvent the legitimate processes of authentication and
authorization that we use to control who gets to use an application, and how they can use it. The
result of this kind of attack is a malicious actor gaining entry to a system while impersonating a
legitimate user. They then use the legitimate user’s authorization to accomplish a malicious goal—
usually data exfiltration. Attacks of this nature can be hard to spot because as far as the system is
concerned, the attacker appears to be the rightful user. We can further break down the broader
category of access attacks into subtypes, as shown in Figure 8.

However, as we noted earlier, because these data come from legal documents that often lack
detail, many of these categories have significant or total overlap, and it is difficult to be sure what
part of an attack chain these access attacks occupied. Figure 9 shows samples of text from various
breach letters that we used to sort these into categories.

We know that according to the data available to us, access attacks represent the most likely vector
into an application. This is particularly true in industries whose business models require storing
valuable information far from their perimeters. To understand why, we need to explore the various

forms of access attacks we saw in 2018-19, how they work, and who uses them.

Phishing

Phishing is a form of social engineering in which attackers use email or another form of electronic
communication to impersonate an entity whom the victim trusts. Phishing is frequently the first
aggressive action an attacker takes as part of a longer effort.

Despite the fact that phishing is a low-tech attack type that is already fairly well known in the
mainstream, we can see from the data that it is still gaining steam. This is partly because it is a
reliable strategy for attackers across the spectrum of training and sophistication. It works whether
the goal is to steal financial information, intellectual property, or military intelligence.

Other than inducing a victim to enter credentials into a spoofed authentication portal, the most
common objective of a phishing campaign is to install malware on the victim’s computer. From
here an attacker can capture credentials, escalate privileges, look for other valuable forms of
information, pursue a cryptojacking or ransomware campaign, or use the target machine as part of

a botnet.

2019 APPLICATION PROTECTION REPORT 34

Credential Stuffing and Brute Force Attacks

In addition to phishing, we are seeing access attacks take less surgical forms. In these cases,

attackers either try known passwords from stolen databases of credentials or enter passwords that
are known to be common. This might look like a rudimentary tactic, but the prevalence of password
reuse, and the large amount of personal information already breached and available for sale on the

Internet, make these tactics valuable in spite of their simplicity.

CREDENTIAL STUFFING

Credential stuffing is the practice of trying passwords that attackers already know the victim uses
elsewhere, with the expectation that the victim uses the same password in multiple places. These

attacks are surprisingly successful as a result of two linked trends.

The first is that as more organizations move to the Internet, the number of credential pairs we need
to remember has grown tremendously. After all of the data breaches over the last few years, it

is highly likely that any given individual in the U.S. or Western Europe has had at least one set of
credentials leaked online. The result is that we’ve given attackers both the motive and the tools

necessary to try to stuff known credentials into authentication portals.

Because attackers recognize that many organizations have monitoring in place to detect many
rapid authentication attempts, credential stuffing attacks tend to fall into one of two patterns.
Attackers either try to log in to a large number of accounts using a small number of known

passwords, or a small number of accounts using a large number of passwords.

Over the years, most organizations have implemented some kind of password rotation policy

with the intent of reducing the risk that a leaked password will still be valid. This has had some
unintended consequences, with many people using the same pattern of characters and something
memorable. For instance, if policy requires a password change every 90 days, chances are that
someone in the target organization is going to use something cued to the seasons, such as

Spring19 or Summer19.32

BRUTE FORCE

We typically define brute force attacks as either ten or more successive failed attempts to log in
in less than a minute, or 100 or more failed attempts in one 24-hour period. However, attackers

realize that these kinds of behaviors are easily monitored and so have begun to alter behavior.

One of the biggest threat intelligence sources we have for brute force attacks comes from our
own F5 Security Incident Response Team (SIRT). The SIRT reported that in 2018, brute force
attacks against F5 customers were the second most frequent type that they encountered, and they

constituted 19% of the incidents they addressed.

35 2019 APPLICATION PROTECTION REPORT

The F5 SIRT reported that in 2018, brute fotce
attacks against F5 customers were the second
most frequent type that they encountered.

37

Depending on how robust your monitoring capabilities are, brute force attacks can appear
innocuous, like a legitimate login with correct username and password. Detecting these attacks
hinges on both capturing and examining detailed logs. The number of attempts, the location of the
login, and the time of day can be clues to anomalous behavior even if the attacker happened upon

the right credentials early on. We’ll dive into monitoring more in the mitigation section below.

BRUTE FORCE DATA

F5’s SIRT noted lots of brute force attacks in 2018.3% As we mentioned earlier, nearly a fifth of all
confirmed attacks take this form, and 90% of customer support calls to the F5 SIRT were about
brute force attacks. While the SIRT also noted a low success rate, even failed brute force attacks
can affect an organization’s environment. On six separate occasions, the SIRT found that brute
force attacks had actually caused the target’s entire authentication infrastructure to go down.
Even when the servers stayed up, authentication for legitimate users locked out or bogged down,

resulting in an indirect denial-of-service attack.

Unfortunately, these kinds of secondary effects were sometimes the only way that organizations
even knew they were under attack. Many organizations go weeks, months, or years without looking
at log data, which is where the context necessary to identify this kind of attack resides. We regret
to say that this is all too common in the security industry, with the widespread implementation

of low-cost basics taking a backseat in favor of high-tech, expensive solutions that are slick but

narrow in scope.

For those interested in more detail on those brute force attacks, Figures 11 and 13 break them down
by industry and region. Keep in mind that these data points represent only current F5 customers
who called the F5 SIRT for response help. They do not represent the industry as a whole but,

given the size and scope of F5’s installed base, they do give a clue as to general brute force attack

trends.

Email Hacks

We mentioned earlier that 20% of the confirmed breaches in 2018, and 33% in 2019, started by
targeting email access. When attackers go after organizations this way, email is often both a useful
staging ground to get to valuable information elsewhere, and a source of valuable information in

itself.

The breach data also featured email as a primary target. Email was involved in the top two
subcategories of access breaches, representing 39% of all breach causes in 2018 and 47% in 2019.
Think about that: email is directly attributed as a factor in nearly half of all breach reports with a
cause. A typical breach notification letter goes something like “Unauthorized persons used stolen

credentials to gain access to emails containing confidential records....”

2019 APPLICATION PROTECTION REPORT

FIGURE 10: 2018 BRUTE FORCE ATTACKS BY PROTOCOL/SERVICE

(as a percentage of 2018 FS SIRT incidents)
Brute force attacks mitigated by the £5 SIRT, broken down by protocol/service.

\ 2 9 O/

SFTP O
AT 29%, ATTACKS AGAINST

ADFS WEB APPLICATIONS

SURPASSED ALL OTHER
0365 SERVICES.

OFX
OUTLOOK WEB ACCESS

(OWA)

WEB APP (NO DETAIL)

FIGURE 11: 2018 BRUTE FORCE ATTACKS BY INDUSTRY

F5 SIRT brute force attacks by industry, as a percentage of reported 2018 SIRT incidents.

i 19%

BRUTE FORCE ATTACKS AGAINST

HEALTH FS CUSTOMERS WERE THE
SECOND MOST FREQUENT
EDUCATION TYPE, CONSTITUTING 19% OF
ADDRESSED INCIDENTS.

SERVICE
TECH
RETAIL
TELECOM

o

10% 20% 30% 40% 50%

39

By accident or oversight, organizations are still storing unencrypted medical and financial data in

weakly protected email boxes, and show no sign of change.

While the transport layer for email is usually not secured, and it is feasible to sniff email in transit,
the chances of finding anything valuable in a single message is low. The more fruitful attack against
email is focused on where the mail lands, because mail storage often persists in perpetuity. Email
boxes are filled with gigabytes of easily searchable information. In addition to sensitive information
that might be sitting there, contact lists provide more targets for future attacks. Users often

forward or redistribute email messages as well, so it is difficult to say for sure where any sensitive

information is, once it has been transmitted through email.

Mailboxes are not a good long-term storage option for private information. Large-volume,
unencrypted mailboxes can be an unexpected magnet for lawsuits, as they often contain
information that is equal or greater in value to assets that are stored under much greater control,

such as databases of customer information.

Mitigating the Risk of Access Attacks

So, how do you reduce the risk that access attacks pose? We’d love to say “just MFA it” and drop

the mic, but we realize that multi-factor authentication can be hard to implement and is not always

feasible in the timeframes we’d like. As much as passwords are flimsy protection, we found in

2018’s report that 75% of organizations still used simple username/password credentials for critical

web applications, so we can’t just pretend that multi-factor is the standard.

To start, make sure your system can at least detect brute force attacks. Setting up alarms is a good
start, but it’s better to slow down the session by throttling or using CAPTCHA, or even blacklisting
the IP address. However, one of the things that makes access such a tricky tier to work on is that
confidentiality and integrity can sometimes find themselves at odds with availability. Locking the
account in perpetuity is good for protecting unauthorized access, but also results in denial of
service for the user. If you’re going to lock someone out, make sure you can fail gracefully, and look

out for the bane of the false positive. Set up reset mechanisms that work for both you and your

users to get the legitimate traffic back online as quickly as possible.

In other words, it’s not enough to set up some firewall alarms on brute force attempts and take a
nap. You have to test these monitoring and response controls, run incident response scenario tests,

and develop incident response playbooks so that you can react quickly and reliably.

The NIST Digital Authentication Guidelines offer principles that represent a good baseline and get

away from some well-intentioned but obsolete ideas about access control:3*

2019 APPLICATION PROTECTION REPORT

https://www.f5.com/labs/articles/cisotociso/tips-and-tricks-for-rolling-out-multi-factor-authentication
https://www.f5.com/labs/articles/threat-intelligence/2018-Application-Protection-Report
https://www.f5.com/labs/articles/bylines/security-s-bane--the-false-positive

FIGURE 12: BRUTE FORCE ATTACKS AS PROPORTION OF ALL ATTACKS OVER TIME
AS A PERCENTABE OF 2018 F5 SIRT INCIDENTS

SIRT brute force attacks as a percentage of reported 2018 SIRT\incidents:

3=

Users-should feel ne.shame in asking abc

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

7 |§ponse should include a umli
yuiltless method for users to report suspec shing.

/ phis sogoucuqcutchu ontain the

or reporting

\
\

- Make your password policies user friendly

« Check passwords against a dictionary of default, stolen, and well-known passwords,
both when users choose a password, and on a recurring basis

. Password reset should never use hints

« Use long passwords

« Avoid arbitrary 30/45/60/90-day password rotations

« Lock or remove unnecessary credentials

At a more advanced level, authentication can turn into a continuous practice instead of a one-time

check. We don’t want to make users re-enter a password every time they act on a system, such
as accessing or changing data. Such a thing would be about as user-unfriendly as we can get.

However, there are backend authentication tools, like cookies and session tokens, that can be used

to reduce the attack surface, prevent escalation of privilege and network traversal, and effectively

function as a sort of digital quarantine.

Some cloud providers have suspicious activity alert capability for their customer accounts.
Specifically, Microsoft Azure has a mechanism to flag and block the use of known bad passwords in

Active Directory cloud deployments.3®

The same accidental denial-of-service issues we outlined previously apply, especially to email, so
controlling risk around email attacks is tricky. Make sure you monitor load on your authentication

infrastructure using threshold alarms.

As part of an assume breach approach, plan for an attacker to gain access to email, and gear your

forensics accordingly. Assume that attackers will set up email forwarding and account delegation
on a stolen mailbox, and the user may not even know it. Write up procedures on how to review this

and make them part of the incident response plan.

When setting up logging, check what level of detail your email system provides. Can you recreate
an entire email session with log data? Could you tell what settings the attacker might have
changed? Can you tell exactly what they downloaded or forwarded? This will figure prominently
in your breach reporting. Set the log settings and test them by logging in and see what actually
appears in the logs. In the event of an incident, these logs may be your lifeline, so plan and test

accordingly.

Incident response should include a streamlined and guiltless method for users to report suspected
phishing. Users should feel no shame in asking about or reporting a phish so you can catch and

contain them quickly.

Web mail authentication sessions can remain active for hours after changing a password. Test the

timing and verify the procedures for this to add to your incident response procedures.

2019 APPLICATION PROTECTION REPORT 42

https://www.f5.com/labs/articles/bylines/the-eternal-struggle--security-versus-users
https://www.f5.com/labs/articles/threat-intelligence/fight-credential-stuffing-by-taking-a-new-approach-to-authorization
https://www.f5.com/labs/articles/cisotociso/everything-is-compromisednow-what

—e

APIs are an obscure but startlingly direct path to
valuable data, like payment card information, that
criminals can resell on the market. X

2019 APPLICATION PROTECTION REPORT

EPISODE 5

APIs and the New-Old Problem of
Visibility

The growing importance of application programming interfaces (APIs) has dramatically changed
the threat landscape in a short time. In the simplest possible terms, an application programming
interface (API) is a user interface for apps instead of users. It creates a connection point through
which other app services or mobile apps can push or pull data without human input. While APIs
have been around for a long time, the growth of serverless architectures, containers, and DevOps
have made them critical for contemporary web operations. You might say that web applications

have shifted from being blankets to being quilts, and APIs are the stitching that holds the quilts
together.

APIs are hard to categorize. They serve a combined access control and data translation role,
coordinating disparate and distributed functions behind the scenes to present the user with

a unified application service. From a security standpoint, this is what really matters: the user
experience is that of one app. In other words, APlIs raise the same fundamental issue of visibility
that we discussed earlier in the section about injection attacks. They can be compromised in
many of the same ways that web application can be breached. But because APIs are increasingly
important and also hidden from view, they arguably represent a bigger risk to the business than

other assets.3¢

APl Usage

One of the reasons that APIs have become so common is that they are a relatively simple
component that can transform an organization’s business model by open up new revenue streams.
In the days of monolithic apps, whatever core business logic generated value needed to be
supported by a user interface, storage, and other meta-functions. Now it is sufficient to develop

a single specialized service, and use APIs to either outsource other functions to bring an app to
market, offer the service to other app owners, or both. Google’s Earth Engine, the core service
that underpins Google Earth, is a good example. While we can use that service through the main
Google Earth app, many other apps use the Earth Engine backend with their own specialized Uls,
including apps that visualize habitat destruction and others that project an apocalyptic zombie
wasteland onto our present.3” Mobile apps connect to the back-end through APIs as well, even

when connecting to their own organizations.

As a result of this trend, organizations are recognizing new opportunities to generate traffic and
revenue, often using existing components of their environments with minimal modification. In 2015,
the Harvard Business Review reported that 90% of Expedia’s revenue came through APIs. eBay
and Salesforce also generated much of their revenue this way, reporting 60% and 50% API-driven

revenue, respectively.3®

2019 APPLICATION PROTECTION REPORT 44

45

F5 Networks’ 2019 State of Application Services (SOAS) report found that of 2,000 technology

professionals who responded to the survey, 42% had already deployed API gateways, with

27% planning to deploy gateways in 2019.3° The API information portal and community forum
programmableweb.com listed 12,000 APIs in its directory in 2015, and in early 2019 listed nearly
22,000, illustrating the rapid growth in their use.*°

How Does an API Fit Into a Network?

The term API refers simultaneously to the process, network location and data structure through
which applications (or sub-application functions) can connect to one another and communicate
autonomously. It provides everything that a developer needs to set up automated data transfers in
pursuit of functional integration. An API gateway is a piece of lightweight software, running on an
application server, that coordinates and manages API traffic.*' Ideally, APl gateways should have
some form of access control, and they typically support a range of authentication, authorization,
and federation services such as OAuth, JWT, OpenID Connect, and SAML. The API gateway
authenticates the requesting device and validates that its request or payload is structured correctly
for the software that sits behind the API. This allows other applications to use the output of the
original service in a different way, in a different app, or in a different environment, without having
to recreate the original service from scratch. This is what makes APIs such a great way to scale and

embed functionality into other apps.

What Makes an APl a Good Target?

A combination of factors make APIs rich targets. One of the biggest issues is overly broad
permissions. Because they are not intended for human use, APIs are often set up to access any
data within the application environment. Permissions are usually set up for the user making the
original request, and these permissions are, in turn, passed to the API. That is all well and good
until an attack bypasses the user authentication process and goes directly to the downstream app.
Because the API has unrestricted access, attacks through the API provide attackers with visibility
into everything. Like basic web requests, API calls incorporate URIs, methods, headers, and other
parameters. All of these can be abused in an attack. In fact, most typical web attacks, such as
injection, credential brute force, parameter tampering, and session snooping work surprisingly well.

To attackers, APIs are an easy target for all their old, dirty tricks.

Another issue is visibility. As an industry, we haven’t often maintained a lot of situational awareness
of APIs. They are supposed to run behind the scenes; this is great until they are compromised
behind the scenes, and all of our valuables get stolen behind the scenes. APIs often connect to
ports other than 80 and 443, they are frequently buried in deep paths somewhere on web servers,
and the details of their architecture are often known only by development teams. All of this adds up
to the reality that security teams may be unaware that connections with that potential impact are

even possible in their environment.

2019 APPLICATION PROTECTION REPORT

https://www.f5.com/state-of-application-services-report/interactive-report-2019

FIGURE 14

LARGE PLATFORM API
BREACH

This large web platform with
a theoretical microservices
architecture depends heavily
on APIs for communication
and integration between
functions. An attacker could
exploit a vulnerability or a

simple lack of access control.

CUSTOMER

ATTACKER

@

What Kinds of APIs Get Hacked and Why?

In a 2018 F5 Labs article entitled Reviewing Recent API Security Incidents, we found that API

compromises tended to fall into two patterns of APl use that correspond to common breaches. We
have since identified a third emerging pattern, which we will discuss as we explore the landscape

for successful APl breaches.
LARGE PLATFORMS WITH LOTS OF THIRD-PARTY INTEGRATIONS

Organizations with high traffic sites offering a wide range of services often feature a large number
of third-party integrations. These integrations rely on APIs to collect data from third parties and
serve it up to the user in a seamless fashion. The growing decentralization of infrastructure,
represented by multi-cloud environments, third-party functions and content, and serverless and
containerized architectures means that APIs are not a luxury. For modern high-volume, complex
application platforms such as Netflix and Facebook, they are essential to everyday operations.
Some of these apps have hundreds of APlIs, all of which need to be managed and monitored.
These kinds of organizations and business models have figured prominently in the API breach

notifications we’ve seen.

LARGE PLATFORM WITH EXTENSIVE INTEGRATION

WEB Ul

el 8 =
(se1) (se1)

INVENTORY SHIPPING

DATA
DESKTOP

ORDER
MANAGEMENT

=
@)

ACCOUNTS

\ PAYMENT
PROCESSING
7

2019 APPLICATION PROTECTION REPORT 46

https://www.f5.com/labs/articles/threat-intelligence/reviewing-recent-api-security-incidents

FIGURE 15

MOBILE APP API
BREACH

An app routes mobile traffic
through a mobile-specific
APl while desktop users
connect to the same
back-end through a web
interface. The same tactics
that would work against a
traditional web application,
such as brute force or
injection, would work
against the APL.

ATTACKER

O/Z
~

USER

ATTACKER

MOBILE APPS

As we noted briefly earlier (and_in our series on mobile app security), most mobile apps rely on APIs

to pull data from servers, which allows the apps to use fewer resources on the devices themselves.
Because of some of the inherent challenges with securing mobile applications, there is a vibrant
community of attackers who decompile and reverse engineer mobile applications looking for
vulnerabilities or opportunities, such as hardcoded credentials or weak access control. The APl is

often a focal point for these efforts.

THE MISCONFIGURED BIG APP

Both of those patterns—Ilarge apps with many third-party integrations and mobile apps—were
common in breaches we reviewed in our 2018 report, but an additional emerging trend deserves
mention: the misconfigured API. In many of the new cases we saw in the second half of 2018 and
the first half of 2019, breaches occurred because stakeholders in organizations were not aware of
either the existence of an API, or the impact of an insecure one, and so put no authentication (or
weak authentication) in front of it. As silly as it sounds, it is hardly surprising, since it once again
points to the fundamental challenge of visibility, both from the standpoint of information systems

and large organizations.

)
I
BRUTE FORCE,

INJECTS, ETC. :
v
DESKTOP — -
> e
o | >
(6
> DATA
MOBILE

BRUTE FORCE,
INJECTS, ETC.

47 2019 APPLICATION PROTECTION REPORT

https://www.f5.com/labs/articles/cisotociso/what-to-do-when-your-company-tells-you-they-re-making-a-mobile-a

Breaches occurred because stakeholders in
organizations were not aware of eitherthe

existence of an-API, or the impact of an insecures_
one, and so put no authentication in front ofit.

FIGURE 16: API BREACHES TIMELINE

()

PLATFORM API BREACHES ———— __| MOBILE API BREACHES

Westfield csu @

WordPress 0217 @
@ o7 Instagram app

Landmark White Ltd o02/19
Kubernetes o219

Drupal o219

Portainer Dock Tool 02119

0219 Uber
o2ns Padora and Viper (Clifford) Car
Alarms

0319 63red Safe
os19 Shopify Exchange app
a9 Tchap Messaging app

Nagios XI o418

JustDial Leak o419
Facebook Marketplace o9
GateHub o419

Venmo 0419

O00Ce 0000

o9 OnePlus Mobile

‘ VULNERABILITY O MISCONFIGURATION

2019 APPLICATION PROTECTION REPORT 2019 APPLICATION PROTECTION REPORT 49

Public Records Review

All of the API breaches we identified fit into the first two patterns listed above—huge platforms with

loads of APIs, or mobile apps that depend heavily on a few APIs to function.
BREACHES

In terms of new events, every single breach we’ve identified between November 2018 and August
2019 were attributable to misconfigured access controls. In other words, system owners did not
realize that their APIs were wide open. However, as we noted earlier, the security researcher
looking for a headline to put his or her name on was the principal threat actor in these scenarios, so
the good news is that data were not leaked to the black market. You might say that these system

owners got lucky, as did the researchers.

Another piece of evidence from the same time period that illustrated the prevalence and
importance of APIs—as well as their weak security—was a study by North Carolina State University
(NCSU). In this study, the university found that more than 100,000 code repositories on GitHub had
API tokens and cryptographic keys—the literal tools for APl access control—stored in plaintext and
visible in plain sight.*?> These findings illustrate a trend we’ve seen for a long time: developers using
workarounds or insecure practices during development, when it doesn’t matter, and then failing to
mitigate those issues when the project goes live. Storing API authentication information in plaintext

on GitHub is the latest incarnation of this old issue.
Incidents (Not Breaches)

The list of APl incidents that did not lead to a breach had the same characteristics as the confirmed
breaches. For the most part, these incidents were caused by security researchers finding routine

bugs that had escaped detection precisely because they were in APlIs.

Mitigating the Risk of API Attacks

Because the techniques that attackers use against APIs are similar to other web application
attacks, the tactics of mitigation are generally similar. However, the visibility challenges with APIs
mean that organizations often neglect the basics, so our focus is just as much on implementing

simple controls such as inventory, authentication, and logging.
INVENTORY

To start, as with all assets, you'll need an inventory of your APIs. For some organizations, this is

not as easy as it sounds. The large platforms that we mentioned earlier often depend on APIs to
pull specific functions into their application, such as payment information processing, or linking
to social media. The growing complexity of information systems, along with the accelerating rate
of change, means that obtaining this inventory is not a trivial task. Maintaining the inventory over

time can be even more difficult, because it is usually harder for people with other jobs to budget

2019 APPLICATION PROTECTION REPORT 50

https://www.f5.com/labs/articles/bylines/to-protect-your-network-you-must-first-know-your-network

51

time for ongoing, routine maintenance tasks than it is to get together for a single discovery session.
Nevertheless, it is essential to keep the inventory up to date, since APIs are quickly becoming the

new nexus of business logic and application architecture.

As of June 2019, we know of approximately 22,000 published APIs. The majority of those are
estimated to be private APIs, which means that access to them is restricted to internal developers
or specific partners, as opposed to the public.** Understanding which ones are which within your
organization, and how each one contributes to your business operations is important for adding
context to your inventory. This information allows you to begin the process of assessing the risks
that APIs might bring to your environment. This is important because all the breaches we’ve seen
so far have been attributable not to sophisticated zero-day exploits by genius hackers, but instead

to failures to apply basic security principles to new operational needs.

There are two specific things we recommend for every API inventory, reflecting the role of APIs in

contemporary systems:

1) Conduct perimeter scans. Perimeter scans are valuable particularly because they replicate

the hacker’s eye view.%*

2) Perform in-depth discovery interviews with development and operations teams. This
may save time and get you valuable information to supplement the results of internal
scans. Find out what the de juris and the de facto states are, and prepare risk

assessments for both.

API AUTHENTICATION

By design, APIs execute commands. They should be considered root/admin interfaces and require
strong authentication. F5’s State of Application Services 2019 found that 25% of the organizations
surveyed didn’t deploy authentication for APIs at all.*® Thirty-eight percent reported that they did
“some of the time,” and 37% said “most of the time.” Two things stand out about these responses.
The first is that a full quarter of F5’s customer base is not controlling access to a component that
offers a direct path right to the heart of some of their most valuable capital. The other is that even
the leaders in this issue are still not controlling access all of the time. This is a prime example of risk

models failing to keep up with a changing landscape.

There are different forms of API authentication; practitioners must consider the pros and cons of
each type based on risk.*¢ Generally speaking, OAuth 2.0 is considered the best option for most
REST APIs, but it depends on the nature and design of the API, its intended uses, and the business
model and threat model of the organization.*’ (Note also that OAuth 2.0 authentication traffic must

be encrypted to be effective.)*®

2019 APPLICATION PROTECTION REPORT

There are also emerging frameworks for service-level authentication in modern architectures such
as the SPIFFE framework, which offer a potential step forward in terms of managing authentication
in complex environments.*® The real point here is that authentication of APIs is not optional given

the trends and risk we’ve outlined.

Furthermore, for all authentication, credentials must be stored in a secure way. Whether your
credentials take the form of user/password combinations (for either machines or human users) or
API keys (which are simplified authentication strings that have specific uses), it is critical to treat

them as sensitive information, because they really are the keys to the kingdom.®°

CREDENTIALS MUST BE STORED IN A SECURE WAY. IT IS CRITICAL TO
TREAT THEM AS SENSITIVE INFORMATION, BECAUSE THEY REALLY ARE
THE KEYS TO THE KINGDOM.

API AUTHORIZATION

The other half of APl access control is authorization, meaning the permissions associated with any
credential set. As with all credentials, API credentials must be treated using the principle of least
privilege. Role-based access control is the best way to do this for APl accounts of all types. At a
minimum, this should take the form of limiting the HTTP methods that specific roles can implement
(DELETE being an obvious one to limit, but not the only one—again, let your own environment

and business logic dictate this in a risk-based way). To go one better, define specific sequences of
actions that correspond to the specific API use case, and limit the API to that sequence instead of

simply specifying a list of permitted actions.

At no time should APIs be allowed to pass unsanitized or unvalidated input to the application. That

is a sure recipe for an injection attack.

LOG THE API CONNECTION

After implementing authentication and authorization controls, the next level of maturity is to
implement monitoring on the API. As we mentioned previously, brute force attacks can easily go
unnoticed; all the more so with the advent of clever, distributed, low-and-slow access attacks. As a
result, you should log API connections regardless of their outcome and behavior, and review those
logs, whether through humans, bots, or cloud services. Furthermore, given the number of APIs and
connections across them, it’s best to also monitor the assets that the APIs serve to ensure their

integrity and confidentiality.

ENCRYPT THE API CONNECTION

Even though API traffic is machine-to-machine, its traffic still moves across the web like any other

traffic. We increasingly encrypt all user traffic on the web—API traffic should be treated the same

2019 APPLICATION PROTECTION REPORT 52

https://www.f5.com/labs/articles/threat-intelligence/application-protection-report-2019--episode-3--web-injection-attacks

53

way. Encrypt those connections and validate the certificates like you would for any other service.

That also takes care of the requirement to encrypt OAuth 2.0 authentication traffic, as noted earlier.

LOOK AT API SECURITY TOOLS

Consider looking at a proxy or a firewall that is “API aware” to inspect, validate, and throttle API
requests. Some API security services can analyze the originating client and attempt to determine

if a request is legitimate or malicious. They can also ensure that API requests stay where they’re
supposed to stay, and do not escalate their privileges or exceed their reach into the app or data. A
tool like this makes all of the aforementioned mitigation tasks easier. Many API security tools ingest

OpenAPIl/Swagger files, which will auto-configure the enforcement of the expected behavior.

TEST YOUR APIs

APIs must be scoped in for scans, vulnerability assessments, and penetration tests. The point

here is that the prevalence of APIs is matched only by their obscurity. Many organizations don’t
even have a single person who is aware of all of the organization’s APIs, and almost none of the
organizations we’ve talked to have authentication on all of them. Testing is a part of any decent

security program, and it applies here as well.

Given the difficulty of maintaining situational awareness, it is also a good idea to place a bug
bounty on API vulnerabilities. Security researchers are constantly looking for things to report
about, and Shodan has made it easy for researchers (and attackers) to discover your systems in
detail. It is much, much cheaper to pay them quickly and quietly, patch your issues, and release a
statement when applicable, than for researchers to go public—which could lead to bad press at

best and a compromise at worst.

2019 APPLICATION PROTECTION REPORT

A 0 time should APIs be allowed to pussi
unsanitized or unvalidated input to the application.
That is a sure recipe for an injection attack.

Defined Change Process
ange Control Monitoring unauthorized changes
Subresource integrity monitoring

Scanning

Vulnerability Pen Testing / Red Team
Management Patching

Bug Bounty

Encryption/Transmission
Encryption Encryption/Storage

Inspection of encrypted connections

Assets - systems & apps

Assets - data

Inventory Users and rights

Inventory Audit

Authentication

Authorization

Accounting/Logging

Access Control Multifactor Authentication

Human or bot challenge

Throttling/Rate Limiting
Blacklist/Whitelist

Continuous Authentication

Check PWs against dic es/dumps

Behavioral alerting/blacklisting

Content security policy

Traffic monitoring

Sanitize Input

Web Application

Bot detection
Firewall(or similar)*

In-Browser Web Form Encryption

IP intelligence filtering/alerting

Domain Monitoring

Throttling/Rate Limiting

API-specific contentinspection

Threatintelligence data-feed

Threat Intelligence Monitor lookalike domains and certs

Monitor user IDs in password dumps

Training

Incident Response Rehearsal

Final Thoughts

Security is a constantly shifting balance between critical details and the big picture. We need this
balance to be able to place shifts in the landscape in context and understand the magnitude of
their effects. With that in mind, here are some of the more general conclusions and predictions that

have stood out in 2019.

PHP Recon Shows That We Can’t Ignore the Trailing Edge

Baffin Bay’s sensor networks revealed that unknown actors are using a small number of
compromised systems on a university network to look for specific targets: old and probably
neglected MySQL databases with weak authentication. These actors have defined a narrow set

of target parameters, but are scanning the entire web from a small number of addresses—and

are not trying too hard to cover their tracks. Aside from this specific threat, however, the sensor
data indicate that unsophisticated campaigns against obsolete, obscure, or difficult-to-secure
targets are omnipresent, and mitigating the risk they present should be considered table stakes for

security practitioners.

The Big Picture with Breach Trends

Although open source data about actual breaches are not rich in detail, they do tell us enough to
conclude that the most likely threat vector depends on where and how organizations store assets
that malicious actors want. If, by dint of their business model, ecommerce-oriented organizations
have to store personal information close to their application front ends, those front ends are going
to become a focus for attacks, as they have in the various shopping cart campaigns we’ve seen
over the last few years. If organizations store their valuables elsewhere on their networks, then
social engineering and escalation of privileges are the order of the day—hence the rise in phishing

campaigns.

We can draw a few broader conclusions from these data, which, for all their flaws, are valuable
specifically because they are as empirical as data get in the security industry. For example, we can
cross reference these empirical findings with the Open Web Application Security Project (OWASP)
Top 10. Injection is the number one issue in the OWASP Top 10—and has been continuously since
2010. The breach data from 2018 confirm its ongoing relevance in the wild, despite being a known
and solvable problem for many years.®' At the same time, broken access control is ranked fifth in
the OWASP Top 10 2017, but it featured in nearly half of the 2018 breaches we examined.

We believe that this disparity stems not from any issue with OWASP’s work or methods (which are
enormously valuable), but from the bigger questions around what an application really is (spoiler:
it’s an onion). Applications are not just the code that they execute, but also everything around them

that makes them tick: architecture, configuration, other assets to which the application connects,

2019 APPLICATION PROTECTION'-REPORT

56

https://www.f5.com/labs/articles/cisotociso/apps-are-like-onions--they-have-layers

’Eusg targets will re ain popular. This means that /
unsophlstlcuted camy nigns against obsolete, obscure, /
’/, rgets will remain prevulent

£ et

and—not least—the user population. In other words, some things that have little to do with the
narrow definition of a web application can have huge effects on that application’s security.
The prevalence of access attacks (like phishing) in the breach reports are a good reminder of
this bigger context. Cross-referencing our findings with the OWASP Top 10 is therefore a sign
that we need to understand applications both at the level of the individual components that

comprise them, and at the larger level of the entire environment in which humans use them.

The other conclusion we can draw from the industry breach profiles is that actual breaches
validate risk-based security programs instead of best practices or checklists. If we know that
successful attacks map with some precision to where target organizations store sensitive
assets, it follows that organizations need to tailor controls and architecture to reflect the threats
they actually face. This supports our long-held assertion that risk assessment needs to be a
cornerstone of any security program, and the first step in any risk assessment is a substantive
(and ongoing) inventory process. We realize this seems like common sense, but given the

obstinate gap between theory and practice in our industry, it bears repeating.

The Future of Injection and Decentralized Web Content

Injection vulnerabilities are not new and mitigating them is theoretically simple. However, their
enduring prevalence is not just because of the lag in mitigating or preventing these well-known

flaws, or new, inexperienced developers recreating known issues in PHP.

Instead, injection remains such a problem because new trends are opening up new forms of
risk. In other words, the injection landscape is not just sticking around, it is transforming along
with our behavior. Detecting and mitigating injection flaws in light of these trends depends on

adapting our assessments and controls to this new reality, not just fixing code.

Putting Access Attacks in Perspective

All of the data we’ve seen have shown that access tier attacks are one of the two most
prominent types of attacks, both in terms of number of attempts and successful breaches. They
present defenders with unique challenges in terms of visibility and graceful failure. The wide
disparity in awareness and lack of suspicion within the user population means that there will
always be a viable human to target, so while the tactics of access attacks will certainly change
with technologies and defenses, the core principles will remain significant for the foreseeable

future.

However, protecting applications against access attacks is especially problematic for a
bigger reason. As we noted above, these tactics often place availability in direct conflict with
confidentiality and integrity; the same processes whose weaknesses attackers are exploiting
are the ones with which users directly interact. In other words, they drive to the heart of the

conflict between the application protection team and the users, who now realize that they

2019 APPLICATION PROTECTION REPORT 58

https://www.f5.com/labs/articles/cisotociso/4-areas-where-infosec-facts-and-fiction-clash--mind-the-gap-pt--

59

cannot trust one another and do not necessarily have the same goals. The tools of protection,

that is, MFA and service lockout, are antithetical to what the users want: free and easy access.

This trend, then, forces us security professionals to confront the question of whom a security
program serves. Convoluted access controls, failing closed, and multiple forms of verification
might serve the business’ security goals, but at the cost of the value of the application to its
audience. This means that, at a high level, access tier attacks threaten the value proposition

of the Internet as a marketplace. From the standpoint of an individual security practitioner,
there is much that you can do to control the current manifestation of this risk. We hope that the
mitigation section above provides a strong platform for that. However, the underlying questions
that access attacks pose are fundamental to the relationship between the digital world and the
real one. How this specific part of the arms race evolves will determine much in terms of how we

interact with internetworked information systems on the broadest possible level.

The Future of API Security

APls are not new, but they are newly relevant for the way the Internet is growing and
applications are evolving. As such, they do not so much introduce new risks as they reintroduce
existing risks in forms that are more likely to be exploited, more impactful, and harder to
recognize. At the same time, they are an unavoidable component in contemporary architectures,
which means that avoiding or ignoring their issues is not an option for security teams. OWASP

has released one of their excellent Top 10 lists specifically for APIs. It is a good place to begin to

explore these issues in greater detail.

Each episode of this research series has featured well-understood risks, many of which have
been around for decades, but that have taken on new forms as a result of changes in the

tools and techniques that we use to provide web services. While this is in keeping with our
long-running assertion that successful security operations are mostly about the thorough
implementation of the basics across space, time, and diverse systems, this is not to say that

we think the changes are bad. When we talk about increased architectural complexity, this
should be understood in light of the fact that applications also feature less complexity in the
code itself. Other than for operating systems and similar heavy pieces of software, the days of
millions of lines of code in a single piece of software are probably coming to an end. Instead,
that complexity is reappearing in architecture and infrastructure, as we assemble many small
parts to create a complete whole. There are many advantages to these trends, but they also
introduce added layers of abstraction in operations, which, in turn, raises issues for visibility and
cascading failure modes. This is why the old issues are coming back in new forms. As security
practitioners, we must not lament these changes but adapt our practices to them with evidence,

perspective, and a focus on enabling operations rather than hindering them.

2019 APPLICATION PROTECTION REPORT

https://github.com/OWASP/API-Security/tree/develop

Service Level Agreements Coming for Third-Party
Services?

Over time, as new risks emerge from changing technology and from the information security

arms race, we gradually incorporate those risks into our business models. Cloud computing has
gradually shifted from a perceived bleeding-edge risk to a cornerstone of modern infrastructure.
The risks associated with the cloud have either been mitigated or displaced to contractual risk in
the form of service level agreements and audits. In other words, as the business world comes to
grips with new trends in service provision, risks gradually morph from purely technical exploits that

are managed reactively to facets of a business model that are managed proactively.

We predict that the same will happen with the trend of third-party web functions and content.
Organizations will begin to manage this risk in the form of security-oriented service level
agreements. The mitigations we have suggested above are the beginning, an initial bulwark as

the industry comes to terms with new trends. But as we digest the ramifications of this latest
manifestation of the web, the management of these new risks will mature. Doubtless, injection will
morph as well, and find new ways to trouble us. In the meantime, we hope that the perspective and

practices above assist in managing the latest incarnations of these old risks.

We Want to Know What You Think

The structure and content of our research is based on the broad and deep experience
that our team brings to our work. However, in the end, our success hinges on whether our
audience is able to apply this intelligence to mitigate risk. If you have feedback, data to
share, requests for topics, or thoughts about our approach, please let us know. You can

reach us on Twitter @f5labs, or email us at F5LabsTeam@f5.com.

2019 APPLICATION PROTECTION REPORT

60

61

ENDNOTES

1 For an in-depth review of the present state of vulnerability management, see Cyentia Institute’s and Kenna
Security’s excellent report from Spring 2019 on Getting Read about Remediation.
(https://www.kennasecurity.com/prioritization-to-prediction-report-volume-two/images/Getting_Real_About

Remediation.pdf).

https://w3techs.com/technologies/history_overview/programming_language/ms/y

2
3 https://www.w3schools.com/php/php_intro.asp
4 https://www.exploit-db.com/exploits/18371

5 We know, for instance, that phishing campaigns have been growing in both prevalence and sophistication over the

last few years: https://www.f5.com/labs/articles/threat-intelligence/2018-phishing-and-fraud-report--attacks-peak-

during-the-holidays

6 https://www.smbc-comics.com/?id=2526

7 The high rate of formjacking attacks against the public sector is primarily attributable to the Click2Gov injection

campaigns that targeted that sector in 2017 and 2018. http://fortune.com/2018/12/18/click2gov-local-govern

ment-portals-hackers-credit-card-breach/

8 https://www.youtube.com/watch?v=hxLJEXWkOGE

9 kumarde.com/papers/tangled_web.pdf

10 http://requestmap.webperftools/

" For example, see https://www.exploit-db.com/exploits/44969, which chains four separate injection vulnerabilities to

gain a root shell.

12 See, among others, https://nvd.nist.gov/vuln/detail/CVE-2018-1160#vulnCurrentDescriptionTitle, as well as

https://medium.com/tenable-techblog/exploiting-an-18-year-old-bug-b47afe54172 for a more detailed explanation.

13 See https://nvd.nist.gov/vuln/detail/CVE-2018-12613. Also, in the exploit listed above,

https://www.exploit-db.com/exploits/44969, the last three of the four vulnerabilities (2) (3) (4) are predicated on

being authenticated to Nagios.

14 See https://www.exploit-db.com/exploits/45925 and https://nvd.nist.gov/vuln/detail/CVE-2018-1335 for examples of

an injection exploit targeting a server.

15 See https://www.exploit-db.com/exploits/46509, https://www.exploit-db.com/exploits/45858, and many others
16 The Magecart attacks of the last eighteen months are an example of these third-party or supply chain attacks.
17 https://www.bleepingcomputer.com/news/security/feedify-hacked-with-magecart-information-stealing-script/
18 https://duo.com/blog/malicious-hackers-take-over-media-sites-via-content-delivery-providers

19 See https://www.exploit-db.com/exploits/46539.

20 See https://www.exploit-db.com/exploits/44138

21 See https://www.exploit-db.com/exploits/43374 and https://nvd.nist.gov/vuln/detail/CVE-2017-7411

22 https://nvd.nist.gov/vuln/detail/CVE-2018-12613

23 https://www.riskig.com/blog/category/magecart/

24 https://www.exploit-db.com/exploits/39838

25 See, for example, https://www.exploit-db.com/exploits/46091

26 https://magento.com/security/patches/supee-8788

27 Pompon, Ray. IT Security Risk Control Management. (New York: Apress, 2016). 170.

28 https://en.wikipedia.org/wiki/Content_Security_Policy

29 https://www.troyhunt.com/protecting-your-embedded-content-with-subresource-integrity-sri/

30 https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Third_Party_Javascript_Management_

Cheat_Sheet.md

31 For more information on monitoring domains, see David Warburton’s article on certificate transparency.
32 https://cry.github.io/nbp/

33 We have not been able to explore the SIRT’s 2019 brute force data at time of writing.

34 https://pages.nist.gov/800-63-3/

35 https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-password-ban-bad

2019 APPLICATION PROTECTION REPORT

https://www.kennasecurity.com/prioritization-to-prediction-report-volume-two/images/Getting_Real_About_Remediation.pdf
https://www.kennasecurity.com/prioritization-to-prediction-report-volume-two/images/Getting_Real_About_Remediation.pdf
https://w3techs.com/technologies/history_overview/programming_language/ms/y
https://www.smbc-comics.com/?id=2526
http://fortune.com/2018/12/18/click2gov-local-govern ment-portals-hackers-credit-card-breach
http://fortune.com/2018/12/18/click2gov-local-govern ment-portals-hackers-credit-card-breach
https://www.youtube.com/watch?v=hxLJExWk9GE
http://kumarde.com/papers/tangled_web.pdf
http://requestmap.webperf.tools/
https://www.exploit-db.com/exploits/44969
https://nvd.nist.gov/vuln/detail/CVE-2018-1160#vulnCurrentDescriptionTitle
https:// medium.com/tenable-techblog/exploiting-an-18-year-old-bug-b47afe54172
https://nvd.nist.gov/vuln/detail/CVE-2018-12613
https://www.exploit-db.com/exploits/44969
https://www.exploit-db.com/exploits/45925
https://nvd.nist.gov/vuln/detail/CVE-2018-1335
https://www.exploit-db.com/exploits/46509
https://www.exploit-db.com/exploits/45858
https://www.riskiq.com/blog/labs/magecart-adverline/
https://www.exploit-db.com/exploits/46539
https://www.exploit-db.com/exploits/43374
https://nvd.nist.gov/vuln/detail/CVE-2017-7411
https://www.riskiq.com/blog/category/magecart/
https://www.exploit-db.com/exploits/39838
https://www.f5.com/labs/articles/threat-intelligence/fighting-back-against-phishing-and-fraud-part-2
https://cry.github.io/nbp/

ENDNOTES

36 For a brief perspective on APIs and microservice architectures, see

https://www.kuppingercole.com/blog/balaganski/api-security-in-microservices-architectures

37 https://earthengine.google.com/case_studies/, http://www.wonder-tonic.com/zombie/

38 https://hbr.org/2015/01/the-strategic-value-of-apis

39 https://www.f5.com/state-of-application-services-report/download-form

40 https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23
41 Not to be confused with AWS’ API gateway, which is confusingly named API Gateway. For a non-AWS

implementation of API gateways, see https://docs.microsoft.com/en-us/azure/architecture/microservices/design/

gateway. For AWS’ approach, see https://aws.amazon.com/api-gateway/

42 https://www.zdnet.com/article/over-100000-github-repos-have-leaked-api-or-cryptographic-keys/

43 https://www.upwork.com/hiring/development/public-apis-vs-private-apis-whats-the-difference/

44 Pompon, Ray. IT Security Risk Control Management. (New York: Apress, 2016). 170

45 https://www.f5.com/state-of-application-services-report/download-form

46 https://blog.restcase.com/restful-api-authentication-basics/

47 For more on OAuth 2.0 and some suggestions on implementation, se https://oauth.net/2/oauth-best-practice/

48 https://aaronparecki.com/oauth-2-simplified/

49 https://spiffe.io/spiffe/

50 For different types of APl authentication, see https://cloud.google.com/docs/authentication/. For Google’s take on

securing API keys, (which is as good as any we’ve seen), see https://cloud.google.com/docs/authentication/

api-keys#securing_an_api_key. For Google’s implementation of OAuth 2.0 for service accounts, see https://devel

opers.google.com/identity/protocols/OAuth2#serviceaccount. They also have an API authentication sandbox at
https://developers.google.com/oauthplayground/.

51 https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

2019 APPLICATION PROTECTION REPORT

62

https://earthengine.google.com/case_studies/
http://www.wonder-tonic.com/zombie
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/gateway
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/gateway
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/api-keys#securing_an_api_key
https://cloud.google.com/docs/authentication/api-keys#securing_an_api_key
https://developers.google.com/identity/protocols/OAuth2#serviceaccount
https://developers.google.com/identity/protocols/OAuth2#serviceaccount
https://developers.google.com/oauthplayground/

FS

APPLICATION THREAT INTELLIGENCE

US Headquarters: 401 Elliott Ave W, Seattle, WA 98119 | 888-882-4447 // Americas: info@f5.com // Asia-Pacific: apacinfo@f5.com // Europe/Middle East/Africa: emeainfo@f5.com // Japan: f5j-info@f5.com

©2020 F5 Networks, Inc. All rights reserved. F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other countries. Other F5 trademarks are identified at f5.com.
Any other products, services, or company names referenced herein may be trademarks of the respective owners with no endorsement or affiliation, expressed or implied, claimed by F5. RPRT-SEC-F5LABS-01/20

