
The Challenges of 
Building a Reliable 
Real-Time Event-
Driven Ecosystem

Real-Time APIs: Mike 
Amundsen on Designing for 
Speed and Observability

Real-Time APIs 
in the Context of 
Apache Kafka

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

The InfoQ eMag / Issue #86 / October 2020

The Real-Time APIs 
 Design, Operation, and Observation



 

GENERAL FEEDBACK feedback@infoq.com / ADVERTISING sales@infoq.com / EDITORIAL editors@infoq.com

The Real-Time APIs
Design, Operation, and Observation

IN THIS ISSUE

InfoQInfoQ@ InfoQInfoQ

Real-Time APIs in the Context 
of Apache Kafka 34

The Challenges of Building 
a Reliable Real-Time Event-

Driven Ecosystem 06 27Four Case Studies for 
Implementing Real-Time APIs

12
Real-Time APIs: Mike 

Amundsen on Designing for 
Speed and Observability

18Load Testing APIs and 
Websites with Gatling: It’s 

Never Too Late to Get Started

PRODUCTION EDITOR Ana Ciobotaru / COPY EDITORS Lawrence Nyveen & Susan Conant / DESIGN Dragos Balasoiu

https://www.youtube.com/user/MarakanaTechTV
https://www.linkedin.com/company/infoq/
http://twitter.com/infoq
https://www.facebook.com/InfoQ-75911537320


Matthew O’Riordan 
is the technical co-founder of Ably, a global, 
cloud-based real-time messaging platform 
that provides APIs used by thousands 
of developers and businesses. Matthew 
has been a programmer for over 20 years 
and first started working on commercial 
internet projects in the mid-90s when 
Internet Explorer 3 and Netscape were still 
battling it out. While he enjoys coding, the 
challenges he faces as an entrepreneur 
starting and scaling businesses is what 
drives him. Matthew has previously started 
and successfully exited from two previous 
tech businesses.

Karthik Krishnaswamy
is Director, Product Marketing at F5 
Networks, drives marketing initiatives for 
NGINX API Management and F5 Cloud 
Services. He is an experienced product 
marketer with a proven track record of 
developing and promoting IT solutions. 
Prior to F5, Karthik held similar positions at 
Fluke Networks, Cisco Systems and Nimble 
Storage, a Hewlett Packard Enterprise 
company. 

Guillaume Corre
works as a software engineer, consultant 
and Tech Lead at Gatling Corp, based in 
Paris at Station F, world’s biggest startup 
campus. Swiss army knife by nature, he 
enjoys simple things such as data viz, 
optimization and crashing production 
environments using Gatling, the best 
developer tool to load test your application, 
preventing applications and websites from 
becoming victims of their own success and 
help them face critical situations, like go-
lives or Black Fridays

Robin Moffatt
is a Senior Developer Advocate at 
Confluent, the company founded by the 
original creators of Apache Kafka, as well 
as an Oracle ACE Director (Alumnus). He 
has been speaking at conferences since 
2009 including QCon, Devoxx, Strata, Kafka 
Summit, and Øredev. You can find his talks 
online, subscribe to his YouTube channel 
(thanks lockdown!), and read his blog. 

CONTRIBUTORS



A LETTER FROM 
THE EDITOR

  Daniel Bryant

works as a Product Architect at 
Datawire, and is the News Manager 
at InfoQ, and Chair for QCon London. 
His current technical expertise 
focuses on ‘DevOps’ tooling, cloud/
container platforms and microservice 
implementations. Daniel is a leader 
within the London Java Community 
(LJC), contributes to several open 
source projects, writes for well-known 
technical websites such as InfoQ, 
O’Reilly, and DZone, and regularly 
presents at international conferences 
such as QCon, JavaOne, and Devoxx.

Application Programming In-
terfaces (APIs) are seemingly 
everywhere. Thanks to the pop-
ularity of web-based products, 
cloud-based X-as-a-service 
offerings, and IoT, it is becom-
ing increasingly important for 
engineers to understand all 
aspects of APIs, from design, to 
building, to operation. 

Research shows that there is 
increasing demand for near 
real-time APIs, in which speed 
and flexibility of response is 
vitally important. This emag 
explores this emerging trend in 
more detail.

In “Real-Time APIs: Mike 
Amundsen on Designing for 
Speed and Observability”, we 
learn how to meet the increas-
ing demand placed on API-
based systems, and explore 
three areas for consideration: 
architecting for performance, 
monitoring for performance, 
and managing for performance.

Amundsen argues that un-
derstanding a system and the 
resulting performance -- and 
being able to identify bottle-
necks -- is critical to meeting 

performance targets. Services 
must also be monitored, both 
from an operational perspec-
tive (SLIs), and also a business 
perspective (KPIs). 

According to Akamai research, 
API calls now make up 83% of 
all web traffic. In “Four Case 
Studies for Implementing 
Real-Time APIs”, Karthik Krish-
naswamy explores the idea that 
competitive advantage is no 
longer won by simply having 
APIs; the key to gaining ground 
is based on the performance 
and the reliability of those APIs. 

The four case studies all pro-
vide interesting lessons. How-
ever, a key takeaway is that 
when revenue is correlated with 
speed, performance trumps 
feature richness in API man-
agement solutions. Teams 
should recognize when this is 
the case, and design system 
applications and infrastructure 
accordingly.

In “Load Testing APIs and Web-
sites with Gatling: It’s Never 
Too Late to Get Started”, Guil-
laume Corre discusses how to 
conduct load tests against APIs 



5

and websites that can both validate 
performance after a long stretch 
of development and also get use-
ful feedback from an application in 
order to increase its scaling capabil-
ities and performance.

Corre argues that engineers should 
avoid creating “the cathedral” of 
load testing and end up with little 
time to improve performance overall. 
Instead, write the simplest possi-
ble test and iterate from there. It is 
important to establish the goals, 
constraints, and conditions of any 
load test. And always identify and 
verify any assumptions.

In “Real-Time APIs in the Context 
of Apache Kafka”, we change gears, 
and Robin Moffatt explores one of 
the challenges that we have always 
faced in building systems: how to 
exchange information between them 
efficiently whilst retaining the flexi-
bility to modify the interfaces with-
out undue impact elsewhere. 

Moffatt argues that events offer a 
Goldilocks-style approach in which 
real-time APIs can be used as the 
foundation for applications that are 
flexible yet performant; loosely-cou-
pled yet efficient. He goes on to pro-

vide examples using Apache Kafka, 
a scalable event streaming platform 
with which you can build applica-
tions around the powerful concept of 
events. 

In “The Challenges of Building a 
Reliable Real-Time Event-Driven 
Ecosystem”, Matthew O’Riordan 
argues that to truly benefit from the 
power of real-time data, the entire 
tech stack needs to be event-driven. 

When it comes to event-driven APIs, 
engineers can choose between mul-
tiple different protocols. Options in-
clude the simple webhook, the newer 
WebSub, popular open protocols 
such as WebSockets, MQTT or SSE. 
In addition to choosing a protocol, 
engineers also have to think about 
subscription models: server-initiat-
ed (push-based) or client-initiated 
(pull-based).

We hope you enjoy this collection 
of articles focused on real-time 
APIs. Please provide feedback via 
editors@infoq.com or find us on 
Twitter.

The InfoQ
 eM

ag / Issue #84 / June 2020



The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

6

The Challenges of Building a Reliable 
Real-Time Event-Driven Ecosystem
by Matthew O’Riordan, Co-Founder of Ably

Globally, there is an increasing 
appetite for data delivered in 
real time. Since both producers 
and consumers are more and 
more interested in faster expe-
riences and instantaneous data 
transactions, we are witnessing 
the emergence of the real-time 
API.

This new type of event-driven 
API is suitable for a wide variety 
of use cases. It can be used to 
power real-time functionality 
and technologies such as chat, 
alerts, and notifications or IoT 
devices. Real-time APIs can 

also be used to stream high vol-
umes of data between different 
businesses or different compo-
nents of a system.

This article starts by exploring 
the fundamental differences 
between the REST model and 
real-time APIs. Up next, we dive 
into some of the many engi-
neering challenges and consid-
erations involved in building a 
reliable and scalable event-driv-
en ecosystem, such as choos-
ing the right communication 
protocol and sub scription 
model, managing client, and

server-side complexity, orscal-
ing to support high-volume 
data streams.

What exactly is a real-time 
API?
Usually, when we talk about 
data being delivered in real 
time, we think about speed. By 
this logic, one could assume 
that improving REST APIs to 
be more responsive and able 
to execute operations in real 
time (or as close as possi-
ble) makes them real-time 
APIs. However, that’s just an 
improvement of an existing 
condition, not a fundamental 
change. Just because a tra-
ditional REST API can deliver 
data in real time does not 
make it a real-time API.

The basic premise around 
real-time APIs is that they are 
event-driven. According to the 
event-driven design pattern, 
a system should react or 
respond to events as they hap-
pen. Multiple types of APIs can 
be regarded as event-driven, 
as illustrated in Figure 1. 

Figure 1 The real-time API 
family. Source: Ably

https://www.infoq.com/articles/realtime-event-driven-ecosystem
https://www.ably.io/blog/the-realtime-api-family/


7

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

 Streaming, Pub/Sub, and Push 
are patterns that can be success-
fully delivered via an event-driven 
architecture. This makes all of 
them fall under the umbrella of 
event-driven APIs.

Unlike the popular request-re-
sponse model of REST APIs, 
event-driven APIs follow an 
asynchronous communication 
model. An event-driven archi-
tecture consists of the following 
main components:

• Event producers—they push 
data to channels whenever an 
event takes place.

• Channels—they push the data 
received from event produc-
ers to event consumers.

• Event consumers—they 
subscribe to channels and 
consume the data.

Let’s look at a simple and fiction-
al example to better understand 
how these components interact. 
Let’s say we have a football app 
that uses a data stream to deliver 
real-time updates to end-users 
whenever something relevant 
happens on the field. If a goal 
is scored, the event is pushed 
to a channel. When a consumer 
uses the app, they connect to the 
respective channel, which then 
pushes the event to the client 
device.

Note that in an event-driven 
architecture, producers and 
consumers are decoupled. 
Components perform their task 
independently and are unaware 
of each other. This separation 
of concerns allows you to more 
reliably scale a real-time system 
and it can prevent potential is-
sues with one of the components 
from impacting the other ones.

Compared to REST, event-driven 
APIs invert complexity and put 
more responsibility on the shoul-
ders of producers rather than 
consumers. (See Figure 2)

This complexity inversion relates 
to the very foundation of the way 
event-driven APIs are designed. 
While in a REST paradigm the 
consumer is always responsible 
for maintaining state and always 
has to trigger requests to get up-
dates. In an event-driven system, 
the producer is responsible for 
maintaining state and pushing 
updates to the consumer.

Event-driven architecture 
considerations
Building a dependable 
event-driven architecture is by no 
means an easy feat. There is an 
entire array of engineering chal-
lenges you will have to face and 
decisions you will have to make. 
Among them, protocol fragmen-

Figure 2 REST vs event-driven: complexity is inverted. Source: Ably

https://www.ably.io/blog/the-realtime-api-family/


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

8

tation and choosing the right 
subscription model (client-initi-
ated or server-initiated) for your 
specific use case are some of the 
most pressing things you need to 
consider.

While traditional REST APIs all 
use HTTP as the transport and 
protocol layer, the situation is 
much more complex when it 
comes to event-driven APIs. You 
can choose between multiple dif-
ferent protocols. Options include 
the simple webhook, the newer 
WebSub, popular open protocols 
such as WebSockets, MQTT or 
SSE, or even streaming protocols, 
such as Kafka.

This diversity can be a dou-
ble-edged sword—on one hand, 
you aren’t restricted to only one 
protocol; on the other hand, you 
need to select the best one for 
your use case, which adds an 
additional layer of engineering 
complexity.

Besides choosing a protocol, you 
also have to think about sub-
scription models: server-initiated 
(push-based) or client-initiated 
(pull-based). Note that some 
protocols can be used with both 
models, while some protocols 
only support one of the two sub-
scription approaches. Of course, 
this brings even more engineer-
ing complexity to the table.

In a client-initiated model, the 
consumer is responsible for 
connecting and subscribing to an 
event-driven data stream. This 

model is simpler from a producer 
perspective: if no consumers are 
subscribed to the data stream, 
the producer has no work to do 
and relies on clients to decide 
when to reconnect. Additionally, 
complexities around maintaining 
state are also handled by con-
sumers. Wildly popular and ef-
fective even when high volumes 
of data are involved, WebSockets 
represent the most common 
example of a client-initiated 
protocol.

In contrast, with a server-initi-
ated approach, the producer is 
responsible for pushing data to 
consumers whenever an event 
occurs. This model is often pref-
erable for consumers, especially 
when the volume of data increas-
es, as they are not responsible 
for maintaining any state—this 
responsibility sits with the pro-
ducer. The common webhook—
which is great for pushing rather 
infrequent low-latency updates—
is the most obvious example of a 
server-initiated protocol.

We are now going to dive into 
more details and explore the 
strengths, weaknesses, and 
engineering complexities of cli-
ent-initiated and server-initiated 
subscriptions.

Client-initiated vs. server-
initiated models—challenges and 
use cases
Client-initiated models are the 
best choice for last-mile deliv-
ery of data to end-user devices. 
These devices only need access 

to data when they are online 
(connected) and don’t care 
what happens when they are 
disconnected. Due to this fact, 
the complexity of the producer 
is reduced, as the server-side 
doesn’t need to be stateful. 
The complexity is kept at a low 
level even on the consumer side: 
generally, all client devices have 
to do is connect and subscribe to 
the channels they want to listen 
to for messages.

There are several client-initiated 
protocols you can choose from. 
The most popular and efficient 
ones are:

• WebSocket. Provides full-du-
plex communication channels 
over a single TCP connection. 
Much lower overhead than 
half-duplex alternatives such 
as HTTP polling. Great choice 
for financial tickers, loca-
tion-based apps, and chat 
solutions.

• MQTT. The go-to protocol 
for streaming data between 
devices with limited CPU 
power and/or battery life, and 
networks with expensive or 
low bandwidth, unpredict-
able stability, or high latency. 
Great for IoT.

• SSE. Open, lightweight, 
subscribe-only protocol for 
event-driven data streams. 
Ideal for subscribing to data 
feeds, such as live sport 
updates.

https://www.ably.io/concepts/websockets
https://www.ably.io/concepts/mqtt
https://www.ably.io/concepts/server-sent-events


9

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

Among these, WebSocket is 
arguably the most widely-used 
protocol. There are even a couple 
of proprietary protocols and open 
solutions that are built on top of 
raw WebSockets, such as Socket.
IO. All of them are generally light-
weight, and they are well sup-
ported by various development 
platforms and programming lan-
guages. This makes them ideal 
for B2C data delivery.

Let’s look at a real-life use 
case to demonstrate how Web-
Socket-based solutions can be 
used to power a client-initiated 
event-driven system. Tennis 
Australia (the governing body 
for tennis in Australia) wanted a 
solution that would allow them to 
stream real-time rally and com-
mentary updates to tennis fans 
browsing the Australian Open 
website. Tennis Australia had 
no way of knowing how many 
client devices could subscribe 
to updates at any given moment, 
nor where these devices could 
be located throughout the world. 
Additionally, client devices are 
generally unpredictable—they 
can connect and disconnect at 
any moment.

Due to these constraints, a cli-
ent-initiated model where a client 
device would open a connection 
whenever it wanted to subscribe 
to updates was the right way to 
go. However, since millions of 
client devices could connect at 
the same time, it wouldn’t have 
been scalable to have a 1:1 rela-
tionship with each client device. 

Tennis Australia was interested 
in keeping engineering complexi-
ty to a minimum—they wanted to 
publish one message every time 
there was an update and distrib-
ute that message to all connect-
ed client devices via a message 
broker.

In the end, instead of building 
their own proprietary solution, 
Tennis Australia chose to use 
Ably as the message broker. 
This enables Tennis Australia to 
keep things very simple on their 
side—all they have to do is pub-
lish a message to Ably whenever 
there’s a score update. The mes-
sage looks something like this:

var ably = new Ably.
Realtime('API_KEY');
var channel = ably.
channels.get('tennis-score-
updates');

// Publish a message to 
the tennis-score-updates 
channel
channel.publish('score', 
'Game Point!');

Ably then distributes that mes-
sage to all connected client de-
vices over WebSockets, by using 
a pub/sub approach, while also 
handling most of the engineering 
complexity on the producer side, 
such as connection churn, back-
pressure, or message fan-out.

Things are kept simple for con-
sumers as well. All a client device 
had to do is open a WebSocket 
connection and subscribe to 
updates:

// Subscribe to messages on 
channel
channel.subscribe('score', 
function(message) {
  alert(message.data);
});

Traditionally, developers use the 
client-initiated model to build 
apps for end-users. It’s a sen-
sible choice since protocols like 
WebSockets, MQTT, or SSE can 
be successfully used to stream 
frequent updates to a high num-
ber of users, as demonstrated 
by the Tennis Australia exam-
ple. However, it’s hazardous to 
think that client-initiated models 
scale well when high-throughput 
streams of data are involved—I’m 
referring to scenarios where 
businesses exchange large vol-
umes of data, or where an orga-
nization is streaming information 
from one system to another.

In such cases, it’s usually not 
practical to stream all that data 
over a single consumer-initiated 
connection (between one server 
that is the producer, and another 
one that is the consumer). Often, 
to manage the influx of data, 
the consumer needs to shard it 
across multiple nodes. But by 
doing so, the consumer also has 
to figure out how to distribute 
these smaller streams of data 
across multiple connections and 
deal with other complex engi-
neering challenges, such as fault 
tolerance.

We’ll use an example to better 
illustrate some of the consum-
er-side complexities. For ex-

https://www.ably.io/concepts/socketio
https://www.ably.io/concepts/socketio
https://www.ably.io/


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

10

ample, let’s say you have two 
servers (A and B) that are con-
suming two streams of data. 
Let’s imagine that server A fails. 
How does server B know it needs 
to pick up additional work? How 
does it even know where server 
A left off? This is just a basic 
example, but imagine how hard it 
would be to manage hundreds of 
servers consuming hundreds of 
data streams. As a general rule, 
when there’s a lot of complex-
ity involved, it’s the producer’s 
responsibility to handle it; data 
ingestion should be as simple as 
possible for the consumer.

That’s why in the case of stream-
ing data at scale you should 
adopt a server-initiated model. 
This way, the responsibility of 
sharding data across multiple 
connections and managing 
those connections rests with 
the producer. Things are kept 
rather simple on the consumer 
side—they would typically have 
to use a load balancer to distrib-
ute the incoming data streams to 
available nodes for consumption, 
but that’s about as complex as it 
gets.

Webhooks are often used in serv-
er-initiated models. The webhook 
is a very popular pattern because 
it’s simple and effective. As a 
consumer, you would have a load 
balancer that receives webhook 
requests and distributes them to 
servers to be processed. How-
ever, webhooks become less 
and less effective as the volume 
of data increases. Webhooks 

are HTTP-based, so there’s an 
overhead with each webhook 
event (message) because each 
one triggers a new request. In 
addition, webhooks provide no 
integrity or message ordering 
guarantees.

That’s why for streaming data 
at scale you should usually go 
with a streaming protocol such 
as AMQP, Kafka, or ActiveMQ, to 
name just a few. Streaming pro-
tocols generally have much lower 
overheads per message, and they 
provide ordering and integrity 
guarantees. They can even pro-
vide additional benefits—idempo-
tency, for example. Last but not 
least, streaming protocols enable 
you to shard data before stream-
ing it to consumers.

It’s time to look at a real-life im-
plementation of a server-initiated 
model. HubSpot is a well-known 
developer of marketing, sales, 
and customer service software. 
As part of its offering, HubSpot 
provides a chat service (Conver-
sations) that enables communi-
cation between end-users. The 
organization is also interested 
in streaming all that chat data to 
other HubSpot services for on-
ward processing and persistent 
storage. Using a client-initiated 
subscription to successfully 
stream high volumes of data to 
their internal message buses is 
not really an option. For this to 
happen, HubSpot would need to 
know what channels are active 
at any point in time, to pull data 
from them.

To avoid having to deal with 
complex engineering challenges, 
HubSpot decided to use Ably as 
a message broker that enables 
chat communication between 
end-users. Furthermore, Ably 
uses a server-initiated model 
to push chat data into Amazon 
Kinesis, which is the data pro-
cessing component of HubSpot’s 
message bus ecosystem. (See 
Figure 3)

Consumer complexity is kept to 
a minimum. HubSpot only has to 
expose a Kinesis endpoint and 
Ably streams the chat data over 
as many connections as needed.

A brief conclusion
Hopefully, this article offers a 
taste of what real-time APIs are 
and helps readers navigate some 
of the many complexities and 
challenges of building an effec-
tive real-time architecture. It is 
naive to think that by improving a 
traditional REST API to be quicker 
and more responsive you get a 
real-time API. Real time in the 
context of APIs means so much 
more.

By design, real-time APIs are 
event-driven; this is a funda-
mental shift from the request-re-
sponse pattern of RESTful 
services. In the event-driven 
paradigm, the responsibility is in-
verted, and the core of engineer-
ing complexities rests with the 
data producer, with the purpose 
of making data ingestion as easy 
as possible for the consumer.

https://www.amqp.org/
https://kafka.apache.org/protocol.html
http://activemq.apache.org/
https://www.ably.io/case-studies/hubspot
https://www.ably.io/


11

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

But having one real-time API is not enough—this is not a solution to a 
problem. To truly benefit from the power of real-time data, your entire 
tech stack needs to be event-driven. Perhaps we should start talking 
more about event-driven architectures than about event-driven APIs. 
After all, can pushing high volumes of data to an endpoint (see Hub-
Spot example above for details) even be classified as an API?

Fig 3 High-level overview of HubSpot chat architecture. 
Source: Ably

• Globally, there is an increas-
ing appetite for data deliv-
ered in real time. As both 
producers and consumers 
are more and more interest-
ed in faster experiences and 
instantaneous data transac-
tions, we are witnessing the 
emergence of the real-time 
API.

• When it comes to 
event-driven APIs, engi-
neers can choose between 
multiple different protocols. 
Options include the simple 
webhook, the newer Web-
Sub, popular open protocols 
such as WebSockets, MQTT 
or SSE, or even streaming 
protocols, such as Kafka. In 
addition to choosing a pro-
tocol, engineers also have 
to think about subscription 
models: server-initiated 
(push-based) or client-initi-
ated (pull-based).

• Client-initiated models are 
the best choice for the “last 
mile” delivery of data to 
end-user devices. These 
devices only need access to 
data when they are online 
(connected) and don’t care 
what happens when they are 
disconnected. Due to this 
fact, the complexity of the 
producer is reduced, as the 
server-side doesn’t need to 
be stateful.

• In the case of streaming 
data at scale, engineers 
should adopt a server-ini-
tiated model. The respon-
sibility of sharding data 
across multiple connec-
tions and managing those 
connections rests with the 
producer, and other than the 
potential use of a client-side 
load balancer, things are 
kept rather simple on the 
consumer side.

 

TL;DR

https://www.ably.io/


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

12

Real-Time APIs: Mike Amundsen on Designing 
for Speed and Observability

by Daniel Bryant, Product Architect @ambassadorlabs | News Manager @InfoQ | Chair @QConLondon

In a recent apidays webinar, Mike 
Amundsen, trainer and author of 
the recent O’Reilly book API Traf-
fic Management 101, presented 
“High Performing APIs: Architect-
ing for Speed at Scale”. Drawing 
on recent research by IDC, he 
argued that organizations will 
have to drive systemic changes 
to meet the upcoming increased 
demand for consumption of 
business services via APIs. This 
change in requirements relates to 

both an increased scale of oper-
ation and a decreased response 
time.

The changing nature of cus-
tomer expectations, combined 
with new data-driven products 
and an increase in consumption 
at the edge (mobile, IoT, etc.), 
has meant that the need for low 
latency “real-time APIs” is rapidly 
becoming the norm.

The recent adoption of cloud 
technology and microser-
vices-based architecture has 
enabled innovation and increased 
speed of development through-
out the business world.

However, this technology and 
architecture style is not always 
conducive to creating performant 
applications; in the cloud nearly 
everything communicates over 
a virtualized network, and in a 

https://www.infoq.com/articles/realtime-api-speed-observability/
https://www.apidays.co/
https://www.linkedin.com/in/mamund/
https://www.linkedin.com/in/mamund/
https://learning.oreilly.com/library/view/api-traffic-management/9781492056393/
https://learning.oreilly.com/library/view/api-traffic-management/9781492056393/


13

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

service-oriented architecture 
multiple separate processes are 
typically invoked to fulfill each 
business function. Amundsen 
stated that a series of holistic 
changes to how systems are 
designed, operated, and man-
aged is required to meet the new 
demands. 

The performance imperative
Amundsen began his presenta-
tion by describing the “perfor-
mance imperative” he is seeing 
throughout the IT industry. 
Focusing first on the ecosystem 
transformation, he referenced a 
2019 IDC research report “IDC 
MaturityScape: Digital Trans-
formation Platforms 1.0.” This 
report states that 75% of or-
ganizations will be completely 
digitally transformed in the next 
decade, with those companies 
not embracing a modern way of 
working not surviving. By 2022, 

90% of new applications being 
built will feature a microser-
vice architecture, and 35% of all 
production applications will be 
“cloud native.”

API call volumes are increasing 
as more organizations embrace 
digital transformations. Accord-
ing to the same report, 71% of 
organizations expect to see the 
volume of API calls increase 
in the next 2 years. About 60% 
expect over 250 million API calls 
per month (~10 million per busi-
ness day). There is an increasing 
focus on transaction response 
time, with 59% of organizations 
expecting the latency of a typ-
ical API request to be under 20 
milliseconds, and 93% expecting 
a latency under 50 milliseconds. 

Amundsen argued that to meet 
the increasing demand placed 
on organizations, there are three 

areas for consideration: archi-
tecting for performance, monitor-
ing for performance, and manag-
ing for performance. (See figure 
below)

Architecting for performance
Migrating applications to a cloud 
vendor’s platform brings many 
benefits, such as the ability to 
take advantage of data process-
ing or machine learning-based 
services to innovate rapidly, or 
reducing the total cost of owner-
ship (TCO) of an organization’s 
platform. However, cloud infra-
structure can be significantly 
different than traditional hard-
ware, both in terms of configura-
tion and performance. Amundsen 
cautioned that performing a “lift 
and shift” of an existing appli-
cation is not enough to ensure 
performance.

https://www.idc.com/getdoc.jsp?containerId=EUR145200419
https://www.idc.com/getdoc.jsp?containerId=EUR145200419
https://www.idc.com/getdoc.jsp?containerId=EUR145200419


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

14

The vast majority of infrastruc-
ture components and services 
within a cloud platform are con-
nected over a network—e.g. block 
stores are often implemented as 
network-attached storage (NAS). 
Colocation of components is not 
guaranteed—e.g. an API gateway 
might be located in a different 
physical data center than the 
virtual machine (VM) a backend 
application is running on. The 
global reach of cloud platforms 
opens opportunities for reaching 
new customers and also provides 
more effective disaster recov-
ery options, but this also means 
that the distance between your 
customers and your services can 
increase.

Amundsen suggested that en-
gineering teams redesign com-
ponents into smaller services, 
following the best practices 
associated with the microser-
vices architectural style. These 

services can be independently 
released and independently 
scaled. Embracing asynchronous 
methods of communicating, such 
as messaging and events, can re-
duce wait states. This offers the 
possibility of an API call rapidly 
returning an acknowledgment 
and decreasing latency from an 
end-user perspective, even if the 
actual work has been queued 
at the backend. Engineers will 
also need to build in transaction 
reversal and recovery processes 
to reduce the impact of inevitable 
failures. Additional thought lead-
ers in this space, such as Bernd 
Ruecker, encourage engineers 
to build “smart APIs” and learn 
more about business process 
modeling and event sourcing.

For systems to perform as 
required, data read and write 
patterns will frequently have to 
be reengineered. Amundsen sug-
gested judicious use of caching 

results, which can remove the 
need to constantly query up-
stream services. Data may also 
need to be “staged” appropriately 
throughout the entire end-to-end 
request handling process. For 
example, caching results and 
data in localized points of pres-
ence (PoPs) via content delivery 
networks (CDNs), caching in an 
API gateway, and replication of 
data stores across availability 
zones (local data centers) and 
globally. For some high trans-
action throughput use cases, 
writes may have to be streamed 
to meet demand, for example, 
writing data locally or via a high 
throughput distributed logging 
system like Apache Kafka for 
writing to an external data store 
at a later point in time.

Engineers may have to “re-
think the network,” (respecting 
the eight fallacies of distributed 
computing), and design their 
cloud infrastructure to follow 
best practices relevant to their 
cloud vendor and application 
architecture. Decreasing request 
and response size may also be 
required to meet demands. This 
may be engineered in tandem 
with the ability to increase the 
message volume. The industry 
may see the “return of the RPC,” 
with strongly-typed communi-
cation contracts and high-per-
formance binary protocols. As 
convenient as JSON is, compared 
to HTTP, a lot of computation 
(and time) is used in serialization 
and deserialization, and the text-

https://www.infoq.com/news/2020/07/smart-apis/
https://www.infoq.com/podcasts/bernd-rucker-orchestration-cqrs/
https://kafka.apache.org/
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://infoq.link/NGINX-eMag-banner


15

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

based message payloads sent 
over the wire are typically larger.

Monitoring for performance
Understanding a system and the 
resulting performance, and being 
able to identify bottlenecks, are 
critical to meeting performance 
targets. Observability and moni-
toring are critical aspects of any 
modern application platform. In-
frastructure must be monitored, 
from machines to all aspects of 
the networking stack. Modern 

cloud networking may consist of 
many layers, from the high-level 
API gateway and service mesh 
implementations to the cloud 
software-defined networking 
(SDN) components to the actual 
virtualized and physical network-
ing hardware—and these need to 
be instrumented effectively.

Services must also be moni-
tored, both from an operational 
perspective and also a business 
perspective. Many organizations 

are increasingly adopting the 
site reliability engineering (SRE) 
approach of defining and col-
lecting service level indicators 
(SLIs) for operational metrics, 
which consist of top-line metrics 
such as utilization, saturation, 
and errors (USE), or request rate, 
errors, and duration (RED). Busi-
ness metrics are typically related 
to key performance indicators 
(KPIs) that are driven by an or-
ganization’s objectives and key 
results (OKRs). 

With infrastructure emitting 
metrics and services producing 
SLI- and KPI-based metrics, 
the corresponding data must be 
effectively captured, processed, 
and presented to key stake-
holders for this to be acted on. 
This is often a cultural chal-

lenge as much as it is a technical 
challenge.

Managing for performance
Amundsen stated that the orga-
nization should aim to create a 
“dashboard culture.” Monitoring 
top-line metrics, user traffic, and 
the continuous delivery process 

for “insight” into how a system is 
performing are vitally important. 
As stated by Dr. Nicole Forsgren 
and colleagues in Accelerate, the 
four key metrics that are correlat-
ed with high performing organi-
zations are lead time, deployment 
frequency, mean time to restore 
(MTTR), and change failure

https://landing.google.com/sre/sre-book/chapters/service-level-objectives/#indicators-o8seIAcZ
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/#indicators-o8seIAcZ
http://www.brendangregg.com/usemethod.html
http://www.brendangregg.com/usemethod.html
https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
https://www.infoq.com/presentations/dashboard-culture-ibm/
https://www.infoq.com/presentations/dashboard-culture-ibm/
https://itrevolution.com/book/accelerate/


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

16

percentage. Engineers should 
be able to use internal tooling to 
effectively solve problems, such 
as controlling access to func-
tionality, scaling services, and 
diagnosing errors. 

The addition of security mitiga-
tion is often in conflict with per-
formance—for example, adding 
layers of security verification can 
slow responses—but this is a 
delicate balancing act. Engineers 
should be able to understand 
systems, their threat models, and 
whether there are any indicators 
of current problems—e.g. an 
increased number of HTTP 503 
error codes being generated, or 
a gateway being overloaded with 
traffic.

The elastic nature of cloud infra-
structure typically allows almost 
unlimited scaling, albeit with 
potentially unlimited cost. How-
ever, the culture of managing for 
performance requires the ability 
to easily understand how cur-
rent systems are being used. For 
example,engineers need to know 
whether scaling specific compo-
nents is an appropriate response 
to seeing increased loads at any 
given point in time. 

Diagnosing errors in a cloud-
based microservices system 
typically requires an effective 
user experience (or developer 
experience) in addition to re-
quiring a collection of tooling 
to collect, process, and display 
metrics, logs, and traces. Dash-
boards and tooling should show 

top-level metrics related to a 
customer’s experience, and also 
allow engineers to test hypothe-
ses for issues by drilling-down to 
see individual service-to-service 
metrics. Being able to answer ad 
hoc questions of an observability 
or monitoring solution is current-
ly an area of active research and 
product development.

Once the ability to gain insight 
and solve problems has been 
obtained, the next stage of 
managing for performance is the 
ability to anticipate. This is the 
capability to automatically recov-
er from failure—building antifrag-
ile systems—and the ability to 
experiment with the system, such 
as examining fault-tolerance 
properties via the use of chaos 
engineering.

https://threatmodelingbook.com/
https://blog.getambassador.io/the-importance-of-control-planes-with-service-meshes-and-front-proxies-665f90c80b3d
https://blog.getambassador.io/the-importance-of-control-planes-with-service-meshes-and-front-proxies-665f90c80b3d
https://www.getambassador.io/podcasts/charity-majors-on-instrumenting-systems-observability-driven-development-and-honeycomb/
https://www.getambassador.io/podcasts/charity-majors-on-instrumenting-systems-observability-driven-development-and-honeycomb/
https://www.infoq.com/articles/russ-miles-antifragility-microservices/
https://www.infoq.com/articles/russ-miles-antifragility-microservices/
https://www.infoq.com/chaos-engineering/
https://www.infoq.com/chaos-engineering/


17

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

Summary
Amundsen concluded the presen-
tation by reminding the audience 
of the IDC research report; the IT 
industry should prepare for API call 
volumes to increase and the require-
ments for transaction processing 
time to decrease. Supporting these 
new requirements will demand orga-
nization and system-wide changes. 

Software developers will have 
to learn about redesigning ser-
vices and reengineering data, and 
instrumenting services for both 
increased visibility into operation-
al and business metrics. Plat-
form teams will have to consider 
rethinking networks, monitoring 
infrastructure, and managing traf-
fic. Application operation and SRE 
teams will need to work across 

the engineering organization to 
enable the effective identification 
and resolution of problems, and 
also anticipate issues and enable 
experimentation.

A more detailed exploration into 
the topics discussed here can be 
found in Mike Amundsen’s recent 
O’Reilly book API Traffic Manage-
ment 101.

• The “IDC MaturityScape: 
Digital Transformation 
Platforms 1.0” report states 
that 71% of organizations 
expect to see the volume of 
API calls increase in the next 
2 years. 59% of organiza-
tions expect the latency of 
a typical API request to be 
under 20 milliseconds, and 
93% expect a latency under 
50 milliseconds. 

• According to the same 
report, 90% of new applica-
tions being built will feature 
a microservice architecture, 
and 35% of all production 
applications will be “cloud 
native.”

• To meet the increasing de-
mand placed on API-based 
systems, there are three 
areas for consideration: 
architecting for performance, 
monitoring for perfor-
mance, and managing for 
performance.

• Good architectural practices 
include avoiding a simple 
“lift and shift” to the cloud, 
embracing asynchronous 
processing, and reengineer-
ing data and networks.

• Understanding a system and 
the resulting performance, 
and being able to identi-
fy bottlenecks, is critical 
to meeting performance 
targets. Services must also 
be monitored, both from 
an operational perspective 
(SLIs), and also a business 

perspective (KPIs). 

TL;DR

https://learning.oreilly.com/library/view/api-traffic-management/9781492056393/
https://learning.oreilly.com/library/view/api-traffic-management/9781492056393/


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

18

You open your software engi-
neering logbook and start writ-
ing—“Research and Development 
Team’s log. Never could we have 
foreseen such a failure with our 
application and frankly, I don’t 
get it. We had it all; it was a mas-
terpiece! Tests were green, met-
rics were good, users were happy, 
and yet when the traffic arrived in 
droves, we still failed.”

Pausing to take a deep breath, 
you continue—“We thought we 
were prepared; we thought we 
had the hang of running a popu-
lar site. How did we do? Not even 
close. We initially thought that 
a link on TechCrunch wouldn’t 
bring that much traffic. We also 
thought we could handle the 
spike in load after our TV spot 
ran. What was the point of all this 
testing if the application stopped 
responding right after launch, 
and we couldn’t fix this regard-
less of the number of servers we 
threw at it, trying to salvage the 
situation as we could.”

After a long pause, “It’s already 
late, time goes by. There is so 
much left to tell you, so many 
things I wish I knew, so many 
mistakes I wish I never made.” 
Unstoppable, you write, “If only 
there was something we could 
have done to make it work...”

And then, lucidity striking back 
at you—you wonder: why do we 
even do load testing in the first 
place? Is it to validate perfor-
mance after a long stretch of 
development or is it really to get 
useful feedback from our appli-
cation and increase its scaling 
capabilities and performance? 
In both cases validation takes 
place, but in the latter, getting 
feedback is at the center of the 
process.

You see, this isn’t really about 
load testing per se, the goal is 
focused on making sure your 
application won’t crash when it 
goes live. You don’t want to be 
writing “the cathedral” of load 

testing and end up with little time 
to improve performance overall. 
Often, working on improvements 
is where you want to spend most 
if not all of your time. Load test-
ing is just a means to an end and 
nothing else. 

If you are afraid because your 
deadline is tomorrow and you are 
looking for a quick win, then wel-
come, this is the article for you.

Writing the simplest possible 
simulation
In this article, we will be writing 
a bit of code, Scala code to be 
more precise as we will be using 
Gatling. While the code might 
look scary, I can assure it is not. 
In fact, Scala can be left aside 
for the moment and we can 
think about Gatling as its own 
language:

Load Testing APIs and Websites with 
Gatling: It’s Never Too Late to Get 
Started
by Guillaume Corré, Tech Lead, Gatling Corp

https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://gatling.io/
https://www.infoq.com/articles/load-testing-apis-gatling/


19

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

import io.gatling.core.Predef._
import io.gatling.http.Predef._

class SimplestPossibleSimulation extends 
Simulation {

  val baseHttpProtocol =
    http.baseUrl(“https://computer-
database.gatling.io”)

  val scn = scenario(“simplest”)
    .exec(
      http(“Home”)
        .get(“/”)
    )

  setUp(
    scn.inject(atOnceUsers(1))
  ).protocols(baseHttpProtocol)
}

Let’s break this down into smaller parts. As Gatling 
is built using Scala, itself running on the Java Vir-
tual Machine, there are some similarities to expect. 
The first one is that the code always starts with 
package imports:

import io.gatling.core.Predef._
import io.gatling.http.Predef._

They contain all the Gatling language definitions 
and you’ll use these all the time, along with other 
imports, depending on the need. Then, you create 
enough to encapsulate the simulation:

class SimplestPossibleSimulation extends 
Simulation {}

SimplestPossibleSimulation is the name of the 
simulation and Simulation is a construct defined 
by Gatling that you “extend” and will contain all 
the simulation code, in three parts: (1) we need to 
define which protocol we want to use and which 
parameters we want it to have:

val baseHttpProtocol =
  http.baseUrl(“https://computer-database.
gatling.io”)

(2) The code of the scenario itself:

val scn = scenario(“simplest”)
  .exec(
    http(“Home”)
      .get(“/”)
  )

Notice I used the term scenario even though we 
only spoke about simulations until now. While they 
are often conflated, they have both really distinct 
meanings:

• A scenario describes the journey a single user 
performs on the application, navigating from 
page to page, endpoint to endpoint, and so on, 
depending on the type of application

• A simulation is the definition of a complete 
test with populations (e.g.: admins and users) 
assigned to their scenario

• When you launch a simulation, the result is 
called a run

This terminology helps make sense of the final 
section, (3) setting up the simulation:

setUp(
  scn.inject(atOnceUsers(1))
).protocols(baseHttpProtocol)

Since a simulation is roughly a collection of sce-
narios, it is the sum of all the scenarios configured 
with their own injection profile (which we will ignore 
for now). The protocol on which is based all the 
requests done in a scenario can be either shared, if 
chained after setUp, or defined per scenario, if we 
had multiple ones, scn1 and scn2, as such:

setUp(
  scn1.inject(atOnceUsers(1)).
protocols(baseHttpProtocol1),
  scn2.inject(atOnceUsers(1)).
protocols(baseHttpProtocol2)
)

Notice how everything is chained, separated by a 
comma: scn1 configured with such injection profile 
and such protocol, etc.



The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

20

When you run a Gatling simula-
tion, it will launch all the scenari-
os configured inside at the same 
time, which is what we’ll do right 
now.

Running a simulation
One way to run a Gatling simula-
tion is by using the Gatling Open-
Source bundle. It is a self-con-
tained project with a folder to 
drop simulation files inside and a 
script to run them.

Warning!

All installations require a proper 
Java installation, JDK 8 mini-
mum, see the Gatling installation 
docs for all the details.

After unzipping the bundle, you 
can create a file named Sim-

plestPossibleSimulation.

scala inside the user-files/
simulations folder. Then, from 
the command line, at the root of 
the bundle folder, type:

./bin/gatling.sh

Or, on Windows:

.\bin\gatling.bat

This will scan simulations inside 
the previous folder and prompt 
you, asking which one you want 
to run. As the bundle contains 
some examples, you’ll have more 
than one to choose from.

While this is the easiest way 
to run a Gatling simulation, it 
doesn’t work well with source 
repositories. The preferred way 

is to use a build tool, such as 
Maven, or SBT. If this is the 
solution you would like to try, you 
can clone our demo repositories 
using git:

• Gatling Maven Plugin Demo

• Gatling’s SBT plugin demo

Or, if you want to follow along 
with this article, you can clone 
the following repository which 
was made for the occasion: 

• Gatling Maven and SBT 
project

After running the test, you no-
tice there is a URL at the end of 
the output, which you open and 
stumble upon:

https://gatling.io/open-source/
https://gatling.io/open-source/
https://gatling.io/docs/current/installation/
https://gatling.io/docs/current/installation/
https://maven.apache.org/
https://www.scala-sbt.org/
https://github.com/gatling/gatling-maven-plugin-demo
https://github.com/gatling/gatling-sbt-plugin-demo
https://github.com/notdryft/last-minute-load-testing
https://github.com/notdryft/last-minute-load-testing


21

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

You will notice there is a request named “Home 
Redirect 1” which we didn’t make ourselves. You 
might be thinking it’s probably Gatling following a 
redirect automatically and separating the response 
times from all the different queries. But it does look 
kind of underwhelming, and you would be right.

Configuring the Injection Profile
Looking back, when configuring our scenario we 
did the following:

scn.inject(atOnceUsers(1))

Which is great for debugging purposes, but not re-
ally thrilling in relation to load testing. The thing is, 
there is no right or wrong way to write an injection 
profile, but first things first.

An injection profile is a chain of rules, executed in 
the provided order, that describes at which rate you 
want your users to start their own scenario. While 
you might not know the exact profile you must 
write, you almost always have an idea of the ex-
pected behavior. This is because you are typically 
either anticipating a lot of incoming users at a spe-
cific point in time, or you are expecting more users 
to come as your business grows. 

Questions to think about include: do you expect 
users to arrive all at the same time? This would be 
the case if you intend to offer a flash sale or your 
website will appear on TV soon; and do you have an 
idea of the pattern your users will follow? It could 
be that users arrive at specific hours, are spread 
across the day, or appear only within working 
hours, etc. This knowledge will give you an angle 
of attack, which we call a type of test. I will present 
three of them.

Stress testing
When we think about load testing, often we think 
about “stress testing,” which it turns out is only a 
single type of test; “Flash sales” is the underlying 
meaning.

The idea is simple: lots of users, the smallest 
amount of time possible. atOnceUsers is perfect for 
that, with some caveats:

scn.inject(
  atOnceUsers(10000)
)

It is difficult to say how many users you can launch 
at the same time without being too demanding on 
hardware. There are a lot of possible limitations: 
CPU, memory, bandwidth, number of connections 
the Linux kernel can open, number of available 
sockets on the machine, etc. Is it easy to strain 
hardware by putting too high a value and ending up 
with nonsensical results?

This is where you could need multiple machines to 
run your test. To give an example, a Linux kernel, if 
optimized properly, can easily open 5k connections 
every second, 10k being already too much.

Splitting 10 thousand users over the span of a min-
ute would still be considered a stress test, because 
of how strenuous the time constraint is:

scn.inject(
  rampUsers(10000) during 1.minute
)

Soak test
If the time span gets too long, the user journey will 
start feeling more familiar. Think “users per day,” 
“users per week,” and so on. However, imitating 
how users arrive along a day is not the purpose of a 
soak test, just the consequence.

When soak testing, what you want to test is the 
system behavior under a long stretch of time: how 
does the CPU behave? Can we see any memory 
leaks? How do the disks behave? The network?

A way of doing this is to model users arriving over a 
long period of time:

https://gatling.io/docs/current/general/operations/
https://gatling.io/docs/current/general/operations/
https://gatling.io/docs/current/general/operations/


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

22

scn.inject(
  rampUsers(10000000) during 10.hours  // 
~277 users per sec
)

This will feel like doing “users per day.” Still, if mod-
eling your analytics is your goal, then computing 
the number of users per second that your ramp-up 
is doing and reducing the duration would give you 
results faster:

scn.inject(
  constantUsersPerSec(300) during 
10.minutes
)

Speaking about this, rampUsers over constan-
tUserPerSec is just a matter of taste. The for-
mer gives you an easy overview of the total users 
arriving while the latter is more about throughput. 
However,  thinking about throughput makes it eas-
ier to do “ramping up,” i.e. progressively arriving at 
the final destination:

scn.inject(
  rampUsersPerSec(1) to 300 during 
10.minutes,
  constantUsersPerSec(300) during 2.hours
)

Capacity test
Finally, you could simply be testing how much 
throughput your system can handle. In which case 
a capacity test is the way to go. Combining meth-
ods from the previous test, the idea is to level the 
throughput from some arbitrary time, increase the 
load, level again, and continue until everything goes 
down and we get a limit. Something like:

scn.inject(
  constantUsersPerSec(10) during 5.minutes,
  rampUsersPerSec(10) to 20 during 
30.seconds,
  constantUsersPerSec(20) during 5.minutes,
  rampUsersPerSec(20) to 30 during 
30.seconds,
  ...
)

You could say doing this 20 times could be a bit 
cumbersome…but as the base of Gatling is code, 
you could either make a loop that generates the 
previous injection profile, or use our DSL dedicated 
to capacity testing:

scn.inject(
  incrementUsersPerSec(10)
    .times(20)
    .eachLevelLasting(5.minutes)
    .separatedByRampsLasting(30.seconds) // 
optional
    .startingFrom(10) // users per sec too!
)

See on the next page in Figure 1 how to model this 
graphically. And that’s it!

Where to start with loading testing?
If it is your first time load testing, whether you 
already know the target user behavior or not, you 
should start with a capacity test. Stress testing 
is useful but analyzing the metrics is really tricky 
under such a load. Since everything is failing at the 
same time, it makes the task difficult, even impos-
sible. Capacity testing offers the luxury to go slowly 
to failure, which is more comfortable for the first 
analysis.

To get started, just run a capacity test that makes 
your application crash as soon as possible. You 
only need to add complexity to the scenario when 
everything seems to run smoothly.

Then, you need to look at the metrics. (See Figure 
2).

What do all of these results even mean?
The above chart shows response time percentiles. 
When load testing, we could be tempted to use av-
erages to analyze the global response time and that 
would be error-prone. If an average can give you 
a quick overview of what happened in a run, it will 
hide under the rug all the things you actually want 
to look at. This is where percentiles come in handy.



23

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

Think of it this way: if the average 
response time is some amount of 
milliseconds, how does the expe-
rience feel in the worst case for 
1% of your user base? Better or 
worse? How does it feel for 0.1% 
of your users? And so on, getting 
closer and closer to zero. The 
higher the amount of users and 
requests, the closer you’ll need 
to get to zero in order to study 
extreme behaviors. To give you 
an example, if you had 3 million 
users performing a single request 

on your application, and 0.01% of 
them timed-out, that would be 30 
thousand users that weren’t able 
to access your application.

Percentiles are usually used, 
which correspond to thinking 
about this the other way around. 
The 1% worse case for users is 
turned into “how does the expe-
rience feel at best for 99% of the 
users,” 0.1% is turned into 99.9%, 
etc. A way to model the compu-
tation is to sort all the response 

times in ascending order and 
mark spots:

• 0% of the responses time is 
the minimum, marking the 
lowest value

• 100% is the maximum

• 50% is the median

From here, you go to 99% and 
as close to 100% as possible, by 
adding nines, depending on how 
many users you have.

Figure 1

Figure 2



The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

24

In the previous chart, we had a 
99 percentile of 63 milliseconds, 
but is that good or not? With 
the maximum being 65, it would 
seem so. Would it be better if it 
were10 milliseconds, though?

Most of the time metrics are 
contextual and don’t have any 
meaning by themselves. Broadly 
speaking, a 10ms response time 
on localhost isn’t an achieve-
ment, and it would be impossible 
from Paris to Australia due to 
the speed of light constraint. We 
have to ask, “in what conditions 
was the run actually performed?” 
This will help us greatly deduce 
whether or not the run was actu-
ally that good. These conditions 
include:

• What is the type of server the 
application is running?

• Where is it located?

• What is the application 
doing?

• Is it under a network?

• Does it have TLS?

• What is the scenario doing?

• How do you expect the appli-
cation to behave?

• Does everything run on the 
same cloud provider in the 
same data center?

• Are there any kinds of latency 
to be expected? Think mobile 
(3G), long distance.

• Etc.

This is the most important part. If 
you know the running conditions 
of a test, you can do wonders. 
You can (and should) test locally, 
with everything running on your 
computer, as long as you under-
stand what it boils down to: no 
inference can be made on how 
it will run in production, but that 
allows you to do regression test-
ing. Just compare the metrics 
between multiple runs, and it will 
tell you whether you made the 
performance better or worse.

You don’t need a full-scale 
testing environment to do that. 
If you know your end-users are 
mobile users, testing with all 
machines located in a single data 
center could lead to a disaster. 
However, you don’t need to be 
100% realistic either. Just keep 
in mind what it implies and what 
you can deduce from the testing 
conditions: a data center being a 
huge local network, results can’t 
be compared to mobile networks, 
and observed results would in 
fact be way better than reality.

Specifying the need
Not only should you be 
aware of the conditions un-
der which the tests are run, 
but you should also decide 
beforehand what makes the 
test a success or a failure. To 
do that, we define criteria, as 
such:

1. Mean response time under 
250ms

2. 2000 active users

3. Less than 1% failed requests

There is a catch though. Out of 
these three acceptance criteria, 
only one is actually useful to de-
scribe a system under load, can 
you guess which and what they 
can be replaced with? 

(1) “Mean response time under 
250ms”: It should come naturally 
from the previous section that 
while average isn’t bad, it isn’t 
sufficient to describe user behav-
ior, it should always be seconded 
with percentiles:

• Mean response time under 
250ms

• 99 percentile under 250ms

• Max under 1000ms

(2) “2000 active users”: This one 
is more tricky. Nowadays we are 
flooded with analytics showing 
us “active users” and such, so 
it should be tempting to define 
acceptance criteria using this 
measurement. That is an issue 
though. The only way to model 
an amount of active users direct-
ly is by creating a closed mod-
el. Here, you will end up with a 
queue of users, and this is where 
the issue lies. Just think about it. 
If your application were to slow 
down and users are on a queue, 
they would start piling up in the 
queue, but only a small amount, 
(the maximum amount allowed in 
the application), would be “ac-
tive” and performing requests. 
The amount of active users 
would stay the same, but users 
would be waiting outside as they 
would be in a shop. 

https://gatling.io/2018/10/04/gatling-3-closed-workload-model-support/
https://gatling.io/2018/10/04/gatling-3-closed-workload-model-support/


25

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

In real life, if a website goes down, people will 
continue to refresh the page until something comes 
up, which will further worsen the performance of 
the website until people give up and you lose them. 
You shouldn’t model active users unless it is your 
use case—you should instead target an amount of 
active users. It can be difficult, but doable. It will 
depend on: the duration of the scenario, including 
response time, pauses, etc., the network, the injec-
tion profile, etc.

This is what you could measure instead:

• 2000 active users

• Between 100 and 200 new users per second

• More than 100 requests per second

(3) “Less than 1% failed requests” was in fact the 
only criterion that properly represents a system 
under load between the three. However, it is not to 
be taken as a rule of thumb. Depending on the use 
case, 1% may be too high. Think of an e-commerce 
site, you might allow some pages to fail here and 
there, but having a failure at the end of the conver-
sion funnel right before buying would be fatal to 
your business model. You would have this specific 
request with a failure criterion at 0% and the rest to 
either a higher percentage or no criterion at all.

All of this leads to a specification based on the Giv-
en-When-Then model and how to think about load 
testing in general, with everything we learned so far:

• Given: Injection Profile

• When: Scenario

• Then: Acceptance Criteria

Using the previous examples, it can look like this:

• Given: a load of 200 users per second

• When: users visit the home page

• Then:

• We got at least 100 requests/seconds 

• 99 percentile under 250ms

• And less than 1% failed requests

Finally, the Given-When-Then model can be fully 
integrated as a Gatling simulation code:

import io.gatling.core.Predef._
import io.gatling.http.Predef._

import scala.concurrent.duration._

class FullySpecifiedSimulation extends 
Simulation {

 val baseHttpProtocol =
   http.baseUrl(“https://computer-database.
gatling.io”)

 // When 
 val scn = scenario(“simplest”)
   .exec(
     http(“Home”)
       .get(“/”)
   )

 // Given
 setUp(
   scn.inject(
     rampUsersPerSec(1) to 200 during 
1.minute,
     constantUsersPerSec(200) during 
9.minutes
   ) 
 ).protocols(baseHttpProtocol) // Then
   .assertions(
     global.requestsPerSec.gte(100),
     global.responseTime.percentile(99).
lt(250),
     global.failedRequests.percent.lte(1)
   )
}

The Scenario (When) part didn’t change (yet), but 
you will need the Injection Profile (Given) at the 
same place, and a new part, called assertions, as 
Then. What assertions does is computing met-
rics from within all the simulation, and will fail the 
“build” if they are under/over the requirements. 
Using a Maven project, for example, you’ll see:



The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

26

[INFO] ------------------------------------
------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------
------------------------
[INFO] Total time:  07:07 min
[INFO] Finished at: 2020-08-
27T20:52:52+02:00
[INFO] ------------------------------------
------------------------

And BUILD FAILURE otherwise.  This is handy 
when using a CI tool such as Jenkins, for which we 
provide a Gatling Jenkins plugin. Using it, you can 
configure the running of simulations right into your 
CI, and get notified if your acceptance criteria are 
failed and by how much.

Note that in the previous example we used the 
keyword global as a starting point, but you could 
be as precise as having a single request having no 
failures and ignore all the others:

.assertions(
  details(“Checkout”).failedRequests.
percent.is(0)
)

You can find more examples in our assertions 
documentation.

Defining a test protocol
If you believe that a specific variable, for example, 
the network, is the culprit behind the poor perfor-
mance, you will need a proper testing protocol to 
test your assumptions. Each variable should be 
tested against a “witness.” If you suspect “some-
thing” is the cause, test it with and without, then 
compare. Make a baseline and make small varia-
tions, then test against this.

It boils down to ALWAYS TESTING YOUR 
ASSUMPTIONS,

Additional tooling will help catch the essentials 
that Gatling can’t. As all metrics given by Gatling 
are from the point of view of the user, you’ll need 
to make sure you are equipped with system and 
application monitoring on the other side of the 
spectrum. System monitoring is also very useful to 

have on the Gatling side. It will help you see if you 
are using too many resources on the machine on a 
huge test with information such as CPU, memory, 
network connections, and their states, networking 
issues, etc. There are many popular metrics col-
lection solutions out there, such as Prometheus 
combined with Node Exporter. These can be used 
alongside Grafana combined with an appropriate 
dashboard. Let it run and collect the metrics all the 
time. Check when running a test on the time win-
dow of the test.

Equipped with such tools, the test protocol will boil 
down to:

1. Ensure system and application monitoring is 
enabled

2. Run a load test (capacity, for example)

3. Analyze and deduce a limit

4. Tune

5. Try again

Going beyond
Closing your logbook, you realize you weren’t that 
far off succeeding after all. Rather than building a 
full-fledged load testing Cathedral, you decide to 
go one small step at a time and understanding that 
knowledge is key. The sooner you have the infor-
mation you need, the better.

From now, when everything seems to work fine, you 
will have the possibility to add complexity to the 
scenario, approaching more and more the way your 
users actually perform actions on your application. 
Your most helpful resources will be the Gatling OSS 
documentation, along with:

• The Quickstart, so you can learn how to record 
this user journey without writing much code 
right at the beginning

• The Advanced Tutorial to go deeper

• The Cheat-Sheet that lists all the Gatling lan-
guage keywords and their usage

https://plugins.jenkins.io/gatling/
https://gatling.io/docs/current/general/assertions/
https://gatling.io/docs/current/general/assertions/
https://github.com/prometheus/prometheus/releases
https://github.com/prometheus/node_exporter/releases
https://gatling.io/docs/current/
https://gatling.io/docs/current/
https://gatling.io/docs/current/quickstart/
https://gatling.io/docs/current/advanced_tutorial/
https://gatling.io/docs/current/cheat-sheet/


27

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

Four Case Studies for 
Implementing Real-Time APIs
by Karthik Krishnaswamy Director | Product Marketing at F5 

API calls now make up 83% of 
all web traffic. The age of the 
API has arrived, and companies 
should be well past the point of 
just having enthusiasm for de-
veloping APIs — they need them 
to survive in digital business. 
But in the digital era, it’s easy for 
your customers and partners to 
switch services. Don’t like your 
bank? Opening a new account 
in another bank is as simple as 
downloading an app. APIs have 
made it easy for us to consume 
services across all industries. 

That means competitive advan-
tage is no longer won by sim-
ply having the APIs; the key to 
gaining ground is based on the 
performance and the reliability 
of those APIs. According to our 
research at NGINX, you need to 
be able to process an API call in 
30ms or less in order to deliver 
real-time experiences. 

Here are four case studies of 
companies that created an API 
structure capable of delivering 
the real-time speed needed to 

win business in this highly com-
petitive landscape. 

Automate API management at 
scale for microservices: Green-
field online bank

Objective: Deliver real-time per-
formance and reliability at scale 
to customers accessing appli-
cations from non-smart mobile 
devices.

Problem:  Microservices-based 
applications delivering poor 

https://www.nginx.com/blog/how-real-time-apis-power-our-lives/
https://www.nginx.com/blog/how-real-time-apis-power-our-lives/
https://www.infoq.com/articles/implementing-real-time-apis/


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

28

performance and struggling 
with added latency when pro-
cessing internal API calls for 
transactions. 

Key takeaway: External services 
can consist of multiple, internal 
API calls among microservices; 
slow-performing API infrastruc-
ture can degrade service levels.

Background and challenge
This green-field bank was 
launched in 2016 with the goal 
of providing banking services to 
poor and rural areas in South Af-
rica. In order to compete with the 
incumbent banks, they decided 
to build a modern digital banking 
application from the ground up 
using containers and microser-
vices to provide digital banking 
services to unbanked or under-
banked households. 

They built a distributed architec-
ture based on this microservices 
reference architecture. This pro-
vided the bank with the flexibility 
needed to deliver new services 
quickly enough to match the ex-
pectations of today’s digital con-
sumers, while limiting downtime. 
The bank chose this reference 
architecture as it was prescrip-
tive and gave them a roadmap 
to start small – initially hand-
ing ingress traffic to a modest 
Kubernetes cluster – and grow 
to hundreds or even thousands 
of microservices connected via a 
service mesh.

However, pivoting to a micros-
ervices architecture introduced 

a lot of complexity around both 
API scalability and increased 
inter-service communication 
(east-west traffic), which devel-
opers needed to allow microser-
vices to communicate with each 
other. 

This posed a significant chal-
lenge to the bank as most of their 
customers were not accessing 
their services from smart devic-
es but using non-smart mobile 
phones. As a result, the bank 
was not able to rely on custom-
er computing power. Instead, a 
simple mobile phone would com-
municate with the bank via SMS, 
which would kick off a series of 
internal APIs calls to process the 
transaction and deliver the result 
back to the customer via SMS.

How real-time API management 
helped
Unreliable or slow performance 
can directly impact or even pre-
vent the adoption of new digital 
services, making it difficult for a 
business to maximize the poten-
tial of new products and expand 
its offerings. Thus, it is not only 
crucial that an API processes 
calls at acceptable speeds, but it 
is equally important to have an 
API infrastructure in place that is 
able to route traffic to resources 
correctly, authenticate users, se-
cure APIs, prioritize calls, provide 
proper bandwidth, and cache API 
responses. 

Most traditional APIM solutions 
were made to handle traffic 
between servers in the data 

center and the client applications 
accessing those APIs external-
ly (north-south traffic). They 
also need constant connectivity 
between the control plane and 
data plane, which requires using 
third-party modules, scripts, and 
local databases. Processing a 
single request creates significant 
overhead — and it only gets more 
complex when dealing with the 
east-west traffic associated with 
a distributed application. 

Considering that a single trans-
action or request could require 
multiple internal API calls, the 
bank found it extremely difficult 
to deliver good user experiences 
to their customers. For example, 
the bank’s existing API man-
agement solution was adding 
anywhere from 100 to 500ms of 
transaction latency to each call.

The bank had also established 
CI/CD tooling and frameworks 
to automate microservices 
development and deployment. 
They had a Site Reliability (SRE) 
team tasked with overseeing 
the entire system and needed 
a solution that could integrate 
easily with their CI/CD pipeline 
infrastructure.

Deploying an API management 
solution that decouples the data 
and control plane introduced less 
latency and offered high-per-
formance API traffic mediation 
for both external service and 
inter-service communication. 
Runtime connectivity to the con-
trol plane was no longer needed 

https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/


29

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

for the data plane to process and 
route calls, minimizing complex-
ity. As a result, the bank was able 
to process API calls up to three 
times faster. In addition, the new 
API management solution inte-
grated directly with the bank’s 
existing microservices deploy-
ment and CI/CD pipeline, as well 
as offering monitoring for SRE 
teams to help eliminate human 
error, downtime, and reduce op-
erational complexity.

Connect microservices API 
traffic - Leading Asian-Pacific 
telecommunications provider 
Objective: Process 600 million 
API calls per month across at 
least 800 different internal APIs. 

Problem: The existing API in-
frastructure was too expensive 
and slow to use for internal API 
traffic, resulting in performance 
degradation.

Key takeaway: Processing inter-
nal API calls within the corpo-
rate firewall instead of routing 
it through a cloud outside the 
corporate network improves per-
formance significantly.

Background and challenge
A leading telecom organization 
from the Asia-Pacific region em-
braced an API-first development 
philosophy as part of their digital 
transformation initiative. This 
drove an explosion of internal 
APIs needed to process 600 mil-
lion API calls per month across 
800 different internal APIs. The 
current infrastructure was not 

well-equipped to process this 
new API traffic, causing a degra-
dation of performance and devel-
oper and DevOps team to invest 
in non-standard solutions. 

The telecom company was 
already using a solution for API 
management. However, it was 
better suited for handling north-
south traffic from external APIs 
rather than east-west traffic 
between internal services. The 
company decided to seek a new 
solution that would allow them to 
reduce latency, while also provid-
ing capabilities to empower their 
DevOps teams with self-service 
API management.

How real-time API management 
helped
The telecom organization’s ex-
isting API management solution 
relied on deployment models 
where the API management and 
gateways were hosted in the 
public cloud, meaning that traffic 
must be looped out to the cloud 
first for every interaction. In this 
case, sending traffic out to the 
public cloud was not only costly, 
it was much slower — adding 
several seconds of latency. 

The telecommunications organi-
zation opted to segment external 
and internal API management, 
implementing a higher-perform-
ing API management solution to 
manage and deploy internal APIs 
and that logically sat “behind” the 
existing deployment on the en-
terprise perimeter. This allowed 
them to process internal API calls 

within the corporate network, 
rather than being forced to route 
them out into the public cloud, 
resulting in a 70% reduction in 
latency with API calls being pro-
cessed at 20ms or less.

DevOps teams were also able to 
easily create, publish, and mon-
itor APIs, helping to increase 
application and microservices 
release velocity by integrating 
API management tasks direct-
ly into their CI/CD pipeline. By 
automating routine tasks us-
ing APIs, such as API definition 
and gateway configuration, the 
organization was able to achieve 
significant savings in time and 
effort. 

Process large volume of credit 
card transactions in real-time 
- Large US-based credit card 
company 
Objective: Process billions of API 
calls in real-time — sub 70ms 
latency. 

Problem: The existing API man-
agement solution added 500ms 
of latency for every API call, re-
sulting in direct revenue loss for 
the company. 

Key takeaways: Performance 
trumps feature richness in API 
management solutions when 
revenue is impacted.  

Background and challenge
A leading credit card company 
was struggling with a transaction 
latency problem. When paying 
with a credit card, most point-of-



The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

30

sale (POS) systems will time out 
after a set limit expires. Cards 
will need to be run through again, 
but transactions will automati-
cally fail to avoid any duplicate 
transactions being charged to 
the card. 

At the same time, the organiza-
tion was moving to Open Banking 
standards, which provide API 
specifications that enable shar-
ing of customer-permissioned 
data and analytics with third-par-
ty developers and firms to build 
applications and services—in-
creasing the volume of API calls 
into the hundreds of billions. 

As a result, the company started 
looking for a solution that would 
be able to manage and scale to 
handle billions of API calls as 
fast as possible — the goal was 
set to sub 70ms latency per API 
call. This was deemed as the 
threshold before customer ex-
perience would be impacted for 
POS transactions.

How real-time API management 
helped
The company’s existing API solu-
tion was adding 500ms of laten-
cy for every API call, causing a 
nominal amount of transactions 
to fail. But even a small fraction 
of billions of transactions is a 
significant number, especial-
ly when they result in a loss of 
revenue. 

It’s common for customers to try 
paying again with another credit 
card when a transaction fails. If 

the second card they use is not 
issued by the same company, it 
could potentially mean millions in 
lost dollars—all due to timed-out 
API calls. 

The company pioneered a re-
al-time API reference architec-
ture to ensure API calls were pro-
cessed in as close to real-time 
as possible. For example, they 
deployed clusters of two or more 
high availability API gateways to 
improve the reliability and resil-
iency of their APIs. The company 
also chose to enable dynamic 
authentication by pre-provision-
ing authentication information 
(using API keys and JSON Web 
Tokens, or JWT), which made 
authentication almost instanta-
neous. In addition, they chose 
to delegate authorization to the 
business-logic layer of their 
backend so that their API gate-
ways were only responsible for 
handling authentication, resulting 
in faster response times to calls. 

By following these best practices, 
the company was able to achieve 
response times that were consis-
tently less than 10ms, exceeding 
the performance requirements 
by 85%. This delivered tangible, 
direct savings—helping to not 
only recover lost transactions but 
enabling them to process even 
more transactions than before. 
The company concluded that 
these performance gains were 
more critical to their business 
outcomes than some of the ad-
ditional features the incumbent 
solution had, which included 

a richer developer portal, API 
design tools, and API transfor-
mation features of their previous 
solution.

The improved transaction laten-
cy and reliability had the added 
benefit of helping to create and 
solidify new revenue streams. As 
part of their open banking efforts, 
the company is now able to ex-
pose their core transactional en-
gine to ISVs and developers and 
win more business as a result of 
the speed and reliability advan-
tages they can demonstrate over 
their competitors. 

Securely process billions of 
transactions using a single 
API management solution – 
US-based financial services 
company 
Objective: A lightweight, cost-ef-
fective solution that can process 
and route API calls for REST APIs, 
SOAP APIs, and externally ac-
cessed services that meets strict 
federal financial compliance 
requirements.  

Problem: The company had three 
existing solutions to manage 
each of the different types of 
traffic, which required configuring 
specific gateways multiple times 
in order to make changes and 
quickly achieve scale to serve 
the needs of internal and external 
consumers. 

Key takeaway: High API trans-
action throughput (calls per 
second) is essential for rapid 
adoption

https://standards.openbanking.org.uk/
https://standards.openbanking.org.uk/
https://www.nginx.com/blog/reference-architecture-real-time-apis/
https://www.nginx.com/blog/reference-architecture-real-time-apis/
https://www.nginx.com/blog/reference-architecture-real-time-apis/


31

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

Background and challenge
Recognizing that the future of fi-
nancial services would rely heav-
ily on software development, the 
financial services company be-
gan to focus on transforming into 
a technology company in 2014 
by investing in RESTful APIs. This 
involved placing heavy emphasis 
on engineering and development, 
empowering developers to create 
software that was easy to con-
sume in order to deliver great 
applications to end users. 

In addition to their own offer-
ings that served millions of 
customers, the company also 
created an internal development 
exchange platform, which was 
eventually made available exter-
nally to allow them to integrate 
with business partners and third 
parties through APIs. There was 
extreme pressure to be able to 
deliver performant APIs and an 
infrastructure that could support 
a high volume of transactions 
every day. 

Over the years, the company had 
also acquired a lot of technical 
debt, including a legacy service 
bus and appliances to handle 
SOAP/XML APIs. As a result, the 
company was using at least three 
different solutions to manage 
API traffic, which made it hard 
to adapt and respond quickly 
to changing environments and 
meet market demands. Teams 
were forced to constantly config-

ure specific gateways — making 
updates three times rather than 
once every time a change was 
needed. 

The company wanted to consol-
idate, but they were also looking 
for a solution that would allow 
them to scale and handle billions 
of API calls while protecting the 
high-speed developer exchange 
platform that was the main core 
of their business. To meet their 
scale, flexibility, and performance 
requirements, the company 
decided it couldn’t rely solely on 
a packaged solution or service. 
They would need a combination 
of API infrastructure software 
and custom-developed API 
tooling.

How real-time API management 
helped
The goal for the company, like 
any modern technology-focused 
business, was resiliency, high 
speed, and low overhead for 
internal customers that want to 
avoid impacting functionality. 
However, handling hundreds of 
thousands of concurrent API 
calls without performance degra-
dation can be tricky using tradi-
tional application design, which 
relies on a process-per-connec-
tion model to handle requests. 

Using open source software 
(OSS) as the main foundation to 
support their API gateway in-
frastructure, the company was 

able to reduce context switch-
ing and the load on resources. 
This allowed them to leverage 
an asynchronous, event-driven 
approach that allows multiple re-
quests to be handled by a single 
worker process — in other words, 
they were able to scale to sup-
port hundreds of thousands of 
concurrent connections with very 
little additional overhead.

The company also struggled to 
manage and configure multiple 
disparate solutions, which not 
only consumed resources but 
also caused a lot of downtime as 
they had to be restarted during 
upgrades. The developer and 
DevOps teams then highly cus-
tomized the open source beyond 
its original capability by adding 
Lua-based modules and scripts, 
enabling them to standardize on 
this OSS gateway to handle all 
types of traffic, helping to elim-
inate sprawl and complexity. In 
addition, the company was able 
to upgrade without downtime or 
service interruption by starting 
a new set of worker process-
es when a new configuration 
is detected while continuing to 
route live traffic to the old pro-
cesses containing the previous 
configuration. Once the new 
configuration is tested and ready, 
the new gateway immediately 
starts accepting connections and 
processing traffic based on the 
new settings. 



The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

32

The company is now able to han-
dle around 360 billion API calls per 
month — or about 12 billion calls in 
a single day with peak traffic of 2 
million API calls per second.

Real-time APIs require a real-time 
API solution 
The case studies above serve to 
demonstrate some of the most 
common ways we are helping or-
ganizations develop their API pro-
grams. We would love to hear from 
you about your real-time API needs 
and experiences with delivering APIs 
in real-time. What API management 
challenges are you facing? How are 
you dealing with scaling your API 
infrastructure to meet your modern-
ization needs?

Please leave comments below or, 
better yet, use our open source API 
assessment tool to measure your API 
performance. Learn more on GitHub.

TL;DR
• API calls now make up 83% 

of all web traffic. Competi-
tive advantage is no longer 
won by simply having APIs; 
the key to gaining ground is 
based on the performance 
and the reliability of those 
APIs. 

• Modern systems can 
consist of multiple internal 
API calls among microser-
vices; slow-performing API 
infrastructure can degrade 
service levels throughout an 
organisation’s systems.

• Processing internal API calls 
within the corporate firewall 
instead of routing it through 
a cloud outside the corporate 
network can improve perfor-
mance significantly.

• Performance trumps feature 
richness in API management 
solutions when revenue 
is correlated with speed. 
Teams should recognize this 
and design system appli-
cations and infrastructure 
accordingly.

• Consolidating traffic man-
agement solutions within a 
system can improve the ca-
pability to react to changing 
requirements, rapidly update 
configuration, and bench-
mark overall performance.

https://github.com/nginxinc/rtapi


33

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

A Reference Architecture for Real-Time APIs

SPONSORED ARTICLE  

Please read the full-length version of this article here. 

As companies seek to compete in the digital era, APIs become a critical IT and business resource. Archi-
tecting the right underlying infrastructure ensures not only that your APIs are stable and secure, but also 
that they qualify as real-time APIs, able to process API calls end-to-end within 30 milliseconds (ms).

API architectures are broadly broken up into two components: the data plane, or API gateway, and the 
control plane, which includes policy and developer portal servers. A real-time API architecture depends 
mostly on the API gateway, which acts as a proxy to process API traffic. It’s the critical link in the perfor-
mance chain.

API gateways perform a variety of functions including authenticating API calls, routing requests to the 
right backends, applying rate limits to prevent overburdening your systems, and handling errors and ex-
ceptions. Once you have decided to implement real-time APIs, what are the key characteristics of the API 
gateway architecture? How do you deploy API gateways?

This article addresses these questions, providing a real-time API reference architecture based on our 
work with NGINX’s largest, most demanding customers. We encompass all aspects of the API manage-
ment solution but go deeper on the API gateway which is responsible for ensuring real-time performance 
thresholds are met.

The Real-Time API Reference Architecture
Our reference architecture for real-time APIs has six components:

• API gateway. A fast, lightweight data-plane component that processes API traffic. This is the most 
critical component in the real-time architecture.

• API policy server. A decoupled server that configures API gateways, as well as supplying API lifecycle 
management policies.

• API developer portal. A decoupled web server that provides documentation for rapid onboarding for 
developers who use the API.

• API security service. A separate web application firewall (WAF) and fraud detection component which 
provides security beyond the basic security mechanisms built into the API gateway

• API identity service. A separate service that sets authentication and authorization policies for identity 
and access management and integrates with the API gateway and policy servers.

• DevOps tooling. A separate set of tools to integrate API management into CI/CD and developer 
pipelines.

https://infoq.link/NGINX-eMag-Article


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

34

Real-Time APIs in the Context 
of Apache Kafka
by Robin Moffatt, Senior Developer Advocate at Confluent

One of the challenges that we 
have always faced in building 
applications, and systems as a 
whole, is how to exchange infor-
mation between them efficiently 
whilst retaining the flexibility to 
modify the interfaces without 
undue impact elsewhere. The 
more specific and streamlined 
an interface, the likelihood that 
it is so bespoke that to change it 
would require a complete rewrite. 
The inverse also holds; gener-
ic integration patterns may be 
adaptable and widely supported, 
but at the cost of performance.

Events offer a Goldilocks-style 
approach in which real-time APIs 
can be used as the foundation for 
applications which is flexible yet 
performant; loosely-coupled yet 
efficient.

Events can be considered as the 
building blocks of most other 
data structures. Generally speak-
ing, they record the fact that 
something has happened and 
the point in time at which it oc-
curred. An event can capture this 
information at various levels of 
detail: from a simple notification 
to a rich event describing the full 
state of what has happened.

From events, we can aggregate 
up to create state—the kind of 
state that we know and love from 
its place in RDBMS and NoSQL 
stores. As well as being the basis 
for state, events can also be 
used to asynchronously trigger 
actions elsewhere when some-
thing happens - the whole basis 
for event-driven architectures. In 
this way, we can build consumers 
to match our requirements—both 
stateless, and stateful with fault 
tolerance. Producers can opt 
to maintain state, but are not 
required to since consumers can 
rebuild this themselves from the 
events that are received.

If you think about the business 
domain in which you work, you 
can probably think of many 
examples of events. They can be 
human-generated interactions, 
and they can be machine-gen-
erated. They may contain a 
rich payload, or they may be in 
essence a notification alone. For 
example:

• Event: userLogin

– Payload: zbeeble-
brox logged in at 2020-08-17 
16:26:39 BST

https://en.wikipedia.org/wiki/Goldilocks_principle
https://www.infoq.com/articles/real-time-api-kafka/


35

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

• Event: CarParked

– Payload: Car registration 
A42 XYZ parked at 2020-08-17 
16:36:27 in space X42

• Event: orderPlaced

– Payload: Robin ordered 
four tins of baked beans 
costing a total of £2.25 at 2020-
08-17 16:35:41 BST

These events can be used to 
directly trigger actions elsewhere 
(such as a service that process-
es orders in response to them 
being placed), and they can also 
be used in aggregate to provide 
information (such as the current 
number of occupied spaces in 
a car park and thus which car 
parks have availability).

So, if events are the bedrock on 
which we are going to build our 
applications and services, we 
need a technology that supports 
us in the best way to do this—and 
this is where Apache Kafka® 
comes in. Kafka is a scalable 
event streaming platform that 
provides

• Pub/Sub

– To publish (write) and 
subscribe to (read) streams of 
events, including continuous 
import/export of your data from 
other systems.

• Stateful stream processing

– To store streams of 
events durably and reliably for as 
long as you want.

• Storage

– To process streams 
of events as they occur or 
retrospectively.

Kafka is built around the concept 
of the log. By taking this simple 
but powerful concept of a dis-
tributed, immutable, append-only 
log, we can capture and store the 
events that occur in our busi-
nesses and systems in a scalable 
and efficient way. These events 
can be made available to multiple 
users on a subscription basis, as 
well as processed and aggregat-
ed further, either for direct use 
or for storage in other systems 
such as RDBMS, data lakes, and 
NoSQL stores.

In the remainder of this article, I 
will explore the APIs available in 
Apache Kafka and demonstrate 
how it can be used in the sys-
tems and applications that you 
are building.

The Producer and Consumer APIs
The great thing about a sys-
tem like Kafka is that producers 
and consumers are decoupled, 
meaning, amongst other things, 
that we can produce data without 
needing a consumer in place first 
(and because of the decoupling 
we can do so at scale). An event 
happens, we send it to Kafka—
simple as that. All we need to 
know is the details of the Kafka 

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying


The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

36

cluster, and the topic (a way of organising data in 
Kafka, kind of like tables in an RDBMS) to which we 
want to send the event.

There are clients available for Kafka in many differ-
ent languages. Here’s an example of producing an 
event to Kafka using Go:

package main

import (
    “gopkg.in/confluentinc/confluent-kafka-
go.v1/kafka”
)

func main() {

    topic := “test_topic”
    p, _ := kafka.NewProducer(&kafka.
ConfigMap{
        “bootstrap.servers”: 
“localhost:9092”})
    defer p.Close()

    p.Produce(&kafka.Message{
        TopicPartition: kafka.
TopicPartition{Topic: &topic,
            Partition: 0},
        Value: []byte(“Hello world”)}, nil)

}

Because Kafka stores events durably, it means that 
they are available as and when we want to con-
sume them, until such time that we age them out 
(which is configurable per topic).

Having written the event to the Kafka topic, it’s 
now available for one, or more, consumers, to read. 
Consumers can behave in a traditional pub/sub 
manner and receive new events as they arrive, as 
well as opt to arbitrarily re-consume events from 
a previous point in time as required by the appli-
cation. This replay functionality of Kafka, thanks 
to its durable and scalable storage layer, is a huge 
advantage for many important use cases in prac-
tice such as machine learning and A/B testing, 
where both historical and live data are needed. It’s 
also a hard requirement in regulated industries, 
where data must be retained for many years to 

meet legal compliance. Traditional messaging sys-
tems like RabbitMQ, ActiveMQ cannot support such 
requirements.

package main

import (
    “fmt”

    “gopkg.in/confluentinc/confluent-kafka-
go.v1/kafka”
)

func main() {

    topic := “test_topic”

    cm := kafka.ConfigMap{
        “bootstrap.servers”:        
“localhost:9092”,
        “go.events.channel.enable”: true,
        “group.id”:                 
“rmoff_01”}

    c, _ := kafka.NewConsumer(&cm)
    defer c.Close()
    c.Subscribe(topic, nil)

    for {
        select {
        case ev := <-c.Events():
            switch ev.(type) {

            case *kafka.Message:
                km := ev.(*kafka.Message)
                fmt.Printf(“✅ Message ‘%v’ 
received from topic ‘%v’\n”, string(km.
Value), string(*km.TopicPartition.Topic))
            }
        }
    }

}

When a consumer connects to Kafka, it provides 
a Consumer Group identifier. The consumer group 
concept enables two pieces of functionality. The 
first is that Kafka keeps track of the point in the 
topic to which the consumer has read events, so 
that when the consumer reconnects it can con-
tinue reading from the point that it got to before. 
The second is that the consuming application may 
want to scale its reads across multiple instances 



37

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

of itself, forming a Consumer Group that allows for 
processing of your data in parallel. Kafka will then 
allocate events to each consumer within the group 
based on the topic partitions available, and it will 
actively manage the group should members sub-
sequently leave or join (e.g., in case one consumer 
instance crashed).

This means that multiple services can use the 
same data, without any interdependency between 
them. The same data can also be routed to data-
stores elsewhere using the Kafka Connect API 
which is discussed below.

The Producer and Consumer APIs are available in 
libraries for Java, C/C++, Go, Python, Node.js, and 
many more. But what if your application wants to 
use HTTP instead of the native Kafka protocol? For 
this, there is a REST Proxy.

Using a REST API with Apache Kafka
Let’s say we’re writing an application for a de-
vice for a smart car park. A payload for the event 
recording the fact that a car has just occupied a 
space might look like this:

{
    “name”: “NCP Sheffield”,
    “space”: “A42”,
    “occupied”: true
}

We could put this event on a Kafka topic, which 
would also record the time of the event as part of 
the event’s metadata. Producing data to Kafka us-
ing the Confluent REST Proxy is a straightforward 
REST call:

curl -X POST \
     -H “Content-Type: application/vnd.
kafka.json.v2+json” \
     -H “Accept: application/vnd.kafka.
v2+json” \
     --data ‘{“records”:[{“value”:{ “name”: 
“NCP Sheffield”, “space”: “A42”, “occupied”: 
true }}]}’ \
     “http://localhost:8082/topics/carpark”

Any application can consume from this topic, using 
the native Consumer API that we saw above, or by 
using a REST call. Just like with the native Con-
sumer API, consumers using the REST API are also 
members of a Consumer Group, which is termed a 
subscription. Thus with the REST API you have to 
declare both your consumer and subscription first:

curl -X POST -H “Content-Type: application/
vnd.kafka.v2+json” \
      --data ‘{“name”: “rmoff_consumer”, 
“format”: “json”, “auto.offset.reset”: 
“earliest”}’ \
      http://localhost:8082/consumers/rmoff_
consumer

curl -X POST -H “Content-Type: 
application/vnd.kafka.v2+json” --data 
‘{“topics”:[“carpark”]}’ \
 http://localhost:8082/consumers/
rmoff_consumer/instances/rmoff_consumer/
subscription

Having done this you can then read the events:

curl -X GET -H “Accept: application/vnd.
kafka.json.v2+json” \
      http://localhost:8082/consumers/rmoff_
consumer/instances/rmoff_consumer/records
[
    {
        “topic”: “carpark”,
        “key”: null,
        “value”: {
            “name”: “Sheffield NCP”,
            “space”: “A42”,
            “occupied”: true
        },
        “partition”: 0,
        “offset”: 0
    }
]

If there are multiple events to receive, then you’ll 
get them within a batch per call, and if your client 
wants to check for new events, they will need to 
make the REST call again.

We’ve seen how we can get data in and out of Kaf-
ka topics. But a lot of the time we want to do more 
than just straight-forward pub/sub. We want to 



The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

38

take a stream of events and look at the bigger pic-
ture—of all the cars coming and going, how many 
spaces are there free right now? Or perhaps we’d 
like to be able to subscribe to a stream of updates 
for a particular car park only?

Conditional Notifications, Stream Processing, and 
Materialised Views
To think of Apache Kafka as pub/sub alone is to 
think of an iPhone as just a device for making and 
receiving phone calls. I mean, it’s not wrong to de-
scribe that as one of its capabilities…but it does so 
much more than just that. Apache Kafka includes 
stream processing capabilities through the Kaf-
ka Streams API. This is a feature-rich Java client 
library for doing stateful stream processing on data 
in Kafka at scale and across multiple machines. 
Widely used at companies such as Walmart, Ticket-
master, and Bloomberg, Kafka Streams also pro-
vides the foundations for ksqlDB.

ksqlDB is an event streaming database pur-
pose-built for stream processing applications. It 
provides a SQL-based API for querying and pro-
cessing data in Kafka. ksqlDB’s many features 
include filtering, transforming, and joining data 
from streams and tables in real-time, creating ma-
terialised views by aggregating events, and much 
more.

To work with the data in ksqlDB we first need to 
declare a schema:

CREATE STREAM CARPARK_EVENTS (NAME     
VARCHAR,
                              SPACE    
VARCHAR,
                              OCCUPIED 
BOOLEAN)
                        WITH (KAFKA_
TOPIC=’carpark’,
                              VALUE_
FORMAT=’JSON’);

ksqlDB is deployed as a clustered application, and 
this initial declaration work can be done at startup, 

or directly by the client, as required. With this done, 
any client can now subscribe to a stream of chang-
es from the original topic but with a filter applied. 
For example, to get a notification when a space is 
released at a particular car park they could run:

SELECT TIMESTAMPTOSTRING(ROWTIME,’yyyy-MM-
dd HH:mm:ss’) AS EVENT_TS,
       SPACE
  FROM CARPARK_EVENTS
 WHERE NAME=’Sheffield NCP’
   AND OCCUPIED=false
  EMIT CHANGES;

Unlike the SQL queries that you may be used to, 
this query is a continuous query (denoted by the 
EMIT CHANGES clause). Continuous queries, known 
as push queries, will continue to return any new 
matches to the predicate as the events occur, now 
and in the future, until they are terminated. ksqlDB 
also supports pull queries (which we explore be-
low), and these behave just like a query against a 
regular RDBMS, returning values for a lookup at a 
point in time. ksqlDB thus supports both the worlds 
of streaming and static state, which in practice 
most applications will also need to do based on the 
actions being performed.

ksqlDB includes a comprehensive REST API, the 
call against which for the above SQL would look 
like this using curl:

curl --http2 ‘http://localhost:8088/query-
stream’ \
     --data-raw ‘{“sql”:”SELECT TIMESTAMPTO
STRING(ROWTIME,’\’’yyyy-MM-dd HH:mm:ss’\’’) 
AS EVENT_TS, SPACE FROM CARPARK_EVENTS 
WHERE NAME=’\’’Sheffield NCP’\’’ and 
OCCUPIED=false EMIT CHANGES;”}’

This call results in a streaming response from the 
server, with a header and then when any matching 
events from the source topic are received these are 
sent to the client:

http://ksqldb.io/


39

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

{“queryId”:”383894a7-05ee-4ec8-bb3b-c5ad39811539”,”columnNames”:[“EVENT_
TS”,”SPACE”],”columnTypes”:[“STRING”,”STRING”]}
…
[“2020-08-05 16:02:33”,”A42”]
…
…
…
[“2020-08-05 16:07:31”,”D72”]
…

We can use ksqlDB to define and populate new streams of data too. By prepending a SELECT statement 
with CREATE STREAM streamname AS we can route the output of the continuous query to a Kafka topic. 
Thus we can use ksqlDB to perform transformations, joins, filtering, and more on the events that we send 
to Kafka. ksqlDB supports the concept of a table as a first-class object type, and we could use this to 
enrich the car park events that we’re receiving with information about the car park itself:

CREATE STREAM CARPARKS AS
    SELECT E.NAME AS NAME, E.SPACE,
           R.LOCATION, R.CAPACITY,
           E.OCCUPIED,
           CASE
               WHEN OCCUPIED=TRUE THEN 1
               ELSE -1
           END AS OCCUPIED_IND
    FROM   CARPARK_EVENTS E
           INNER JOIN
           CARPARK_REFERENCE R
           ON E.NAME = R.NAME;

You’ll notice we’ve also used a CASE statement to apply logic to the data enabling us to create a running 
count of available spaces. The above CREATE STREAM populates a Kafka topic that looks like this:

+----------------+-------+----------+----------------------------+----------+------------
--+
|NAME            |SPACE  |OCCUPIED  |LOCATION                    |CAPACITY  |OCCUPIED_IND  
|
+----------------+-------+----------+----------------------------+----------+------------
--+
|Sheffield NCP     |E48    |true      |{LAT=53.4265964, LON=-1.8426|1000      |1             
|
|                |       |          |386}                        |          |              
|

Finally, let’s see how we can create a stateful aggregation in ksqlDB and query it from a client. To create 
the materialised view, you run SQL that includes aggregate functions:

CREATE TABLE CARPARK_SPACES AS
    SELECT NAME,
           SUM(OCCUPIED_IND) AS OCCUPIED_SPACES
        FROM CARPARKS
        GROUP BY NAME;



The InfoQ
 eM

ag / Issue #86 / O
ctober 2020

40

This state is maintained across the distributed ksqlDB nodes and can be queried directly using the REST 
API:

curl --http2 ‘http://localhost:8088/query-stream’ \
     --data-raw ‘{“sql”:”SELECT OCCUPIED_SPACES FROM CARPARK_SPACES WHERE 
NAME=’\’’Birmingham NCP’\’’;”}’

Unlike the streaming response that we saw above, queries against the state (known as “pull queries”, as 
opposed to “push queries”) return immediately and then exit:

{“queryId”:null,”columnNames”:[“OCCUPIED_SPACES”],”columnTypes”:[“INTEGER”]}
[30]

If the application wants to get the latest figure, they can reissue the query, and the value may or may not 
have changed

curl --http2 ‘http://localhost:8088/query-stream’ \
     --data-raw ‘{“sql”:”SELECT OCCUPIED_SPACES FROM CARPARK_SPACES WHERE 
NAME=’\’’Birmingham NCP’\’’;”}’
{“queryId”:null,”columnNames”:[“OCCUPIED_SPACES”],”columnTypes”:[“INTEGER”]}
[29]

There is also a Java client for ksqlDB, and community-authored Python and Go clients.

Integration with other systems
One of the benefits of using Apache Kafka as a highly-scalable and persistent broker for your asynchro-
nous messaging is that the same data you exchange between your applications can also drive stream 
processing (as we saw above) and also be fed directly into dependent systems.

Continuing from the example of an application that sends an event every time a car parks or leaves a 
space, it’s likely that we’ll want to use this information elsewhere, such as:

• analytics to look at parking behaviours and trends

• machine learning to predict capacity requirements

• data feeds to third-party vendors

Using Apache Kafka’s Connect API you can define streaming integrations with systems both in and out of 
Kafka. For example, to stream the data from Kafka to S3 in real-time you could run:

curl -i -X PUT -H “Accept:application/json” \
    -H  “Content-Type:application/json” http://localhost:8083/connectors/sink-s3/config \
    -d ‘ {
        “connector.class”: “io.confluent.connect.s3.S3SinkConnector”,
        “topics”: “carpark”,
        “s3.bucket.name”: “rmoff-carparks”,
        “s3.region”: “us-west-2”,
        “flush.size”: “1024”,
        “storage.class”: “io.confluent.connect.s3.storage.S3Storage”,
        “format.class”: “io.confluent.connect.s3.format.json.JsonFormat”

https://docs.ksqldb.io/en/latest/developer-guide/ksqldb-clients/java-client/
https://pypi.org/project/ksql/
https://github.com/rmoff/ksqldb-go


41

The InfoQ
 eM

ag / Issue #86 / O
ctober  2020

        }’

Now the same data that is driving the notifications 
to your application, and building the state that 
your application can query directly, is also stream-
ing to S3. Each use is decoupled from the other. 
If we subsequently want to stream the same data 
to another target such as Snowflake, we just add 
another Kafka Connect configuration; the other 
consumers are entirely unaffected. Kafka Connect 
can also stream data into Kafka. For example, the 
CARPARK_REFERENCE table that we use in ksqlDB 
above could be streamed using change data cap-
ture (CDC) from a database that acts as the system 
of record for this data.

Conclusion
Apache Kafka offers a scalable event streaming 
platform with which you can build applications 
around the powerful concept of events. By using 
events as the basis for connecting your applica-
tions and services, you benefit in many ways, in-

cluding loose coupling, service autonomy, elasticity, 
flexible evolvability, and resilience.

You can use the APIs of Kafka and its surrounding 
ecosystem, including ksqlDB, for both subscrip-
tion-based consumption as well as key/value look-
ups against materialised views, without the need 
for additional data stores. The APIs are available as 
native clients as well as over REST.

To learn more about Apache Kafka visit developer.
confluent.io. Confluent Platform is a distribution 
of Apache Kafka that includes all the components 
discussed in this article. It’s available on-premises 
or as a managed service called Confluent Cloud. 
You can find the code samples for this article and a 
Docker Compose to run it yourself on GitHub. If you 
would like to learn more about building event-driv-
en systems around Kafka, then be sure to read Ben 
Stopford’s excellent book Designing Event-Driven 
Systems.

https://developer.confluent.io/
https://developer.confluent.io/
https://www.confluent.io/download/?utm_source=infoq&utm_medium=rmoff&utm_campaign=ty.community.con.realtimeapis&utm_term=rmoff-devx
https://confluent.cloud/signup?utm_source=infoq&utm_medium=rmoff&utm_campaign=ty.community.con.realtimeapis&utm_term=rmoff-devx
https://github.com/confluentinc/infoq-realtimeapis
https://www.confluent.io/designing-event-driven-systems/
https://www.confluent.io/designing-event-driven-systems/
https://infoq.link/NGINX-eMag-banner


InfoQInfoQ@ InfoQInfoQ

Curious about 
previous issues?

12 Microservices 
Testing Techniques

Tyler Treat on 
Microservice 
Observability

Obscuring 
Complexity

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

The InfoQ eMag / Issue #81 / January 2020

Microservices:  
Testing, Observing,  
and Understanding

Service 
Mesh 
Features

Service Mesh 
Implementations 
and Products

Exploring the 
(Possible) Future of 
Service Meshes

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

The InfoQ eMag / Issue #83 / March 2020

Service Mesh 
Ultimate Guide

An Engineer’s 
Guide to a Good 
Night’s Sleep

Sustainable Operations 
in Complex Systems with 
Production Excellence

Testing in 
Production—Quality 
Software, Faster

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

The InfoQ eMag / Issue #77 / October 2019

Taming Complex 
Systems in Production

@
em

ilyw
ithcurls

This eMag takes a deep 
dive into the techniques and 
culture changes required 
to successfully test, 
observe, and understand 
microservices.

This eMag aims to answer 
pertinent questions for 
software architects and 
technical leaders, such as: 
what is a service mesh?, 
do I need a service mesh?, 
and how do I evaluate the 
different service mesh 
offerings?

To tame complexity and its 
effects, organizations need 
a structured, multi-pronged, 
human-focused approach, 
that: makes operations 
work sustainable, centers 
decisions around customer 
experience, uses continuous 
testing, and includes chaos 
engineering and system 
observability.  In this 
eMag, we cover all of these 
topics to help you tame the 
complexity in your system.

https://www.youtube.com/user/MarakanaTechTV
https://www.linkedin.com/company/infoq/
http://twitter.com/infoq
https://www.facebook.com/InfoQ-75911537320
https://www.infoq.com/minibooks/understanding-microservices/
https://www.infoq.com/minibooks/service-mesh-guide/
https://www.infoq.com/minibooks/taming-complex-systems/
https://www.infoq.com/minibooks/service-mesh-guide/
https://www.infoq.com/minibooks/infoq-software-trends-report-1/
https://www.infoq.com/minibooks/infoq-software-trends-report-1/

