
Derek DeJonghe
 & Arlan Nugara

Compliments of

 Application Delivery
& Load Balancing in
Microsoft Azure
Practical Solutions with NGINX
and Microsoft Azure

Cost
Savings

Over 80% cost savings
compared to hardware
application delivery
controllers and WAFs,
with all the perform-
ance and features
you expect.

Advanced
Security

NGINX App Protect offers
4x the performance and
10x the throughput as
open source alternatives
like ModSecurity, while
providing even more
comprehensive controls.

Enterprise
Ready

NGINX Plus and NGINX
App Protect deliver
enterprise requirements
for security, scalability,
and resiliency while
integrating with DevOps
and CI/CD environments.

Reduced
Complexity

The only all-in-one load
balancer, API gateway,
microservices proxy,
and web application
firewall helps reduce
infrastructure sprawl.

 Try NGINX Plus and
 NGINX App Protect Free

Get high-performance application delivery and security for
 microservices. NGINX Plus is a software load balancer,
API gateway, and microservices proxy. NGINX App Protect
 is a lightweight, fast web application firewall (WAF) built
on proven F5 technology and designed for modern apps
and DevOps environments.

Download at nginx.com/freetrial

https://nginx.com/freetrial

Derek DeJonghe and Arlan Nugara

Application Delivery and Load
Balancing in Microsoft Azure

Practical Solutions with NGINX
and Microsoft Azure

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11596-8

[LSI]

Application Delivery and Load Balancing in Microsoft Azure
by Derek DeJonghe and Arlan Nugara

Copyright © 2021 O’Reilly Media, Inc.. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Mary Preap
Development Editor: Gary O’Brien
Production Editor: Daniel Elfanbaum
Copyeditor: Arthur Johnson
Proofreader: Piper Editorial LLC

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2020: First Edition

Revision History for the First Edition
2020-12-04: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098115869 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Application Delivery and Load Balanc‐
ing in Microsoft Azure, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial inde‐
pendence.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098115869
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. ix

1. What Are Application Delivery and Load Balancing, and Why Are They Important?. . . . 1
Application Delivery Controllers 1

Hardware or Software 2
Structure and Function of ADCs 2
Load Balancers 3
The OSI Model and Load Balancing 3
Problems Load Balancers Solve 4
The Solutions Load Balancers Provide 5
Application Delivery and Load Balancing: A Solution Overview 6

Conclusion 8

2. Managed Load-Balancing Options in Azure. 9
Azure Native Load Balancing 9

Azure Load-Balancing Dimensions 10
Azure Load Balancer 11
Azure Application Gateway for Load Balancing 14
Azure Web Application Firewall (WAF) with ModSecurity 15
Azure Front Door 16
Azure Traffic Manager for Cloud-Based DNS Load Balancing 18

Priority Traffic Routing 18
Weighted Traffic Routing 19
Performance Traffic Routing 20
Geographic Traffic Routing 21

Designing Highly Available Systems 23
Conclusion 24

v

3. NGINX and NGINX Plus on Azure. 25
NGINX Versus NGINX Plus 25
Installing NGINX OSS and NGINX Plus 27

Installing via Azure Marketplace 28
Installing Manually on VMs 31
Installing NGINX OSS via Azure Resource Manager and PowerShell 32
Deploying Infrastructure for NGINX OSS via Terraform 36
Deploying NGINX OSS in Debian and Ubuntu Linux 39
Deploying NGINX OSS in CentOS and Red Hat Linux 41
Running Terraform 45
Installing NGINX Plus via Terraform 45
Running Terraform 53

Conclusion 53

4. NGINX and Microsoft Managed Options. 55
Comparing NGINX and Azure Load Balancer 56

Use Cases 57
Comparing NGINX and Azure Application Gateway Functionality 57
Comparing NGINX and Azure Web Application Firewall Capabilities 60

ModSecurity 61
NGINX App Protect 62
Highly Available Multiregion NGINX Plus with Traffic Manager 64
Conclusion 66

5. Azure Front Door with NGINX. 67
What Is the Azure Front Door Service? 67

Split TCP 67
Front Door Features 68
Front Door’s Place in the Stack 69

Benefits of Azure Front Door Service with NGINX 69
Integrating Azure Front Door Service with NGINX 70

Front Door Features 71
Routing Rules 71
Optimizing with NGINX 71

Conclusion 72

6. Monitoring NGINX in Microsoft Azure. 73
Azure Monitor 73

Additional Tools Available in Azure for Monitoring 74
Azure Security Center with NGINX 75

Azure Monitor with NGINX 75
Azure Governance and Policy Management for NGINX 75

vi | Table of Contents

Azure Sentinel 76
Sentinel Integration 76
Sentinel Monitoring 79
Sentinel Automation 79
Azure Governance and Policy Management 80

Conclusion 84

7. Security. 85
NGINX Management with NGINX Controller 86

NGINX Controller Application Delivery Module
with App Security Add-On 88

NGINX App Protect 89
NGINX ModSecurity WAF 89
Microsoft Azure Firewall Integration into a Load-Balancing Solution 90
NGINX Integration as an NVA Firewall 91
Conclusion 92

Index. 95

Table of Contents | vii

Preface

This book is intended for cloud solution architects and software architects looking to
distribute load across multiple servers, applications, or regions within Microsoft
Azure. Load balancing is used to improve performance and availability; however, the
layer that is used to perform the load balancing action has evolved to become much
more. This layer of a web application stack is known as the data plane, and it is used
to transmit requests and connections to an application. The data plane can be used to
validate, route, and manipulate inbound communication from clients to an applica‐
tion. By building up your control of this layer, you can optimize and facilitate your
exact use case.

Throughout this book you will learn how load balancing and the data plane can be
integral facets of your application delivery. We will discuss load balancing and appli‐
cation delivery in general before moving on to inform you about the available native
options within Azure and explaining the software-based data plane solution known
as NGINX (pronounced “engine-ex”), which can be used independently of your
infrastructure provider. We will then discuss integrating NGINX with Azure and how
native Azure services paired with NGINX can be complementary.

Once we have an understanding of the load-balancing data plane options available to
us, we’ll detail governance and monitoring of a given solution within Azure. Regard‐
ing this topic, we’ll introduce the NGINX platform solution for control and configu‐
ration known as NGINX Controller. Finally, we’ll wrap up with a section about
security and how we can enable our data plane to be an invaluable asset in security
and threat management.

While the examples and context will be specific to Microsoft Azure, the methodolo‐
gies and overarching concepts will hold true for any cloud or infrastructure provider.
It is our hope that those ideas impact you the most and enable you to design and
implement secure, highly scalable, and highly available solutions.

ix

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount

x | Preface

mailto:bookquestions@oreilly.com

of example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Application Delivery and
Load Balancing in Microsoft Azure by Derek DeJonghe and Arlan Nugara (O’Reilly).
Copyright 2021 O’Reilly Media, 978-1-098-11586-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/adlbma.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book. For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Preface | xi

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/adlbma
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank our technical reviewers Shahid Iqbal, Deepak Kaushik, Daniel
Patrick, and Ryan Tasson for their efforts and valuable feedback. Being able to bal‐
ance the work of authoring and producing this title has made possible its delivery to
you, our readers.

xii | Preface

CHAPTER 1

What Are Application Delivery and Load
Balancing, and Why Are They Important?

When anyone uses an application, they expect it to respond quickly, efficiently, and
reliably. When a user encounters errors, outages, or overcapacity messages, they gen‐
erally don’t wonder why. They get annoyed, quit using the application, and ultimately
complain about the application’s owner on social media. It doesn’t matter that the
company was having a great day, and that requests to their servers went through the
roof. What matters is that the user’s request resulted in a failure of the application
and, in the user’s eyes, the company providing the application.

As more companies move their applications and services to the cloud, responding to
variable demands and workloads has become increasingly important. In this chapter,
we’ll introduce the concepts behind application delivery and load balancing by
explaining the purpose of application delivery controllers and load balancers and the
problems they solve. Subsequent chapters will explore how you can use Microsoft
Azure and NGINX for high-performance application delivery and load balancing.

Application Delivery Controllers
Put simply, application delivery is a process that ensures that an application is deliv‐
ered properly and efficiently to its clients, no matter the load or the behind-the-
scenes process and availability. Servers can fail for any number of reasons, from
demand capacity to security breaches or a simple mechanical failure. When that
server is solely responsible for delivery of an application that customers or employees
are relying on, then the application also fails. Organizations need ways to be adapta‐
ble and provide optimal performance and availability in any given situation.

1

At the heart of modern web application delivery is a data plane, which makes possible
the application’s delivery to the client. Modern data planes are typically made up of
reverse proxies working together to provide an optimal experience to the user. An
advanced proxy with routing, authentication, and security controls is often referred
to as an application delivery controller (ADC). ADCs help ensure maximum perfor‐
mance and capacity by sitting between the user and the application servers, directing
valid requests only to servers that are currently online. Thus, an ADC offers a layer of
control between the user experience and the application.

Hardware or Software
All ADCs are essentially software solutions that receive a network transmission and
elevate it to the application layer for full control. On-premises hardware/software
bundled black-box options are available for purchase from vendors. However, the
hardware is not the special sauce; it’s the software the machine runs that provides you
the control over your application’s delivery. In today’s world, disruptors are those who
are able to move quickly and adapt to changes in technology, which leaves no room
for lengthy hardware procurement and installation processes.

If an ADC vendor does not have a virtual appliance or software solution available,
then you need to reconsider your vendor. Hardware optimization and acceleration
makes a minimal impact on business value compared to agility.

Structure and Function of ADCs
In general, an ADC accepts a request from a client and decides how best to serve that
specific request based on rules in its configuration. An ADC may receive a request,
validate its intended route and method, pass it through processing for security vul‐
nerabilities, validate its authentication and authorization, and manipulate headers or
the like before making a request on behalf of the client to an application server (one
that the ADC knows is responsive) to fulfill the request.

This process may happen at multiple layers within a web application’s stack. An ADC
that is positioned in close proximity to a client may proxy the request to an ADC that
is in closer proximity to the application servers. Both ADCs enable control of how
your application is delivered to the client, at different levels, to provide you maximum
configurability.

An ADC may be in place for a specific application or accept requests for a number of
purposes to solve the needs of your use case. At their core, ADCs are proxies config‐
ured as necessary to deliver your application.

2 | Chapter 1: What Are Application Delivery and Load Balancing, and Why Are They Important?

Load Balancers
Optimal load distribution reduces site inaccessibility caused by failure or stress of a
single server while assuring consistent performance for all users. Different routing
techniques and algorithms ensure optimal performance in varying load-balancing
scenarios.

Modern websites must support concurrent connections from clients requesting text,
images, video, or application data, all in a fast and reliable manner, while scaling from
hundreds of users to millions of users during peak times. Load balancers are a critical
part of this scalability.

Load balancers, introduced in the 1990s as hardware-based servers or appliances,
have evolved considerably. Managed cloud load balancing is an updated alternative to
hardware load balancers; they provide a configuration interface, but you don’t have to
manage hardware, software, updates, or anything but the configuration. Regardless of
the implementation of a load balancer, scalability is still the primary goal of load bal‐
ancing, even though modern load balancers can do so much more. Figure 1-1 shows
a basic load-balancing solution. The client in any of these scenarios might be an end
user’s browser, a mobile application, or another web service.

Figure 1-1. Diagram of a basic load-balancing solution.

An ADC will perform load balancing when multiple possible responders are config‐
ured for a given request. Many ADCs will enable configuration of the algorithm that
it uses to select which responder it proxies a given request to, which in turn is how it
balances load.

The OSI Model and Load Balancing
Before we discuss load balancing, especially in the cloud, in any more detail, it’s
important to review the Open System Interconnection (OSI) model. This conceptual
model provides a visual representation of the interoperation between systems that is

Application Delivery Controllers | 3

universally applicable no matter what hardware or network characteristics are
involved. The OSI model performs no functions in the networking process. It is a
conceptual framework to help understand complex interactions. The model defines a
networking framework that implements seven layers:

• Layer 7: Application layer
• Layer 6: Presentation layer
• Layer 5: Session layer
• Layer 4: Transport layer
• Layer 3: Network layer
• Layer 2: Data-link layer
• Layer 1: Physical layer

Network firewalls are security devices that operate from Layer 1 to Layer 3, whereas
load balancing happens at Layer 4 and Layer 7. Load balancers have different capabil‐
ities, including the following:

Layer 4 (L4)
Directs traffic based on data from network and transport layer protocols, such as
IP address and TCP port.

Layer 7 (L7)
Adds context switching to load balancing, allowing routing decisions based on
attributes like HTTP header, URL, Secure Sockets Layer (SSL) session ID, and
HTML form data.

Global Server Load Balancing (GSLB)
Extends L4 and L7 capabilities to servers in different geographic locations. The
Domain Name System (DNS) is also used in certain solutions, and this topic
is addressedm when Azure Traffic Manager is used as an example of such an
implementation.

Demand for more control over the configurability of load balancers and the data
plane in general is increasing dramatically as the capabilities become more apparent
to more organizations. This demand drives innovation in technology, which has
given birth to the world of ADCs.

Problems Load Balancers Solve
Load balancing solves for capacity and availability but also gives way for scalability.
These concepts hold true at local and global levels. By balancing load at different lay‐
ers, we’re able to direct client requests across multiple application servers, between

4 | Chapter 1: What Are Application Delivery and Load Balancing, and Why Are They Important?

multiple data centers, and over groups of data centers in different regions of the
world.

Imagine—or maybe you don’t have to—that your application needs to be performant
to users worldwide, which means that it needs to be hosted in multiple geographically
separated locations. You use global load balancing to direct a client request to the
least latent physical entity representing your application. For availability’s sake, that
geographical location is made up of multiple data centers. You use load balancing to
distribute loads between those data centers. For capacity’s sake, you have multiple
servers within a data center that are able to respond to a given request; if the load for
a data center within the geographical location is too much for a single server to han‐
dle, you’d then load balance over those different servers.

In this scenario, we have three layers of load balancers to deliver a single globally scal‐
able application. When a server is at peak capacity within a data center, there’s
another server to help out. If a data center is at peak capacity or in failure, you have
another data center to handle the load. In the case of an entire geographical location
being out of service or at peak capacity, the load balancer makes the decision to route
the request to another location. No matter the level your application is struggling at,
your client’s request will still be fulfilled.

The Solutions Load Balancers Provide
The number of layers of load balancing depends on the needs of your application.
How a load balancer determines where to direct a request is based on its own algo‐
rithm. The algorithms provided by a load balancer depend on the solution; however,
most have a common set to fit your application and client needs:

Round robin
The default load-balancing solution, in which requests are distributed through
the list of servers sequentially.

Weighted round robin
Round robin for situations in which the capacities of the servers vary. The servers
with the higher weight are favored and receive a greater share of the traffic.

Weighted least connections
Similar to round robin, weighted least connections gives a weighted status to
each server; the load balancer routes traffic based on the least number of open
connections.

Hashing
An algorithm generates a hash key from the header or other information to
direct traffic to a specific server.

Application Delivery Controllers | 5

Other than load distribution, a load balancer can enforce session persistence, also
referred to as a sticky session. This involves directing incoming client requests to the
same backend server for the duration of a client session. This is a solution to a prob‐
lem that load balancing presents. A backend server may store data locally for a num‐
ber of reasons—if, for example, the data set is too large to work with over the network
in a timely fashion. In this event, the client will want subsequent requests to be direc‐
ted to the same backend server—hence session persistence. If a client request is direc‐
ted to a server that does not have access to the session state data, the client may be
logged out or see inconsistent results between requests.

A key feature of load balancers is to monitor the health of a server and to ensure that
client requests are not directed to a backend server that is unavailable or unhealthy. A
load balancer will either actively or passively monitor its backend servers and can
mark them as unhealthy under certain conditions.

Application Delivery and Load Balancing: A Solution Overview
Load balancing and application delivery are interrelated solutions. To understand
their relationship and how load balancing is key to application delivery, let’s quickly
review the delivery process without an ADC or load balancing:

1. An end user/client makes a request to connect with an application on a server.
The request is routed over the internet to the application server.

2. The server accepts the connection and responds.
3. The user/client receives the response to their request.

Figure 1-2 illustrates this process. From the user/client perspective, this was a direct
connection. The user asked the application to do something, and it responded.

In an application delivery environment, an ADC sits somewhere between the user/
client and the virtual application servers where the requested service resides. The
delivery process would look something like the following:

1. An end user/client makes a request to connect with an application on a server.
The request is routed over the internet to the ADC.

2. The ADC decides to accept the connection and then matches the request with
the appropriate destination.

3. The ADC makes a request to the designated application server.
4. The application server responds to the ADC.
5. The user/client receives the response to their request.

6 | Chapter 1: What Are Application Delivery and Load Balancing, and Why Are They Important?

Figure 1-2. Diagram of basic application delivery transaction solution.

Figure 1-3 shows the application delivery process with an ADC. From the user/client
perspective, this was a direct connection. They would have no indication that any
action took place between them and the application. During the transaction, the ADC
determines the appropriate application endpoint to respond to the client’s request.
The diagram depicts the request being directed to Application A.

Figure 1-3. Diagram of application delivery with a load-balancing ADC.

In general, an ADC sits between a client and a server. It does not matter whether the
client is a user, a web application/service, or another ADC. In the eyes of an ADC, the
connection being received is a client of the ADC, and its job is to handle each request
according to its configuration.

In regard to redundancy and scale, an ADC is able to balance load over sets of virtual
servers that are grouped by application. By combining the routing and control func‐
tionality of an ADC with load balancing, we are able to reduce the number of hops
a request must take through different layers and services, which in turn optimizes
network performance while optimizing availability, reliability, and application
responsiveness.

Application Delivery Controllers | 7

Conclusion
While basic load balancing is still widely used, many web application teams are start‐
ing to see their load balancing layer as the prime point at which to add more func‐
tionality. Such functionality includes Layer 7 request routing, request and
authorization validation, as well as other features that will be covered in this book.
The heart of application delivery is the ADC, an advanced load balancer that receives
requests and directs them to servers to optimize performance and capacity, just as the
heart delivers blood to the body’s organs. Without load balancing, most modern
applications would fail. It’s not enough to simply make an application reachable; it
also must be dependable, functional, and, most importantly, always available.

As companies move applications from on-premises to the cloud, software architects
and cloud solution architects are looking at options to improve application delivery,
load balancing, performance, security, and high availability for workloads. This book
will provide a meaningful description of application delivery and load-balancing
options available natively from Microsoft Azure and of the role NGINX can provide
in a comprehensive solution.

In Chapter 2, we’ll explore the managed solutions that are available in Azure, includ‐
ing its native load balancers, application gateway, web application firewalls, and
Azure Front Door.

8 | Chapter 1: What Are Application Delivery and Load Balancing, and Why Are They Important?

CHAPTER 2

Managed Load-Balancing Options in Azure

Microsoft Azure, like other cloud service providers, offers the ability to instantly pro‐
vision computing resources on demand. This includes support for fully managed
Azure services such as load balancers, as well as support for third-party network vir‐
tual appliance load balancers such as NGINX. There are four native managed load-
balancing services in Azure to ensure always-available applications both on the public
internet and on private or virtual networks. This chapter will explore the features and
capabilities of these four services to show how to improve load balancing, perfor‐
mance, security, and high availability for workloads on Azure. Each solution has its
own pricing model; for the most part, the pricing calculation is based on request
count and amount of data processed, although Azure Application Gateway does have
a base cost associated with its usage per hour.

Azure Native Load Balancing
The Azure managed services that provide load balancing functionality enable load
balancing in different ways and at different layers of the stack. These services comple‐
ment one another and can be layered to provide the intended type of service.

• Azure Load Balancer is a Layer 4 (transport layer) service that handles UDP and
TCP protocols.

• Azure Application Gateway is a Layer 7 HTTP load balancer with an application
delivery controller and SSL/TLS termination offload capabilities.

• Azure Traffic Manager provides DNS-based, domain-level load balancing.
• Azure Front Door is a full Layer 7 application delivery network with extensive

features, positioned to optimize for network latency and proximity.

9

We’ll review each service to understand when to use it effectively. First though, it’s
important to understand Azure’s load-balancing dimensions.

Azure Load-Balancing Dimensions
Azure breaks out its load-balancing services along two dimensions: global or
regional, and HTTP(S) or non-HTTP(S). Each of these dimensions, or any combina‐
tion thereof, offers different solutions based on business needs. Table 2-1 shows
where each Azure Load Balancer falls among the dimensions.

Table 2-1. Azure load balancers by dimension

Load balancing service Global or regional Traffic type OSI layer
Azure Load Balancer Regional Non-HTTP(S) Layer 4
Azure Application Gateway Regional HTTP(S) Layer 7
Azure Front Door Global HTTP(S) Layer 7
Azure Traffic Manager Global Non-HTTP(S) Layer 7

Global versus regional load balancing
A global load balancer efficiently distributes traffic across distributed server clusters,
including localized or regional backends, multiple data centers, public or private
clouds, and hybrid/on-premises, no matter their location globally. Traffic is first
routed to the closest available location to reduce latency and increase performance
and availability. If the closest available location is unavailable or unreliable, the load
balancer will move to the next closest one, and so on. Globalized load balancing also
allows for serving localized content based on the request’s originating IP address, to
meet GDPR (General Data Protection Regulation) compliance, for example.

Regional load balancing distributes traffic across virtual machines in a virtual net‐
work or when all your servers are in a single region.

HTTP(S) versus Non-HTTP(S)
These terms for describing the traffic type, HTTP(S) and non-HTTP(S), are used by
Azure. HTTP(S) load-balancing services operate on Layer 7, the application layer,
and only accept HTTP(S) traffic for web applications or other HTTP(S) destinations.
They include features such as SSL offload, web application firewalls, and path-based
and domain (host header)-based routing. Non-HTTP(S) load-balancing services have
a broader scope than HTTP(S) services, as they operate lower in the OSI model, sup‐
porting TCP and UDP.

Now that we understand Azure’s approach to load balancing, we’ll walk through the
purpose, use, and features of all four load-balancing services.

10 | Chapter 2: Managed Load-Balancing Options in Azure

Load Balancer decision diagram
Figure 2-1 is a diagram to help explain which combination of Azure managed offer‐
ings is useful for a given scenario. For example, assume you have a public-facing
HTTP(S) application that is deployed to multiple Azure regions and that follows a
microservice architecture. You would follow the diagram, answering the first ques‐
tion—yes, the application is HTTP(S)—and then the next question—yes, the applica‐
tion is internet facing. With a microservice architecture, it’s likely that you may need
application-layer processing, or routing. In this scenario, you would follow the dia‐
gram to the Azure Front Door + Application Gateway solution.

Azure Load Balancer
A load balancer resource can be either a public load balancer (also called an external
load balancer) or a private load balancer (also called an internal load balancer) within
the context of the virtual network. Azure Load Balancer has an inbound and an out‐
bound feature set. The Load Balancer resource functionality is expressed in several
concepts: a frontend, a rule, a health probe, and a backend pool definition. Azure
Load Balancer maps new flows to healthy backend instances.

Azure Load Balancer operates on Layer 4 and is available in two versions. The Stan‐
dard load balancer enables you to scale your applications and create high availability
for small-scale deployments to large and complex multizone architectures, allowing
for up to 1,000 backend virtual machines. The Basic load balancer does not support
HTTPS health probes, is limited to a maximum of 300 backend virtual machines, and
is not suitable for production workloads. The Basic-tier load balancer is free to use,
whereas the Standard tier has a pricing model associated with it. You might use a
Basic-tier load balancer for basic load balancing needs in development environments,
where the backend pool is small and you’re not concerned about active HTTPS health
checks. The Standard tier includes an SLA, multidimensional metrics, and more
advanced configuration to frontends and rules.

As Azure Load Balancer is a Layer 4 device, the connection between a client and a
backend server is a direct connection. In the configuration of a public Load Balancer
in front of private VMs, the backend VM sees a connection coming from a public IP
address to its private IP and the Load Balancer is acting as an inbound Network
Address Translation (NAT) device that has load-balancing capabilities. The frontend
IP address, together with the port number of incoming traffic, is mapped by the Load
Balancer to a backend pool. The backend pool may consist of a number of direct VM
IP addresses or a scale set, along with a corresponding destination port. By applying
load-balancing rules, you can distribute specific types of traffic across multiple VMs
or services. For example, you can use an Azure Load Balancer to handle traffic for
multiple types of connections for different application types to distribute load among
horizontally scaled machines with a single load balancer.

Azure Load Balancer | 11

Figure 2-1. Flowchart to help determine which Azure native load-balancing service or
combination of services may be best for your use case.

12 | Chapter 2: Managed Load-Balancing Options in Azure

In the scenario in which a backend service needs to connect outbound, its connec‐
tions are routed through the Load Balancer’s public frontend IP address. This func‐
tionality is called Source Network Address Translation, or SNAT. In a way, it’s a
reverse load balancer: connections from multiple machines are coming from the
same public IP. This is called masquerading, where the machine in the middle hides
the real client IP from the destination of the connection. Masquerading is not done
on inbound connections, which is why the backend VM sees the connection directly
from the client. If a backend VM needs to provide a return port to the client to recon‐
nect, Azure Load Balancers can be configured to enable port access translation (PAT)
and allocate ephemeral ports to each backend VM in a pool that will direct the client
directly to a specific backend VM.

A few example scenarios of Azure Load Balancer usage:

Non-HTTP(S) load balancing
Load balancing of any protocols built on top of TCP/UDP, including but not
limited to HTTP(S).

Public-facing load balancer
Horizontally scaled or HA private application servers hosted in a virtual network
need to have incoming loads from the internet distributed between them.

Private load balancer
Provides a single private endpoint to load balance over an HA service or one that
is scaled horizontally.

Outbound connections
When an HA or horizontally scaled application needs to initiate connections out‐
bound while maintaining a single ingress and egress point.

Figure 2-2 depicts the public-facing Load Balancer scenario, in which an Azure Load
Balancer is distributing load for an Azure VM Scale Set that consists of multiple VMs.

Figure 2-2. Visual of code build of solution using Azure Load Balancer.

Azure Load Balancer | 13

Azure Application Gateway for Load Balancing
Azure Application Gateway is a Layer 7 request router. Azure Application Gateway is
a proxy: it receives the request from the client and makes a request to the backend
service on the client’s behalf. Unlike the Azure Load Balancer, there are two connec‐
tions in this scenario. One connection is between the client and Azure Application
Gateway, and the other is between Azure Application Gateway and the backend. By
receiving the request from the client, decrypting it in the case of HTTPS, and under‐
standing the HTTP protocol, the Azure Application Gateway can inspect the request
and then block, redirect, and route accordingly.

Routing rules are applied that can direct the request to different backend pools based
on HTTP information such as URI. This is perfect for the microservice architecture,
as it enables you to have one endpoint listening for requests, matching a route prefix,
and directing the request to the correct microservice. The backend pool can consist
of IP addresses, fully qualified domain names (FQDNs), VMs, Scale Sets, and addi‐
tional App Services. When multiple entities exist within a single pool, they’re load
balanced with a round-robin algorithm. Only entities considered healthy will be sent
requests.

The health of a backend is checked through the use of a health probe. A health probe
is a configuration that tells Azure Application Gateway to periodically make a specific
request to all entities in a backend pool wand to expect a specific response code and
optionally a response body match in return. If an entity in a backend pool fails its
health probe, Azure Application Gateway will no longer send it client requests but
will continue to monitor it with a health probe.

Session affinity can be configured for Azure Application Gateway. Session affinity will
cause Azure Application Gateway to generate a cookie for the client that will instruct
Azure Application Gateway to direct subsequent requests from this client to a specific
entity within a backend pool. This affinity happens at the pool layer, so that if a
request from the same client routes to a different backend pool, the client would
receive another cookie, binding them to a separate backend entity in the pool the
request is served from.

Rules are mapped to listeners, which receive incoming requests. Listeners can be
mapped by IP or hostname. Each listener can be attached to many rules, and those
rules map to backend pools. By using separate listeners, you can route the same URI
path for two different hostnames to two separate backend pools with one Azure
Application Gateway. It also means that you can use the same backend pool for differ‐
ent offerings listening on separate hostnames.

14 | Chapter 2: Managed Load-Balancing Options in Azure

Azure Application Gateway can also rewrite request URI and headers before per‐
forming the request to the backend services. This feature might be useful when the
frontend API routing relies on prefixes but the backend service doesn’t use the prefix
in its route, or when an application’s routes do not fit the overall scheme of the rest of
your API.

Azure Application Gateway provides the very valuable feature of Layer 7 request
routing through a scalable managed regional service. With a vast amount of configu‐
ration possibilities, Azure Application Gateway is meant to be the traffic cop that
stops and directs traffic between a client and your application.

Azure Web Application Firewall (WAF) with ModSecurity
One feature of Azure Application Gateway is the ability to apply Web Application
Firewall (WAF) policies, which provide your applications with protection from com‐
mon vulnerabilities and exploits like SQL injection or cross-site scripting (XSS)
attacks. A WAF policy requires at least one Azure managed rule set and optionally
can be configured with custom rules. Within a managed rule set, particular rules can
be turned on or off. WAF policies can be set to enforce and actively block violating
requests or to passively monitor and record security events. Individual custom rules
can be set to block or monitor as well.

Azure WAF policies utilize the open source, cross-platform WAF ModSecurity, which
uses the Core Rule Set of the Open Web Application Security Project (OWASP). The
OWASP rule set is community supported and regularly updated. You will see in the
WAF policies that there are multiple versions of the OWASP rule set.

Azure WAF policies do not expose the full functionality of ModSecurity but do allow
you to filter requests through rules to match variables from a request to policies to
block, flag, or deny requests. A Layer 7 router is the perfect point in the stack to block
malicious requests before they ever reach the application server. This protects your
resources and reduces stress on your business logic layer. Figure 2-3 depicts how
Azure routes a request through a WAF policy.

Azure Web Application Firewall (WAF) with ModSecurity | 15

https://oreil.ly/JoVPm

Figure 2-3. Azure Application Gateway processing a request through an Azure WAF
policy.

Azure Front Door
Azure Front Door provides the ability to configure, manage, and monitor global
routing for all your web traffic by optimizing performance and failover for high avail‐
ability at a global scale. Using something called split TCP anycast protocol, the service
ensures that your users always connect to the nearest Front Door point of presence
(POP). Split TCP works by breaking a connection with a high round trip into smaller
segments. Front Door environments are placed closer to end users, and the connec‐
tions are terminated inside the Front Door, which means a TCP connection with an
expensive round trip to a backend is split into two TCP connections. Anycast is a net‐
work addressing and routing methodology where a destination has multiple routing
paths to two or more endpoint destinations—the ideal approach is determined based
on the number of hops, distance, or network latency. Front Door leverages anycast
for DNS and HTTP traffic to ensure user traffic goes to the environment with the
fewest hops—the DNS layer being how a client selects a Front Door endpoint, and the
HTTP layer being how Front Door selects a backend to serve the request.

To do this, Front Door organizes environments into rings. The outer ring has envi‐
ronments that are closer to users, which means they offer lower latency, while the
inner ring can handle the failover of the outer ring environment if an issue were to
occur. This configuration ensures that end-user requests always reach the closest
Front Door environment but that traffic gets moved to a healthy environment if the

16 | Chapter 2: Managed Load-Balancing Options in Azure

outer ring environment fails. Figure 2-4 depicts Azure Front Door points of presence
organized into inner and outer rings.

Figure 2-4. Azure Front Door points of presence organized into rings: the client connects
to the closest healthy point of presence, which makes an optimized connection to the
application endpoint.

Front Door automatically triggers health probes to check on your backend services
for latency and availability—if a health probe detects that a backend is down, it will
quickly provide automatic failover. The load balancing performed by Front Door is
like a least latency algorithm. Front Door is useful when clients are spread out glob‐
ally because of its split TCP functionality; its load balancing is useful when you’re
running the same service in multiple regions. The failover capabilities allow for plan‐
ned maintenance without downtime by switching load to another installation of the
service. We’ll discuss further applications of Front Door and integration with NGINX
in Chapter 5.

Azure Front Door | 17

Azure Traffic Manager for Cloud-Based
DNS Load Balancing
Azure Traffic Manager is a DNS-based load manager that directs the request to the
proper endpoints based on method and endpoint health. Traffic Manager offers mul‐
tiple routing methods and endpoint monitoring tools suitable for a wide range of
application or failover needs. Table 2-2 shows what each method offers.

Table 2-2. Azure Traffic Manager routing methods

Method Description
Priority Uses a primary service endpoint for all traffic with a set of backups for failover
Weighted Distributes traffic across all endpoints based on configured weights
Performance For endpoints in different geographic locations, routes traffic to the endpoint closest to a user based on latency
Geographic Routes based on the geographic origin of the DNS query
Multivalue When selected, returns all healthy endpoints; used for profiles limited to IPv4/IPv6 addresses as endpoints
Subnet User IP address ranges mapped to a specific endpoint within a profile; endpoint returned is the one mapped to

source IP of the request

Endpoint health and automatic endpoint failover monitoring are included in all Traf‐
fic Manager profiles. Only one routing method can be used by a single profile, but the
method can be changed at any time without downtime. You can combine routing
profiles with nested Traffic Manager profiles.

Priority Traffic Routing
For a high-reliability service deployment, you should configure one or more services
as failover endpoints. That way, if your primary service goes down, traffic is routed to
the failover endpoints based on the priority set to each of the secondary (failover)
services.

In Figure 2-5, when “Primary Priority 1” fails, all traffic is automatically redirected to
“Failover A Priority 2.” The client’s browser makes a DNS request that is routed to
Traffic Manager, which evaluates priority and status. The highest priority endpoint
being degraded causes Traffic Manager to respond with the DNS response for Fail‐
over A, as it is online and of the next priority precedence. The client then makes a
request directly to the Failover A endpoint. Failover B is online but has less prece‐
dence than Failover A.

The priority can be any value between 1 and 1,000 with lower values representing
higher priorities. Remember that if you do not define a priority, a default priority will
be automatically assigned based on endpoint order.

18 | Chapter 2: Managed Load-Balancing Options in Azure

Figure 2-5. Priority Traffic Routing.

Weighted Traffic Routing
With this method, a weight is preassigned to each endpoint, and every incoming
request is routed based on these values. For example, if Endpoint 1 Weight = 30%,
Endpoint 2 Weight = 20%, and Endpoint 3 Weight = 50%, 30% of the traffic will be
routed to Endpoint 1, 20% will be routed to Endpoint 2, and, finally, half of all traffic
will be routed to Endpoint 3. If you assign an equal weight distribution, every end‐
point will receive the same amount of traffic.

Pilot scenarios for when you want to test a new deployment of your application
(including some new features or an upgrade, let’s say) frequently use this method. You
start by deploying the new feature or upgrade to one of your endpoints, assign it a
lower weight such as 10% or 20%, and monitor how it behaves from a systems and
user behavior standpoint. If everything is running smoothly, you can increase the
weight, and then, once it’s confirmed that the release is successful, deploy to all other
nodes. Intrinsically, deploying in this phased manner avoids Big Bang approaches
and diminishes the severity of any issues.

Figure 2-6 shows how weighted traffic routing can be used in a multiregion Azure
deployment when one of the regions is degraded. Region A and Region B have equal
weights, while Test A has a much lower weight. When the client’s DNS request is

Azure Traffic Manager for Cloud-Based DNS Load Balancing | 19

made, the request is directed to Traffic Manager, which will respond to the request
with respect to the defined weight ratio. As Region A is considered unhealthy, it’s
likely that the result of the DNS query will be Region B with respect to a 50/5 ratio.
The client’s connection will then be directed to the Region B endpoint.

Figure 2-6. Weighted traffic routing in a multiregion Azure deployment.

Performance Traffic Routing
The performance routing method is used when application responsiveness is a top
priority. With this method, you deploy endpoints in two or more locations, and traf‐
fic is routed to the closest location. “Closest” is not necessarily defined in terms of
distance but by measuring network latency. To determine which endpoint has the
lowest network latency, the Traffic Manager service maintains an Internet Latency
Table to track round-trip time between IP address ranges and each data center.

Figure 2-7 uses a diagram to visualize performance routing for a multiregion Azure
deployment, when the primary region is degraded. Traffic Manager keeps a lookup
table based on public IP ranges and the average round-trip latency of DNS requests
from those ranges. When the DNS request is made from the client and routed to
Traffic Manager, Traffic Manager looks up the client’s IP address and finds that
Endpoint 1 has the lowest average latency for clients in this IP range. Endpoint 1 is

20 | Chapter 2: Managed Load-Balancing Options in Azure

considered degraded, and therefore Traffic Manager responds to the DNS request
with values for Endpoint 2, because it is the least latent endpoint in service.

Remember, you can use a Nested Traffic Manager profile to define a different traffic
distribution within a region or to define a failover sequence for when all endpoints in
the closest region are degraded.

Figure 2-7. Performance routing in a multiregion Azure deployment.

Geographic Traffic Routing
Geographic traffic routing applies rules that map client IP addresses to geographical
regions. The routing is done by applying rules to match specific regions and sending
requests to the appropriate endpoint. This is helpful for keeping requests and data
within geographies, to comply with GDPR, for example.

The following are the types of rule matches that can be used:

• Any region
• Specific region: Africa, Middle East, Australia/Pacific
• Country/Region: Ireland, Peru
• State/Province: United States–Florida, Australia–Sydney, Canada–Toronto (this

granularity level is only supported for the US, Canada, and Australia)

Azure Traffic Manager for Cloud-Based DNS Load Balancing | 21

Figure 2-8 shows how Traffic Manager would route the client to a specific endpoint
based on user geography. When the client’s browser queries for DNS, Traffic Manager
will determine the user’s location based on the client’s IP address and match the end‐
point value returned based on rules applied. In this scenario, Traffic Manager
responds with Endpoint 1; however, if Endpoint 1 is degraded, Endpoint 2 would
act as a catchall. When Traffic Manager responds, the client connects directly to the
endpoint.

Figure 2-8. Traffic Manager is configured to map users geographic locations to specific
endpoints.

With geographic routing, if an endpoint is assigned a region or set of regions, that
endpoint will receive all requests coming from the region(s). Keep in mind that a
region can be mapped only to a single endpoint, and thus the Traffic Manager service
will return the endpoint regardless of endpoint health. You should always use this
method with Nested type endpoints that have child profiles of at least two endpoints
each; otherwise you can suffer downtime.

22 | Chapter 2: Managed Load-Balancing Options in Azure

Designing Highly Available Systems
When designing large-scale applications that are highly available, remember that you
will need to use several of these load-balancing components together. As an example,
Figure 2-9 shows a geographically distributed and load-balanced application.

Figure 2-9. A multiregion deployment of a web service in Azure uses Traffic Manager to
direct clients to a particular region based on the routing rules applied.

Here, Traffic Manager will route any incoming request to the appropriate region
based on performance. Once the request is received at the nearest data center, Azure
Application Gateway chooses which application server to fetch the response from.
The Application Gateway decrypts the HTTP request and uses the URI of the request
to route the request to a backend server pool. The request to the backend service may
be re-encrypted for transit. The backend service then makes a connection to a data‐
base tier through an Azure Load Balancer.

Designing Highly Available Systems | 23

Conclusion
In this chapter, we discussed the managed load-balancing options in Azure. There are
many available options that provide slightly different solutions at different layers.
These services complement one another, and are often layered to provide a more
comprehensive solution to fit your and your client’s needs.

Chapter 3 will dive into NGINX and NGINX Plus and how to deploy them in Azure
in detail.

24 | Chapter 2: Managed Load-Balancing Options in Azure

CHAPTER 3

NGINX and NGINX Plus on Azure

NGINX, Inc., a company that is now part of F5 Networks, shares its name with its
leading product, NGINX. NGINX has two versions: an Open Source software solu‐
tion, OSS, and a commercial solution, Plus. These two versions dominate the world
of application delivery controllers, both on-premises and in the cloud. In Azure,
many companies are trying to decide between the Azure native managed services dis‐
cussed in the previous chapter and solutions they already use and trust from their on-
premises environments. This chapter will explore the similarities and differences
between NGINX OSS and NGINX Plus and how to deploy them using the Azure
Portal, PowerShell, and Terraform. In the next chapter, we’ll cover comparisons
between NGINX solutions and Azure managed solutions.

Both NGINX and NGINX Plus can fit into your web application landscape as a load
balancer for TCP and UDP, but they also can fill the need for a more advanced
HTTP(S) application delivery controller. NGINX and NGINX Plus operate at Layer 7
for all types of load balancing. You might employ NGINX or NGINX Plus as an entry
point and HTTP(S) request router for your application, or as a load balancer for a
service that uses a protocol that is not HTTP, such as database read replicas.

NGINX Versus NGINX Plus
NGINX Open Source software, or NGINX OSS, is free open source software, whereas
NGINX Plus is a commercial product that offers advanced features and enterprise-
level support as licensed software by NGINX, Inc.

NGINX combines the functionality of a high-performance web server, a powerful
load balancer, and a highly scalable caching layer to create the ideal end-to-end plat‐
form for your web applications. NGINX Plus is built on top of NGINX OSS. For the
sake of clarity, if the product NGINX is ever referenced in this book without the

25

explicit denotation of “Plus,” the feature set being described is available in both ver‐
sions, as all of the OSS version capabilities are available in NGINX Plus.

For organizations currently using NGINX OSS, NGINX Plus provides your data
plane with “off the shelf ” advanced features such as intelligent session persistence,
JSON Web Token (JWT) and OpenID Connect integration, advanced monitoring sta‐
tistics, and clustering abilities. These features enable your data plane to integrate
more deeply with your application layer, provide deeper insight into your application
traffic flow, and enable state-aware high availability. NGINX Plus also enables access
to a knowledgable support team that specializes in data plane technology and NGINX
Plus implementation. We’ve personally met some of these support engineers at the
NGINX conference, NGINX.conf, and our conversations were deep and introspective
about the current state of application delivery on the modern web.

For organizations currently using hardware-based load balancers, NGINX Plus pro‐
vides a full set of ADC features in a much more flexible way, through means of a soft‐
ware form factor, with a cost-effective subscription. We’ve worked with a number of
data plane solutions that were hardware-based but pivoted their business to virtual
appliance when the cloud really took hold. A common theme for virtual network
appliances is that their operating systems are based in BSD rather than Linux. Years
ago, BSD’s networking stack had an advantage over Linux; this margin has since
shrunk, and when running on vitalized infrastructure, the margin between them is
even more diminished. Maintaining another set of tools to manage a separate kernel
type is, in our opinion, not worth the effort. In a move to the cloud, you want to man‐
age all VMs through the same methodology. If a specific set of VMs does not fit the
mold of your management model, it requires an exception; that if condition may
exist in your configuration code or your compliance documentation, neither of which
is necessary given that capable software-based data plane controllers provide the
same or greater functionality.

Table 3-1 shows the NGINX Plus feature sets compared to those of NGINX OSS. You
can get more information on the differences between NGINX products at https://
nginx.com.

Table 3-1. Comparison of highlighted NGINX OSS and NGINX Plus features

Feature type Feature NGINX OSS NGINX Plus

Load balancer HTTP/TCP/UDP support X X

 Layer 7 request routing X X
 Active health checks X
 Sophisticated session persistence X
 DNS SRV support (service discovery) X

Content cache Static/dynamic content caching X X

 Cache-purging API X

26 | Chapter 3: NGINX and NGINX Plus on Azure

https://nginx.com
https://nginx.com

Feature type Feature NGINX OSS NGINX Plus

Web server/reverse proxy Origin server for static content X X

 Reverse proxy protocols: TCP, UDP, HTTP, FastCGI, uwsgi, gRPC X X
 HTTP/2 gateway X X
 HTTP/2 server push X X

Security controls HTTP Basic Authentication X X

 HTTP authentication subrequests X X
 IP address-based subrequests X X
 Rate limiting X X
 Dual-stack RSA/ECC SSL/TLS offload X X
 ModSecurity 3.0 support X X
 TLS 1.3 support X X
 JWT authentication X
 OpenID Connect SSO X
 NGINX App Protect (WAF) X

Monitoring Syslog X X

 AppDynamics, Datadog, Dynatrace plug‑ins X X
 Basic Status Metrics X X
 Advanced Metrics with Dashboard 90+ metrics X

High availability Behind Azure Load Balancer X X

 Configuration synchronization X
 State sharing: sticky‑learn session persistence, rate limiting,

key‑value stores
 X

Programmability NGINX JavaScript module X X

 Third-party Lea and Perl modules X X
 Custom C module X X
 Seamless reconfiguration through process reload X X
 NGINX Plus API dynamic configuration X
 Key-value store X
 Dynamic reconfiguration without process reloads X

Installing NGINX OSS and NGINX Plus
Both NGINX OSS and NGINX Plus are widely available to download and install
from a variety of sources. This flexibility allows you to find and use the deployment
option that best suits your needs. For instance, you can install via prebuilt Azure vir‐
tual machine images available in the Azure Marketplace, manually on a virtual
machine, or through the Azure Resource Center with PowerShell. We’ll walk through
the installation process for these settings next.

Installing NGINX OSS and NGINX Plus | 27

Installing via Azure Marketplace
Azure Marketplace is a software repository for prebuilt and configured Azure resour‐
ces from independent software vendors (ISVs). You will find open source and enter‐
prise applications that have been certified and optimized to run on Azure.

NGINX, Inc., provides the latest release of NGINX Plus in Azure Marketplace as a
virtual machine (VM) image. NGINX OSS is not available from NGINX, Inc., as an
Azure Marketplace VM image, but there are several options available from other ISVs
in Azure Marketplace.

Searching for “NGINX” in Azure Marketplace will produce several results, as shown
in Figure 3-1.

Figure 3-1. Searching for “NGINX” in Azure Marketplace.

You will see several results besides the official NGINX Plus VM images from NGINX,
Inc., such as the following examples from other ISVs for NGINX OSS:

• NGINX Web Server (CentOS 7)
• NGINX Web Server on Windows Server 2016
• NGINX Ingress Controller Container Image

28 | Chapter 3: NGINX and NGINX Plus on Azure

There are currently four options available from NGINX, Inc. You can choose from
different tiers of NGINX Plus with or without NGINX App Protect, as shown in
Figure 3-2. The tiers correspond to the support level and readiness for production
usage.

Figure 3-2. NGINX Plus in the Azure Marketplace.

The initial page presented is the Overview page, which summarizes the NGINX Plus
software functionality and pricing. For more details, click the “Plans” link. There are
a number of plans. The plans simply provide a way to select the base OS you’d like
NGINX Plus to run on. Select a plan and press the Create button to be taken to the
Azure virtual machine creation process. To avoid confusion, the plan is not associated
with cost for the NGINX Plus image, only the base OS; the cost associated with the
NGINX Plus Marketplace image is the same independent of the base OS.

The Azure VM creation process using the Azure Portal follows seven standard steps,
with explanations for each step on the Azure Portal page in the following areas:
Basics, Disks, Networking, Management, Advanced (Settings), and Tags. The final
step allows you to review and approve any associated costs before the VM is built.
These seven steps are displayed in Figure 3-3.

When selecting a size for your VM, a cost will be associated. This includes the cost for
the NGINX Plus software.

Installing NGINX OSS and NGINX Plus | 29

It is recommended that an Azure availability set of two or more VMs be used to pro‐
vide high availability in the case of planned system maintenance by Azure or as a
safeguard against one VM becoming unavailable. Zone redundancy, if available in the
region, is also suggested, as it protects against Azure zone failure and maintenance
outages.

Figure 3-3. Creating a virtual machine using the Azure Portal.

You will need to manually create endpoints to support HTTPS (port 443) and HTTP
(port 80) traffic in the Azure Portal to enable access to the NGINX Plus VM. For
more information, see “How to set up endpoints on a Linux classic virtual machine in
Azure” in the Azure documentation.

NGINX Plus will start automatically and load its default start page once the VM
starts. You can use a web browser to navigate to the VM’s IP address or DNS name.
You can also check the running status of NGINX Plus by logging in to the VM and
running the following command:

$ /etc/init.d/nginx status

30 | Chapter 3: NGINX and NGINX Plus on Azure

https://oreil.ly/qbdpq
https://oreil.ly/qbdpq

Azure virtual machine scale sets (VMSSs) let you create and man‐
age a group of identical load-balanced VMs. VMSSs provide
redundancy and improved performance by automatically scaling
up or down based on workloads or a predefined schedule.

To scale NGINX Plus, create a public or internal Azure Load Balancer with a VMSS.
You can deploy the NGINX Plus VM to the VMSS and then configure the Azure
Load Balancer for the desired rules, ports, and protocols for allowed traffic to the
backend pool.

The cost of running NGINX Plus is a combination of the selected software plan
charges plus the Azure infrastructure costs for the VMs on which you will be running
the software. There are no additional costs for VMSSs, but you do pay for the under‐
lying compute resources. The actual Azure infrastructure price might vary if you have
enterprise agreements or other discounts.

Using NGINX Plus from the Azure Marketplace enables you to scale your NGINX
Plus layer on demand without having to procure more licenses, as the software cost is
built into the Marketplace with a pay-per-usage model. You may want to procure a
couple of machine licenses for your base footprint to enter the support contract with
NGINX, Inc., and then use the Marketplace for burst capacity.

Installing Manually on VMs
In some instances, you may want to install NGINX manually on an Azure VM.
Example use cases include a need for modules not included in a Marketplace image,
for extra packages, for advanced configurations, for the latest version of NGINX, or
for bootstrapping to be tightly controlled by configuration management.

The process for installing NGINX OSS or NGINX Plus on an Azure VM is no differ‐
ent than for installing them on any other hosting platform because NGINX is soft‐
ware that runs on top of any Linux distribution.

In Azure, your configuration should be repeatable through automation so that you
can scale as necessary. You can either manually build a VM and take an image of it, so
that you can use the image in an Azure Scale Set, or automate the installation through
scripting or configuration management. You can also combine the two methods, so
that automation builds VM images.

VM images will be ready to serve the client faster because the software is already
installed. Installing at boot time provides flexibility, as the configuration can change
without having to create images, but it takes longer to become ready because it has to
install the software. A hybrid approach should be considered in which an image is
made with the software installed, but configuration management brings the configu‐
ration up to date at boot time.

Installing NGINX OSS and NGINX Plus | 31

When installing NGINX OSS, we always make sure to use the NGINX official pack‐
age repository for the Linux distribution that we’re using. This ensures that we always
have the latest version with the most up-to-date features and security fixes. You can
learn how to install from the official repository by visiting the “Supported Distribu‐
tions and Versions” page of the NGINX documentation.

Installing NGINX OSS via Azure Resource Manager and PowerShell
Azure Resource Manager (ARM) templates are a native Azure automation process
that uses declarative state JSON objects to build resources within Azure. This process
is the default option for Azure Infrastructure as Code (IaC) and allows you to check
your templates into source control.

There are currently no prebuilt ARM templates or PowerShell scripts available from
NGINX, Inc. However, there is nothing preventing the creation of a Resource Man‐
ager template and PowerShell script based on your custom deployment requirements
for Azure and using your previously created custom VM images.

The following provides an example of creating an Ubuntu 16.04 LTS marketplace
image from Canonical along with the NGINX OSS web server using Azure Cloud
Shell and the Azure PowerShell module.

Open Azure Cloud Shell, and perform the following steps in Azure PowerShell.

First, let’s use ssh-keygen to create a Secure Shell (SSH) key pair. Accept all the
defaults by pressing the Enter key:

ssh-keygen -t rsa -b 2048
RSA private key will be saved as id_rsa
RSA public key will be saved as id_rsa.pub
Created in directory: '/home/azureuser/.ssh'

Before we can run any Azure CLI commands, we’ll need to be logged in. Use the fol‐
lowing command to receive a link and an access code that you paste into a browser to
verify your Azure identity:

Connect-AzAccount

Next, create an Azure resource group by using New-AzResourceGroup:

New-AzResourceGroup `
-Name "nginx-rg" `
-Location "EastUS2"

Using the New-AzVirtualNetworkSubnetConfig command, you can now create a
subnet config object, which will be used when creating a new Azure Virtual Network
using the New-AzVirtualNetwork command. After those are created, New-

AzPublicIpAddress will create an IP address to use with the NGINX VM:

32 | Chapter 3: NGINX and NGINX Plus on Azure

https://oreil.ly/u4RX8

Create a subnet configuration
$subnetConfig = New-AzVirtualNetworkSubnetConfig `
-Name "nginx-Subnet" `
-AddressPrefix 192.168.1.0/24

Create a virtual network
$vnet = New-AzVirtualNetwork `
-ResourceGroupName "nginx-rg" `
-Location "EastUS2" `
-Name "nginxVNET" `
-AddressPrefix 192.168.0.0/16 `
-Subnet $subnetConfig

Create a public IP address
and specify a DNS name
$pip = New-AzPublicIpAddress `
-ResourceGroupName "nginx-rg" `
-Location "EastUS2" `
-AllocationMethod Static `
-IdleTimeoutInMinutes 4 `
-Name "nginxpublicdns$(Get-Random)"

Though doing so is optional, it is best practice to add an Azure network security
group (NSG) (New-AzNetworkSecurityGroup) along with traffic rules using New-
AzNetworkSecurityRuleConfig:

Create an inbound NSG rule for port 22
$nsgRuleSSH = New-AzNetworkSecurityRuleConfig `
-Name "nginxNSGRuleSSH" `
-Protocol "Tcp" `
-Direction "Inbound" `
-Priority 1000 `
-SourceAddressPrefix * `
-SourcePortRange * `
-DestinationAddressPrefix * `
-DestinationPortRange 22 `
-Access "Allow"

Create an inbound NSG rule for port 80
$nsgRuleWeb = New-AzNetworkSecurityRuleConfig `
-Name "nginxNSGRuleWWW" `
-Protocol "Tcp" `
-Direction "Inbound" `
-Priority 1001 `
-SourceAddressPrefix * `
-SourcePortRange * `
-DestinationAddressPrefix * `
-DestinationPortRange 80 `
-Access "Allow"

Create a network security group (NSG)
$nsg = New-AzNetworkSecurityGroup `

Installing NGINX OSS and NGINX Plus | 33

 -ResourceGroupName "nginx-rg" `
 -Location "EastUS2" `
 -Name "nginxNSG" `
 -SecurityRules $nsgRuleSSH,$nsgRuleWeb

Create a virtual network card and
associate it with the public IP
address and NSG
$nic = New-AzNetworkInterface `
-Name "nginxNIC" `
-ResourceGroupName "nginx-rg" `
-Location "EastUS2" `
-SubnetId $vnet.Subnets[0].Id `
-PublicIpAddressId $pip.Id `
-NetworkSecurityGroupId $nsg.Id

PowerShell allows you to quickly build a VM while specifying VM attributes such as
memory, vCPUs, disks, and network cards based on the VM image options available
on Azure. The following is the configuration of the VM suitable for our example:

Define a credential object make sure that your password is unique and secure
$securePassword = ConvertTo-SecureString `
'MySuperSecurePasswordWith#sAndSymbols*)23' -AsPlainText -Force
$cred = New-Object `
System.Management.Automation.PSCredential("azureuser",
$securePassword)

Create a virtual machine configuration
$vmConfig = New-AzVMConfig `
-VMName "nginxVM" `
-VMSize "Standard_B1s" | `
Set-AzVMOperatingSystem `
-Linux `
-ComputerName "nginxVM" `
-Credential $cred `
-DisablePasswordAuthentication | `
Set-AzVMSourceImage `
-PublisherName "Canonical" `
-Offer "UbuntuServer" `
-Skus "16.04-LTS" `
-Version "latest" | `
Add-AzVMNetworkInterface `
-Id $nic.Id

Configure the SSH key
$sshPublicKey = cat ~/.ssh/id_rsa.pub
Add-AzVMSshPublicKey `
-VM $vmconfig `
-KeyData $sshPublicKey `
-Path "/home/azureuser/.ssh/authorized_keys"

34 | Chapter 3: NGINX and NGINX Plus on Azure

Next, combine the previous configuration definitions to create a new VM by using
New-AzVM:

New-AzVM `
-ResourceGroupName "nginx-rg" `
-Location eastus2 -VM $vmConfig

Using SSH, connect to the VM after it is created by using the public IP displayed by
the following code:

Get-AzPublicIpAddress `
-ResourceGroupName "nginx-rg" | `
Select "IpAddress"

In the Azure Cloud Shell or your local bash shell, paste the SSH connection com‐
mand into the shell to create an SSH session, using the login username azureuser
when prompted. If an optional passphrase is used, please enter it when prompted:

ssh azureuser@<vm-public-ip>

From your SSH session, update your package sources and then install the latest
NGINX OSS package by running the following as root or with sudo:

echo \
 "deb http://nginx.org/packages/mainline/ubuntu/ xenial nginx" \
 > /etc/apt/sources.list.d/nginx.list

echo \
 "deb-src http://nginx.org/packages/mainline/ubuntu/ xenial nginx" \
 >> /etc/apt/sources.list.d/nginx.list

wget http://nginx.org/keys/nginx_signing.key
apt-key add nginx_signing.key
apt-get update
apt-get -y install nginx

Test NGINX is installed
nginx -v

Start NGINX - it's enabled to start at boot by default
/etc/init.d/nginx start

You will need to use a web browser to test the loading of the default NGINX OSS start
page, which is the public IP address of the VM you’ve created. To exit the SSH ses‐
sion, type exit when done.

Once you have completed this process, you can us the Remove-AzResourceGroup
cmdlet to remove the resource group, VM, virtual network, and all other Azure
resources to avoid incurring ongoing charges:

Remove-AzResourceGroup `
-Name "nginx-rg"

Installing NGINX OSS and NGINX Plus | 35

Deploying Infrastructure for NGINX OSS via Terraform
In this section, we will deploy a Linux virtual machine with NGINX OSS using Terra‐
form. We will show two examples: one for Debian and Ubuntu, and another for Cen‐
tOS and Red Hat. Items common to both of them are the provider and the network
that will provide the starting point for installing NGINX OSS.

If You’re Unfamiliar with Terraform

You can learn about Terraform by reading the Introduction to Ter‐
raform document, or by going through the “Get Started – Azure”
guide. If you are using Azure Cloud Shell, the "Configure Terra‐
form using Azure Cloud Shell” document may be useful.

The provider
The first step is to create the provider file. The provider is used to interact with the
Azure APIs.

We create a file called provider-main.tf, which is used to create the interaction with
Terraform and the Azure providers:

Define Terraform provider
terraform {
 required_version = ">= 0.12"
}

Configure the Azure provider
provider "azurerm" {
 environment = "public"
 version = ">= 2.15.0"
 features {}
 # It is important that the following values of these variables
 # NEVER be written to source control, and therefore should not be
 # hard-coded with defaults and should always come from the local
 # environment
 subscription_id = var.azure-subscription-id
 client_id = var.azure-client-id
 client_secret = var.azure-client-secret
 tenant_id = var.azure-tenant-id
}

Next, we create a file called provider-variables.tf, which is used to manage the authen‐
tication variables of the Azure provider:

variable "azure-subscription-id" {
 type = string
 description = "Azure Subscription ID"
}

variable "azure-client-id" {

36 | Chapter 3: NGINX and NGINX Plus on Azure

https://oreil.ly/02Cvx
https://oreil.ly/02Cvx
https://oreil.ly/dN_jb
https://oreil.ly/dN_jb
https://oreil.ly/O5RJs
https://oreil.ly/O5RJs

 type = string
 description = "Azure Client ID"
}

variable "azure-client-secret" {
 type = string
 description = "Azure Client Secret"
}

variable "azure-tenant-id" {
 type = string
 description = "Azure Tenant ID"
}

The network
The next step is to create the resource group that will host all of our Azure resour‐
ces. A VNET, and a subnet within the VNET, will also be created. The subnet will
host our virtual machine.

We create a file called network-main.tf to describe these resources:

Create a resource group
resource "azurerm_resource_group" "network-rg" {
 name = "nginx-network-rg"
 location = var.location
}

Create the network VNET
resource "azurerm_virtual_network" "network-vnet" {
 name = "nginx-network-vnet"
 address_space = [var.network-vnet-cidr]
 resource_group_name = azurerm_resource_group.network-rg.name
 location = azurerm_resource_group.network-rg.location
}

Create a subnet for VM
resource "azurerm_subnet" "vm-subnet" {
 name = "nginx-vm-subnet"
 address_prefixes = [var.vm-subnet-cidr]
 virtual_network_name = azurerm_virtual_network.network-vnet.name
 resource_group_name = azurerm_resource_group.network-rg.name
}

Then we create a file called network-variables.tf to manage network variables:

variable "location" {
 type = string
 description = "Azure Region"
 default = "eastus"
}

variable "network-vnet-cidr" {

Installing NGINX OSS and NGINX Plus | 37

 type = string
 description = "The CIDR of the network VNET"
}

variable "vm-subnet-cidr" {
 type = string
 description = "The CIDR for the vm subnet"
}

Security
In this section, we will create an Azure NSG (network security group) to protect our
virtual machine. The security group will allow inbound traffic in ports 22 (SSH), 80
(HTTP), and 443 (HTTPS).

Opening SSH to the Internet

For brevity, the following code will allow SSH connections from
anywhere on the internet. You should determine your own needs
for SSH access and restrict access accordingly.

Create a file called security-main.tf and add the following code:

Create Network Security Group
resource "azurerm_network_security_group" "nginx-vm-nsg" {
 depends_on=[azurerm_resource_group.network-rg]

 name = "nginxvm-nsg"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name

 # Allows inbound SSH from entire internet!
 security_rule {
 name = "Allow-SSH"
 description = "Allow SSH"
 priority = 100
 direction = "Inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "22"
 source_address_prefix = "Internet"
 destination_address_prefix = "*"
 }

 security_rule {
 name = "Allow-HTTP"
 description = "Allow HTTP"
 priority = 110
 direction = "Inbound"
 access = "Allow"

38 | Chapter 3: NGINX and NGINX Plus on Azure

 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "80"
 source_address_prefix = "Internet"
 destination_address_prefix = "*"
 }
}

Associate the web NSG with the subnet
resource "azurerm_subnet_network_security_group_association" "ngx-nsg-assoc" {
 depends_on=[azurerm_resource_group.network-rg]

 subnet_id = azurerm_subnet.vm-subnet.id
 network_security_group_id = azurerm_network_security_group.nginx-vm-nsg.id
}

Deploying NGINX OSS in Debian and Ubuntu Linux
In this section, we are going to learn how to deploy a virtual machine with NGINX
OSS running Ubuntu Linux. This code will work without major changes on Debian;
we would just need to update the source_image_reference section (instructions are
at the end of this chapter).

If you are using CentOS or Red Hat, please jump ahead to “Deploying NGINX OSS in
CentOS and Red Hat Linux” on page 41.

Bootstrapping script to install NGINX OSS
In this step, we will create a Bash script called install-nginx.sh to install NGINX OSS
in the virtual machine:

#! /bin/bash
echo \
 "deb http://nginx.org/packages/mainline/ubuntu/ xenial nginx" \
 > /etc/apt/sources.list.d/nginx.list
echo \
 "deb-src http://nginx.org/packages/mainline/ubuntu/ xenial nginx" \
 >> /etc/apt/sources.list.d/nginx.list
wget http://nginx.org/keys/nginx_signing.key
apt-key add nginx_signing.key
apt-get update
apt-get -y install nginx

Test NGINX is installed
nginx -v

Start NGINX - it's enabled to start at boot by default
/etc/init.d/nginx start

Installing NGINX OSS and NGINX Plus | 39

Creating the virtual machine
Here we will create a file called vm-nginx-main.tf. This file will load the bootstrapping
script, get a public IP address, and create a virtual machine:

Bootstrapping Template File
data "template_file" "nginx-vm-cloud-init" {
 template = file("install-nginx.sh")
}

Generate random password
resource "random_password" "nginx-vm-password" {
 length = 16
 min_upper = 2
 min_lower = 2
 min_special = 2
 number = true
 special = true
 override_special = "!@#$%&"
}

Get a Static Public IP
resource "azurerm_public_ip" "nginx-vm-ip" {
 depends_on=[azurerm_resource_group.network-rg]

 name = "nginxvm-ip"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name
 allocation_method = "Static"
}

Create Network Card for the VM
resource "azurerm_network_interface" "nginx-nic" {
 depends_on=[azurerm_resource_group.network-rg]

 name = "nginxvm-nic"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name

 ip_configuration {
 name = "internal"
 subnet_id = azurerm_subnet.vm-subnet.id
 private_ip_address_allocation = "Dynamic"
 public_ip_address_id = azurerm_public_ip.nginx-vm-ip.id
 }
}

Create NGINX VM
resource "azurerm_linux_virtual_machine" "nginx-vm" {
 depends_on=[azurerm_network_interface.nginx-nic]

 name = "nginxvm"
 location = azurerm_resource_group.network-rg.location

40 | Chapter 3: NGINX and NGINX Plus on Azure

 resource_group_name = azurerm_resource_group.network-rg.name
 network_interface_ids = [azurerm_network_interface.nginx-nic.id]
 size = var.nginx_vm_size

 source_image_reference {
 publisher = "Canonical"
 offer = "UbuntuServer"
 sku = "18.04-LTS"
 version = "latest"
 }

 os_disk {
 name = "nginxvm-osdisk"
 caching = "ReadWrite"
 storage_account_type = "Standard_LRS"
 }

 computer_name = "nginxvm"
 admin_username = var.nginx_admin_username
 admin_password = random_password.nginx-vm-password.result
 custom_data = base64encode(data.template_file.nginx-vm-cloud-init.rendered)

 disable_password_authentication = false
}

Then we create a file called vm-nginx-variables.tf to manage variables for virtual
machines:

variable "nginx_vm_size" {
 type = string
 description = "Size (SKU) of the virtual machine to create"
}

variable "nginx_admin_username" {
 description = "Username for Virtual Machine administrator account"
 type = string
 default = ""
}

variable "nginx_admin_password" {
 description = "Password for Virtual Machine administrator account"
 type = string
 default = ""
}

Deploying NGINX OSS in CentOS and Red Hat Linux
In this section, we will deploy a virtual machine with NGINX OSS running CentOS
Linux. If you prefer Ubuntu, you can skip these next two sections, as they overwrite
the files created previously. This code will work on a Red Hat system without major
changes; we would just need to update the NGINX OSS package repository, replacing

Installing NGINX OSS and NGINX Plus | 41

centos with rhel, and the source_image_reference section in the vm-nginx-main.tf
file.

Bootstrapping script to install NGINX OSS
In this step, we overwrite the Bash script used in the previous Ubuntu section to
install NGINX OSS through yum during the bootstrapping of the virtual machine.
Replace the install-nginx.sh file with the following:

#! /bin/bash
echo "[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/mainline/centos/7/$basearch/
gpgcheck=0
enabled=1" > /etc/yum.repos.d/nginx.repo

yum -y install nginx
systemctl enable nginx
systemctl start nginx
firewall-cmd --permanent --zone=public --add-port=80/tcp
firewall-cmd --reload

Creating the virtual machine
Here we replace the file called vm-nginx-main.tf. This file will load the bootstrapping
script, get a public IP address, and create a CentOS-based virtual machine that runs
the bash shell at boot:

Bootstrapping Template File
data "template_file" "nginx-vm-cloud-init" {
 template = file("install-nginx.sh")
}

Generate random password
resource "random_password" "nginx-vm-password" {
 length = 16
 min_upper = 2
 min_lower = 2
 min_special = 2
 number = true
 special = true
 override_special = "!@#$%&"
}

Get a Static Public IP
resource "azurerm_public_ip" "nginx-vm-ip" {
 depends_on=[azurerm_resource_group.network-rg]

 name = "nginxvm-ip"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name

42 | Chapter 3: NGINX and NGINX Plus on Azure

 allocation_method = "Static"
}

Create Network Card for the VM
resource "azurerm_network_interface" "nginx-nic" {
 depends_on=[azurerm_resource_group.network-rg]

 name = "nginxvm-nic"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name

 ip_configuration {
 name = "internal"
 subnet_id = azurerm_subnet.vm-subnet.id
 private_ip_address_allocation = "Dynamic"
 public_ip_address_id = azurerm_public_ip.nginx-vm-ip.id
 }
}

Create NGINX VM
resource "azurerm_linux_virtual_machine" "nginx-vm" {
 depends_on=[azurerm_network_interface.nginx-nic]

 name = "nginxvm"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name
 network_interface_ids = [azurerm_network_interface.nginx-nic.id]
 size = var.nginx_vm_size

 source_image_reference {
 publisher = "OpenLogic"
 offer = "CentOS"
 sku = "7_8-gen2"
 version = "latest"
 }

 os_disk {
 name = "nginxvm-osdisk"
 caching = "ReadWrite"
 storage_account_type = "Standard_LRS"
 }

 computer_name = "nginxvm"
 admin_username = var.nginx_admin_username
 admin_password = random_password.nginx-vm-password.result
 custom_data = base64encode(data.template_file.nginx-vm-cloud-init.rendered)

 disable_password_authentication = false
}

Installing NGINX OSS and NGINX Plus | 43

Creating the input variables file
We can provide values to our variables through the terraform.tfvars file, or exported
environment variables. This will make calling the terraform command line tool
simpler.

Here are the PowerShell environment variables:

$Env:TF_VAR_location = "eastus"
$Env:TF_VAR_network-vnet-cidr = "10.0.0.0/24"
$Env:TF_VAR_vm-subnet-cidr = "10.0.0.0/26"

$Env:TF_VAR_nginx_vm_size = "Standard_B1s"
$Env:TF_VAR_nginx_admin_username = "admin"

$Env:TF_VAR_azure-subscription-id = "complete-here"
$Env:TF_VAR_azure-client-id = "complete-here"
$Env:TF_VAR_azure-client-secret = "complete-here"
$Env:TF_VAR_azure-tenant-id = "complete-here"

And here are the Bash environment variables:

export TF_VAR_location = "eastus"
export TF_VAR_network-vnet-cidr = "10.0.0.0/24"
export TF_VAR_vm-subnet-cidr = "10.0.0.0/26"

export TF_VAR_nginx_vm_size = "Standard_B1s"
export TF_VAR_nginx_admin_username = "admin"

export TF_VAR_azure-subscription-id = "complete-here"
export TF_VAR_azure-client-id = "complete-here"
export TF_VAR_azure-client-secret = "complete-here"
export TF_VAR_azure-tenant-id = "complete-here"

When using a terraform.tsars, ensure you never commit the file to source control or
share the file with others:

location = "eastus"
network-vnet-cidr = "10.0.0.0/24"
vm-subnet-cidr = "10.0.0.0/26"

nginx_vm_size = "Standard_B1s"
nginx_admin_username = "tfadmin"

azure-subscription-id = "complete-here"
azure-client-id = "complete-here"
azure-client-secret = "complete-here"
azure-tenant-id = "complete-here"

44 | Chapter 3: NGINX and NGINX Plus on Azure

Running Terraform
We must first initialize our working directory for deploying Terraform:

terraform init

Before we run terraform to deploy our infrastructure, it’s a good idea to use the plan
command to discover what Terraform intends on doing in our Azure account:

terraform plan

If you approve the plan, you can apply the Terraform to your Azure account by run‐
ning the following; when you are prompted to approve, type yes:

terraform apply

After Terraform runs, you can go find your newly created resources in Azure and use
the IP address to view the default NGINX OSS landing page.

Installing NGINX Plus via Terraform
In this section, we will deploy a Linux virtual machine with NGINX Plus using Terra‐
form. Unlike the open source version, in this section we will deploy a virtual machine
image preinstalled with NGINX Plus from the Azure Marketplace. Currently, NGINX
Plus suggested Azure VM sizes are:

• Standard_A1
• Standard_A2
• Standard_A3

Before we get started with Terraform, we need to accept the Azure Marketplace terms
using the following PowerShell script:

Get-AzMarketplaceTerms -Publisher "nginxinc" -Product "nginx-plus-v1" `
 -Name "nginx-plus-ub1804" | Set-AzMarketplaceTerms -Accept

How to find Azure NGINX Plus VM images for Terraform using PowerShell
To deploy an NGINX Plus virtual machine, we will need to find the value for the
Publisher, offer, and sku parameters of the Azure Marketplace source image, using
PowerShell.

Start by defining the Azure region you’d like to provision into using a variable:

$Location = “East US”

Installing NGINX OSS and NGINX Plus | 45

Then set the a variable to hold the name of the publisher and query the list of offers.
For NGINX Plus images, the publisher is called nginxinc:

$publisher = “nginxinc”
Get-AzVMImageOffer -Location $location -PublisherName $publisher | Select Offer

These are the results:

Offer

nginx-plus-ent-v1
nginx-plus-v1

Next, we list SKUs for NGINX Plus. We do not want the enterprise agreement
because that requires us to bring our own license. We’ll instead use the standard
offering to pay for the software license by the hour:

$offer = "nginx-plus-v1"
Get-AzVMImageSku -Location $location -PublisherName $publisher -Offer $offer | `
 Select Skus

These are the resulting SKUs:

Skus

nginx-plus-centos7
nginx-plus-q1fy17
nginx-plus-rhel7
nginx-plus-rhel8
nginx-plus-ub1604
nginx-plus-ub1804

As we can see, there are several options for an operating system to deploy NGINX
Plus on Azure: CentOS Linux 7, Red Hat Enterprise Linux 7 and 8, and Ubuntu Linux
16.04 and 18.04.

If we want to use the enterprise version of NGINX Plus, we can use the following
code to list SKUs:

$offer = "nginx-plus-ent-v1"
Get-AzVMImageSku -Location $location -PublisherName $publisher -Offer $offer | `
 Select Skus

The result will be as follows:

Skus

nginx-plus-ent-centos7
nginx-plus-ent-rhel7
nginx-plus-ent-ub1804

46 | Chapter 3: NGINX and NGINX Plus on Azure

The provider
The first step is to create the provider file for Terraform. The provider is used to
interact with APIs.

We create a file called provider-main.tf that is used to create the interaction with Ter‐
raform and Azure providers:

Define Terraform provider
terraform {
 required_version = ">= 0.12"
}

Configure the Azure provider
provider "azurerm" {
 environment = "public"
 version = ">= 2.15.0"
 features {}
 # It is important that the following values of these variables
 # NEVER be written to source control, and therefore should not be
 # hard-coded with defaults and should always come from the local
 # environment
 subscription_id = var.azure-subscription-id
 client_id = var.azure-client-id
 client_secret = var.azure-client-secret
 tenant_id = var.azure-tenant-id
}

Next, we create a file called provider-variables.tf that is used to manage the authentica‐
tion variables of the Azure provider:

variable "azure-subscription-id" {
 type = string
 description = "Azure Subscription ID"
}

variable "azure-client-id" {
 type = string
 description = "Azure Client ID"
}

variable "azure-client-secret" {
 type = string
 description = "Azure Client Secret"
}

variable "azure-tenant-id" {
 type = string
 description = "Azure Tenant ID"
}

Installing NGINX OSS and NGINX Plus | 47

The network
The next step is to create the resource group that will host all of our Azure resour‐
ces. A VNET, and a subnet within the VNET, will also be created. The subnet will
host our virtual machine.

We create a file called network-main.tf to describe these resources:

Create a resource group
resource "azurerm_resource_group" "network-rg" {
 name = "nginx-network-rg"
 location = var.location
}

Create the network VNET
resource "azurerm_virtual_network" "network-vnet" {
 name = "nginx-network-vnet"
 address_space = [var.network-vnet-cidr]
 resource_group_name = azurerm_resource_group.network-rg.name
 location = azurerm_resource_group.network-rg.location
}

Create a subnet for VM
resource "azurerm_subnet" "vm-subnet" {
 name = "nginx-vm-subnet"
 address_prefixes = [var.vm-subnet-cidr]
 virtual_network_name = azurerm_virtual_network.network-vnet.name
 resource_group_name = azurerm_resource_group.network-rg.name
}

Then, we create the file network-variables.tf to manage network variables:

variable "location" {
 type = string
 description = "Azure Region"
 default = "eastus"
}

variable "network-vnet-cidr" {
 type = string
 description = "The CIDR of the network VNET"
}

variable "vm-subnet-cidr" {
 type = string
 description = "The CIDR for the vm subnet"
}

Security
In this section, we will create an Azure NSG (network security group) to protect our
virtual machine. The security group will allow inbound traffic in ports 22 (SSH), 80
(HTTP), and 443 (HTTPS).

48 | Chapter 3: NGINX and NGINX Plus on Azure

Opening SSH to the Internet

For brevity, the following code will allow SSH connections from
anywhere on the internet. You should determine your own needs
for SSH access and restrict access accordingly.

We create a file called security-main.tf and add the following code:

Create Network Security Group
resource "azurerm_network_security_group" "nginx-vm-nsg" {
 depends_on=[azurerm_resource_group.network-rg]

 name = "nginxvm-nsg"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name

 security_rule {
 name = "Allow-SSH"
 description = "Allow SSH"
 priority = 100
 direction = "Inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "22"
 source_address_prefix = "Internet"
 destination_address_prefix = "*"
 }

 security_rule {
 name = "Allow-HTTP"
 description = "Allow HTTP"
 priority = 110
 direction = "Inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "80"
 source_address_prefix = "Internet"
 destination_address_prefix = "*"
 }

 security_rule {
 name = "Allow-HTTPS"
 description = "Allow HTTPS"
 priority = 120
 direction = "Inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "443"
 source_address_prefix = "Internet"

Installing NGINX OSS and NGINX Plus | 49

 destination_address_prefix = "*"
 }
}

Associate the web NSG with the subnet
resource "azurerm_subnet_network_security_group_association" "ngx-nsg-assoc" {
 depends_on=[azurerm_resource_group.network-rg]

 subnet_id = azurerm_subnet.vm-subnet.id
 network_security_group_id = azurerm_network_security_group.nginx-vm-nsg.id
}

Define an NGINX Plus virtual machine
In this section, we will define a virtual machine with NGINX Plus.

First, we create a file called vm-nginx-main.tf and add code to generate a random
password and a random virtual machine name:

Generate random password
resource "random_password" "nginx-vm-password" {
 length = 16
 min_upper = 2
 min_lower = 2
 min_special = 2
 number = true
 special = true
 override_special = "!@#$%&"
}

Generate a random vm name
resource "random_string" "nginx-vm-name" {
 length = 8
 upper = false
 number = false
 lower = true
 special = false
}

Then, to the same file, we add code to request a public IP address, generate a network
card, and assign the public IP address to it:

Get a Static Public IP
resource "azurerm_public_ip" "nginx-vm-ip" {
 depends_on=[azurerm_resource_group.network-rg]

 name = "nginx-${random_string.nginx-vm-name.result}-ip"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name
 allocation_method = "Static"
}

Create Network Card for the VM

50 | Chapter 3: NGINX and NGINX Plus on Azure

resource "azurerm_network_interface" "nginx-nic" {
 depends_on=[azurerm_resource_group.network-rg]

 name = "nginx-${random_string.nginx-vm-name.result}-nic"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name

 ip_configuration {
 name = "internal"
 subnet_id = azurerm_subnet.vm-subnet.id
 private_ip_address_allocation = "Dynamic"
 public_ip_address_id = azurerm_public_ip.nginx-vm-ip.id
 }
}

Next, we add the definition to create the virtual machine with the NGINX Plus:

Create NGINX VM
resource "azurerm_linux_virtual_machine" "nginx-vm" {
 depends_on=[azurerm_network_interface.nginx-nic]

 name = "nginx-${random_string.nginx-vm-name.result}-vm"
 location = azurerm_resource_group.network-rg.location
 resource_group_name = azurerm_resource_group.network-rg.name
 network_interface_ids = [azurerm_network_interface.nginx-nic.id]
 size = var.nginx_vm_size

 source_image_reference {
 publisher = var.nginx-publisher
 offer = var.nginx-plus-offer
 sku = "nginx-plus-ub1804"
 version = "latest"
 }

 plan {
 name = "nginx-plus-ub1804"
 publisher = var.nginx-publisher
 product = var.nginx-plus-offer
 }

 os_disk {
 name = "nginx-${random_string.nginx-vm-name.result}-osdisk"
 caching = "ReadWrite"
 storage_account_type = "Standard_LRS"
 }

 computer_name = "nginx-${random_string.nginx-vm-name.result}-vm"
 admin_username = var.nginx_admin_username
 admin_password = random_password.nginx-vm-password.result

 disable_password_authentication = false
}

Installing NGINX OSS and NGINX Plus | 51

Finally, we create a file called vm-nginx-variables.tf to manage variables for virtual
machines:

variable "nginx_vm_size" {
 type = string
 description = "Size (SKU) of the virtual machine to create"
}

variable "nginx_admin_username" {
 description = "Username for Virtual Machine administrator account"
 type = string
 default = ""
}

variable "nginx_admin_password" {
 description = "Password for Virtual Machine administrator account"
 type = string
 default = ""
}

variable "nginx-publisher" {
 type = string
 description = "Publisher ID for NGINX"
 default = "nginxinc"
}

variable "nginx-plus-offer" {
 type = string
 description = "Offer ID for NGINX"
 default = "nginx-plus-v1"
}

Creating the input variables file
We can provide values to our variables through the terraform.tfvars file, or exported
environment variables; this will make calling the terraform command line tool
simpler.

Here are the PowerShell environment variables:

$Env:TF_VAR_location = "eastus"
$Env:TF_VAR_network-vnet-cidr = "10.0.0.0/24"
$Env:TF_VAR_vm-subnet-cidr = "10.0.0.0/26"

$Env:TF_VAR_nginx_vm_size = "Standard_B1s"
$Env:TF_VAR_nginx_admin_username = "admin"

$Env:TF_VAR_azure-subscription-id = "complete-here"
$Env:TF_VAR_azure-client-id = "complete-here"
$Env:TF_VAR_azure-client-secret = "complete-here"
$Env:TF_VAR_azure-tenant-id = "complete-here"

52 | Chapter 3: NGINX and NGINX Plus on Azure

And here are the Bash environment variables:

export TF_VAR_location = "eastus"
export TF_VAR_network-vnet-cidr = "10.0.0.0/24"
export TF_VAR_vm-subnet-cidr = "10.0.0.0/26"

export TF_VAR_nginx_vm_size = "Standard_B1s"
export TF_VAR_nginx_admin_username = "admin"

export TF_VAR_azure-subscription-id = "complete-here"
export TF_VAR_azure-client-id = "complete-here"
export TF_VAR_azure-client-secret = "complete-here"
export TF_VAR_azure-tenant-id = "complete-here"

When using a terraform.tsars, ensure you never commit the file to source control or
share the file with others:

location = "eastus"
network-vnet-cidr = "10.0.0.0/24"
vm-subnet-cidr = "10.0.0.0/26"

nginx_vm_size = "Standard_B1s"
nginx_admin_username = "admin"

azure-subscription-id = "complete-here"
azure-client-id = "complete-here"
azure-client-secret = "complete-here"
azure-tenant-id = "complete-here"

Running Terraform
Before we run terraform, it’s a good idea to use the plan command to discover what
Terraform intends on doing in our Azure account:

terraform plan

If you approve the plan, you can apply the Terraform to your Azure account by run‐
ning the following. When you are prompted to approve, type yes:

terraform apply

After Terraform runs, you can go find your newly created resources in Azure and use
the IP address to view the default NGINX Plus landing page.

Conclusion
This chapter was a chance to deploy both NGINX OSS and NGINX Plus and to
explore the levels of functionality available from both products, as well as the differ‐
ences between them. NGINX OSS is free but requires a better understanding of how
to deploy it and how to make the best use of its feature set. NGINX Plus has several
varied and convenient options for deployment and is a commercial product

Conclusion | 53

that offers advanced features and enterprise-level support as licensed software by
NGINX, Inc.

We deployed NGINX OSS and NGINX Plus using a combination of the Azure Portal,
PowerShell, and Terraform to see the available options. Terraform provided the most
complete solution for NGINX OSS and NGINX Plus, allowing the greatest levels of
automation and integration into a full Azure deployment scenario.

To learn in detail how to configure NGINX, consider checking out Derek’s book,
NGINX Cookbook: Advanced Recipes for High-Performance Load Balancing (O’Reilly).

In the next chapter, we will compare the features of Azure managed load-balancing
solutions with NGINX and NGINX Plus.

54 | Chapter 3: NGINX and NGINX Plus on Azure

CHAPTER 4

NGINX and Microsoft Managed Options

Microsoft Azure provides a number of different proxy-like, data plane–level services
that forward a request or connection through different networking layers, load bal‐
ancing and applying rules along the way. NGINX provides much of the same func‐
tionality as these services but can reside deeper in the stack, and it has less
configuration limitation. When delivering applications hosted in Microsoft Azure,
you need to determine what controls are needed where, and how best to provide
them.

Most of the time the right answer is not one service or the other, but a mix. By layer‐
ing proxy-like services in front of your application, you’re able to maintain more con‐
trol and distribute the incoming load. The Azure services are meant to complement
one another by being layered throughout the stack. NGINX is interchangeable with
the Azure services that reside in the Azure Virtual Network. A major added value of
Azure managed services is that because they are managed, they do not require main‐
tenance and care on your part.

The Azure managed services that provide proxy-like, data plane–level services are
Azure Front Door, CDN Profiles, Application Gateway, and Load Balancer. All of
them have valid use cases, some have overlapping features, and they all can be fron‐
tends for NGINX. Azure Front Door is covered in depth in Chapter 5; the present
chapter will focus on Azure Load Balancer, the Application Gateway, and the integra‐
tion with Azure WAF policies. CDN Profiles, while they do act as a proxy, are not
designed for load balancing, therefore are not discussed in this book.

55

Comparing NGINX and Azure Load Balancer
Azure Load Balancer operates at Layer 4 of the OSI model, the transport layer. This
means that Azure Load Balancer is chauffeuring the connection from the client to a
backend server. As the connection is direct between the client and the server, Azure
Load Balancer is not considered a proxy. Only data within the connection headers is
used or updated by Azure Load Balancer; it does not and cannot use or manipulate
the data within the packets.

Using information from the connection headers, Azure Load Balancer can determine
to which backend server it should route the request. Load balancing of a connection
is performed by a hash algorithm that uses the connection headers to place a connec‐
tion across the backend pool. Five pieces of information are used from the connec‐
tion header to generate the hash:

• Source IP
• Source port
• Destination IP
• Destination port
• IP protocol

Azure Load Balancer calls the connection sessions flows, because a flow may consist
of multiple connections. Because the source port usually changes between connec‐
tions, Azure Load Balancer creates an affinity, or rudimentary session persistence,
between client and server by hashing only a portion of the connection header infor‐
mation that is used for initial distribution. As a result, connections from a given
source IP, destination IP, and destination port will be pinned to the same backend
server.

This operating model is different from NGINX, because NGINX operates at Layer 7
of the OSI model, the application layer. With NGINX there are two connections: one
between the client and NGINX and another between NGINX and the server. Acting
as an intermediary in the connection makes NGINX a proxy.

Operating at Layer 7, NGINX has the ability to read and manipulate the data packet
bound from the client to the server, and the response bound from the server to the
client. In this way, NGINX can understand higher-level application protocols such as
HTTP and use that information for routing, whereas Layer 4 load balancers just
enable the transport of a connection.

56 | Chapter 4: NGINX and Microsoft Managed Options

Use Cases
There are valid use cases for both. With Layer 4 load balancing, the direct connection
between the client and the server has benefits. The server receives the direct connec‐
tion and has all of the original connection information without having to understand
proxy protocol. This is especially important for legacy applications that depend on a
direct connection with the client. A proxy scenario also has its benefits, as it’s able to
control the backend connections and therefore can optimize or manipulate those in
any way it may need to. If an application relies on client information in the connec‐
tion headers, it would simply need to understand the proxy protocol. The proxy pro‐
tocol appends information about proxies the request has passed through on its way to
the server. The proxy protocol is an addendum to Layer 7 protocols, which means the
information goes in the application layer protocol headers and not in the connection
headers.

Despite these differences, the two solutions have things in common. Both NGINX
and Azure Load Balancer are able to load balance traffic and can route based on con‐
nection information. Both are able to listen for incoming traffic on one port and
direct the request to the backend service, which may be on a different port; in the
Layer 4 scenario this is considered Network Address Translation, or NAT, whereas in
a proxy scenario this doesn’t have a name—it’s just part of the nature of creating the
second connection. Both Azure Load Balancer and NGINX can perform TCP and
UDP load balancing.

While the solutions are different from each other and serve their own use cases, it’s
not uncommon to see them working together. Azure Load Balancer complements
NGINX well when multiple NGINX machines are deployed and the traffic bound for
them needs to be balanced with something more sophisticated than DNS. Don’t be
surprised to see Azure Load Balancer in front of a fleet of NGINX nodes.

Comparing NGINX and Azure Application Gateway
Functionality
Where Azure Load Balancer and NGINX differ, Azure Application Gateway and
NGINX have more commonalities. Azure Application Gateway operates at Layer 7,
like NGINX. To operate at this layer, Azure Application Gateway must and does act as
a proxy. One major difference is that NGINX is able to do this for all TCP and UDP
protocols, whereas Application Gateway is concentrated only on HTTP(S).

By receiving the request and understanding the HTTP protocol, Application Gateway
is able to use HTTP header information to make decisions about how to route or
respond to requests. The idea of an Application Gateway, or API gateway, is to con‐
solidate multiple microservices that make up a service or product offering under a

Comparing NGINX and Azure Application Gateway Functionality | 57

single API endpoint. This API endpoint understands the services that it’s providing
for, as well as its overall API spec.

Concept Versus Product Terminology

In the following sections, we will use the term API gateway to refer
to a concept that Azure Application Gateway, NGINX, and other
application delivery controllers all fit into. When referring to the
product Azure Application Gateway, we’ll use the term Azure
Application Gateway or Application Gateway.

By having a full understanding of the API spec, an API gateway can validate requests
on their way to your application. If a request is invalid, it can be denied at the API
gateway. Basic matching of requests for redirection is also possible. The power and
necessity of an API gateway lie in its ability to route traffic to different backend serv‐
ices based on the URI path. Microservices for RESTful APIs are typically broken up
by the sets of API resources they handle, and that’s reflected by the API’s path. In this
way, we can use URI path matching to direct requests for specific API resources,
based on information in the URI, to the correct microservices.

An example of URI-based routing would be if we had two services, authentication
and users. Our API gateway handles requests for both but routes each request based
on the URI. Resource requests for authentication are behind a URI path prefix
of /auth/, and requests for the users service are behind a URI path prefix of /users/.
Figure 4-1 depicts this scenario.

Figure 4-1. URI-based routing with Azure Application Gateway.

Once the API gateway has validated a request and matched a URI path routing rule, it
can manipulate the request it makes to the backend service by altering headers, or
URI paths. It can perform these actions because it is a proxy and is making its own
connection and requests to the backend service on behalf of the request it received

58 | Chapter 4: NGINX and Microsoft Managed Options

from the client. This is important to note because you may have headers that are used
only internally, or paths on the backend services may not match exactly what your
frontend API provides. By virtue of being a proxy, the API gateway is also able to
terminate SSL/TLS, meaning that connections to backend services may not be
encrypted, or use a different certificate for that connection.

Once the request is ready to be sent to a backend service, the feature sets of what
could be considered an API gateway versus what more advanced data plane services
provide start to differ. Both Azure Application Gateway and NGINX are able to pro‐
vide load balancing, whereas some API gateways would simply pass the request to a
load balancer. Having load balancing built into an API gateway solution is nice
because it saves a hop in the connection and provides a complete control in between
client-server communication and routing in a single system.

Connection Draining

A useful feature that both Azure Application Gateway and NGINX
Plus provide is connection draining, which allows live connections
to finish before removing a backend node from the load-balancing
pool. This feature is not available in the open source version of
NGINX.

When load balancing requests, there is sometimes a need for session persistence. In
Azure it’s referred to as session affinity. When a backend service does not share ses‐
sion state between horizontally scaled nodes, subsequent requests need to be routed
to the same backend node. The most common case of requiring session persistence is
when legacy applications are ported to a cloud environment and session state has not
yet moved off local disk or memory to storage that is network addressable, such as
Redis or Memcached. This is less common with API gateways, as they were built
around more modern-day web architecture. A scenario in which an API gateway may
require session persistence might be when the session data being worked with is too
large to be performant over the network.

An important feature that both NGINX and Azure Application Gateway provide is
the support of Websockets and HTTP/2 traffic. HTTP/2 enables the client-server
connection to pass multiple requests through a single connection, cutting down on
handshakes and SSL/TLS negotiation. The server in the case of HTTP/2 is the API
gateway. A Websocket enables bidirectional communication between the client and
server over a long-standing connection. The server in this case is the backend appli‐
cation server.

A feature that NGINX provides but Azure Application Gateway does not is HTTP/2
push. HTTP/2 push is a feature of the HTTP/2 protocol in which the server can push
extra documents that it knows are going to be subsequent requests. One common

Comparing NGINX and Azure Application Gateway Functionality | 59

example would be in response to a request for index.html, where the server knows
that the browser will also need some CSS and JavaScript documents. The server can
push those documents with the response for index.html to save on round-trip
requests.

Azure Application Gateway and NGINX are a lot alike; however, Azure Application
Gateway is missing one important and welcome feature of an API gateway, which is
the ability to validate authentication. The web has began to standardize on JSON Web
Tokens, or JWTs, which use asymmetric encryption to validate identity claims. Stan‐
dard authentication workflows such as OAUTH/2 and OpenId Connect utilize JWTs,
which enables services that can validate JWTs to take part in the authentication vali‐
dation process. NGINX Plus is able to validate JWTs out of the box, whereas with
open source NGINX, validation requires a bit of work through extendable program‐
ming. Both NGINX and NGINX Plus can also perform authentication subrequests,
where the request or a portion of the request can be sent to an authentication service
for validation before NGINX proxies the request to a backend service. Azure Applica‐
tion Gateway does not offer any authentication validation, meaning your services will
need to validate the request once it is received, whereas this action could and should
be offloaded to the API gateway whenever possible.

Comparing NGINX and Azure Web Application Firewall
Capabilities
A Web Application Firewall (WAF) is a Layer 7 proxy that specifically reviews the
request for security exploits and determines whether the request should be proxied to
the backend service or denied. The request is evaluated against a number of rules that
look for things like cross-site scripting, SQL injection, known bad bots, protocol vio‐
lations, application language and framework-specific vulnerabilities, and size limit
abuse. Azure services and NGINX are able to act as Web Application Firewalls.

Azure provides Web Application Firewall capabilities in the form of policies that can
be attached to the Azure Front Door and Application Gateway services. Azure WAF
policies comprise a number of rules. These rules take the form of managed rule sets
provided by Azure and custom rules defined by you. Managed rule sets are supplied
by Azure, and at least one must be configured. Individual rules within a managed rule
set can be disabled if necessary. The managed rule sets provide protection out of the
box, but you can also build and apply your own custom rules on top of the managed
rule set. You can set specific custom WAF rules or entire policies to block or passively
monitor and record events.

When using custom rules, you can match on a number of different conditions
gleaned from the request. A rule is made up of numerous components, such as the
type of match, where to find the variable, an operator, and our matching pattern.

60 | Chapter 4: NGINX and Microsoft Managed Options

The following describes the types of rules that can be set up and their different
options:

IP address
The source IP address of the request is matched inclusively or exclusively against
a CIDR range, or specific IP address.

Number
A variable numeric value that is derived from the query string, request URI,
headers, arguments, body, or cookies and that is or is not less than, greater to, or
equal to a specific value.

String
A variable string value that is derived from the query string, request URI, head‐
ers, arguments, body, or cookies. The value is evaluated by an operator to deter‐
mine whether the derived string contains, begins with, ends with, or is equal to
the value of the string provided in the rule.

Geo location
The variable derived from the source IP or request header is compared against an
array of country or region codes. The rule allows the provided country or region
code list to be inclusive or exclusive.

Azure WAF policies log and produce a metric for each blocked request. The log has
metadata about the request and the rule that blocked it. The metric can be filtered by
rule name and action type. Metrics can be found in Azure Monitor. Logs are able to
be streamed to an Azure Storage Account, Event Hub, or Log Analytics. This moni‐
toring information allows you to analyze how your WAF rules are performing and
whether they’re flagging false positives. With any WAF you should monitor live traf‐
fic with your rule set in a mode that passively monitors for rule violations, review the
information, and confirm that the WAF is working appropriately before enabling it to
actively block traffic.

The Azure WAF policies are a great addition to the Azure managed service offerings.
WAF policies should be enabled at any layer of your Azure environment to which
they can be applied. Being that these are fully managed and come with default rule
sets, there’s no reason not to take advantage of them.

ModSecurity
The aforementioned functionality provides the basis for what would be considered a
WAF: evaluating requests to block based on matching rules. These rules can be con‐
figured to be extremely versatile and specific to block all sorts of attacks. This type of
functionality can be found in the open source Web Application Firewall ModSecurity,

Comparing NGINX and Azure Web Application Firewall Capabilities | 61

which integrates directly into NGINX. ModSecurity is a rule engine specifically for
matching web request attributes.

Installing ModSecurity for NGINX provides the same type of plug-in option as the
Azure WAF policies do for Application Gateway. With ModSecurity, you can find a
number of community-maintained rule sets ready for use, plug them in, and get
going. ModSecurity’s configuration capabilities go extremely deep, such that entire
books have been written on the topic. One of the most popular community-
maintained rule sets is the OWASP ModSecurity Core Rule Set (CRS), which is pro‐
vided by the OWASP project. The OWASP CRS is one of the two managed rule sets
provided by Azure WAF policies; the other is a list specifically about bots. The
OWASP CRS is versioned, and at the time of writing, the latest public rule set version
is 3.2, while the latest offered by Azure is 3.1.

Another extremely popular rule set is from Trustwave SpiderLabs. It requires a com‐
mercial subscription but is updated daily, so your ModSecurity rules are always up to
date on the most recently discovered vulnerabilities and web attack patterns. The
increased rate of updates on current web attacks is worth a premium over waiting for
Azure to update its managed rule sets.

If you are comparing these two options, you’re weighing a fully managed solution
against a DIY open source solution. There are clear pros and cons here. Being fully
managed with simplified configuration is a clear pro for Azure WAF policies.
Bleeding-edge updates to security patterns and advanced configuration are a clear
win for NGINX with ModSecurity. The cons are the exact reverse of the pros: NGINX
must be managed by you and is more complicated to configure, whereas Azure is not
bleeding edge on security updates but is easy to configure and doesn’t require man‐
agement on your part. This, however, does not have to be an either/or comparison.
You can use a mix of the two, applying Azure WAF polices to Azure Front Door and
using NGINX as a WAF at the API gateway layer. A determination of what is best for
your situation will depend on circumstantial conditions within your organization.

NGINX App Protect
After F5 acquired NGINX, it integrated the F5 WAF with NGINX Plus to create a
commercial WAF option for NGINX Plus called the NGINX App Protect module.
The App Protect module is more advanced than ModSecurity and receives updated
signatures from F5 to keep the rules up to date with the latest security policies.

To use NGINX App Protect, you need a subscription to NGINX Plus and a subscrip‐
tion to NGINX App Protect. You can subscribe through the marketplace (NGINX
Plus with NGINX App Protect) or the installation is done through a private NGINX
Plus repository for the package manager being used by your system. After the module
is installed, it can be dynamically loaded into NGINX Plus, enabled, and provided

62 | Chapter 4: NGINX and Microsoft Managed Options

with a policy file. A passive mode can be enabled by turning on the module’s logging
directive and providing a log location. The log location consists of a JSON configura‐
tion file and a destination. The destination may be the local or remote syslog receiver,
a file, or /dev/stderr. The JSON configuration file enables filtering of which events
are logged. An example follows:

{
 "filter":{
 "request_type":"all"
 },
 "content":{
 "format":"default",
 "max_request_size":"any",
 "max_message_size":"5k"
 }
}

As mentioned before, it is recommended that you monitor a rule set before enabling
it to understand the pattern of what will be blocked or allowed.

Once logging is set up, the App Protect module is open to a vast amount of configu‐
ration through the policy file. NGINX and F5 have provided a number of different
templates to enable you to protect your apps with high-level definitions rather than
building your own rules, though that is an option. Each policy provides the ability to
set an enforcementMode attribute to transparent or blocking. This is an advantage
over turning the entire WAF on or off because you can test certain policies while still
enforcing those policies you know are good.

The attribute names of a policy file speak for themselves. The following is an example
of a policy:

{
 "policy": {
 "name": "blocking_policy",
 "template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
 "applicationLanguage": "utf-8",
 "enforcementMode": "blocking",
 "blocking-settings": {
 "violations": [
 {
 "name": "VIOL_JSON_FORMAT",
 "alarm": true,
 "block": true
 },
 {
 "name": "VIOL_PARAMETER_VALUE_META CHAR",
 "alarm": true,
 "block": false
 }
]
 }

NGINX App Protect | 63

 }
}

At its core, App Protect is still using the same information from requests to look for
malicious requests based on a number of filters, but the funding behind it has enabled
it to advance past what’s going on in the open source WAF options. One of the most
valuable features of the App Protect module is its ability to filter responses, which
enables us to filter outbound data to prevent sensitive data from leaving the system.
Credit card information is an example of data that should never be returned to
the user, and with the ability to filter responses, we can ensure that it doesn’t. When
dealing with sensitive information, risk reduction of data leaks is of the highest
importance.

App Protect is, in a way, a managed service because of the updated signatures and the
number of high-level features. Prebuilt parsers for application data transfer standards
like JSON and XML, SQL and Mogno syntaxes, and Linux and Windows Commands
enable higher-level controls. Signature updates take a load of security management
responsibility off an organization. It takes a certain degree of skill and effort to build
complex filter rules to block only bad requests while staying up to date with the land‐
scape of active new threats.

NGINX Plus with the App Protect module flips the management versus configurabil‐
ity scenario. The rules are tightly managed by the subscription, and the configuration
options are more in-depth, but you have to manage the hosting and underlying OS.
Hosting and ensuring availability is par for the course in cloud environments, and
thus if you build and configure your NGINX Plus layer as you do your application
code, it’s no more than another app on the stack. This makes a solid case for distrib‐
uting your data plane technologies; by layering fully managed with highly configurable
and up to date, you build toward the highest levels of security and availability.

Highly Available Multiregion NGINX Plus with Traffic
Manager
Now that you have an understanding of how managed Azure load-balancing solu‐
tions and NGINX compare, we’ll take a look at how you can layer solutions to
enhance your web application offering.

All of the same concepts apply when using NGINX as a load balancer or API gateway
over the Azure managed offerings. Because of distribution and point of presence
locations that Azure managed services provide, you should utilize the global managed
services from Azure to distribute load and route client requests to the correct envi‐
ronment region.

64 | Chapter 4: NGINX and Microsoft Managed Options

Figure 4-2 shows a multiregion deployment using NGINX Plus as an API gateway in
both regions. NGINX Plus is also being used to load balance over a database tier.
Traffic is routed through Traffic Manager using the Performance algorithm to pro‐
vide clients with responses from the least latent region.

The Content Delivery Network, if the request is not cached, will proxy the request to
the nearest region, where the request will be received by NGINX Plus. NGINX Plus
will decrypt the request in the case of HTTPS. NGINX Plus inspects the request
and routes to different server pools based on the request URI. The backend service
may make a request through another NGINX Plus load-balancing tier to access the
database.

Figure 4-2. A multiregion web application on Azure using the Azure Content Delivery
Network, which uses Traffic Manager to route the client’s request to the point of presence
closest to the user.

Highly Available Multiregion NGINX Plus with Traffic Manager | 65

Figure 4-3 depicts a scenario in which Traffic Manager uses geography-based routing
to direct a client in California to the US-West Azure region based on the user’s geog‐
raphy. A client in California makes a DNS request, and Traffic Manager responds
with the endpoint for US-West. The client makes a direct connection to NGINX Plus
in the US-West region. NGINX Plus then decrypts the request in the case of HTTPS.
NGINX Plus inspects the request and routes the request based on its own rules and
proxies the request, which may be reencrypted.

Figure 4-3. NGINX Plus, along with GeoDNS, enables a globally distributed application.

In these scenarios, Traffic Manager is directing our client to an available region that
best fits the client’s needs or the needs of our regulation. NGINX Plus is providing the
API gateway functionality, as well as internal load balancing. These solutions together
enable high availability failover, as well as highly configurable traffic routing within
our environment.

Conclusion
Microsoft Azure provides a number of different data plane managed services to aid in
stronger and more reliable delivery of your application. Throughout this chapter, you
learned how Azure Load Balancer, Application Gateway, and WAF Policies work, how
they differ, and how they can be used with NGINX or NGINX Plus. The knowledge
of where these different services fit in the stack enables you to make informed archi‐
tecture decisions about load balancing and application delivery for your cloud plat‐
form and about the trade-off between functionality and management.

In this chapter we introduced the idea of layering Microsoft Azure managed load bal‐
ancing solutions with NGINX. In the next chapter, we will add another layer to the
managed Azure data plane service by looking at the Azure Front Door service and at
how it can be used with NGINX.

66 | Chapter 4: NGINX and Microsoft Managed Options

CHAPTER 5

Azure Front Door with NGINX

What Is the Azure Front Door Service?
Azure Front Door is a service that provides global web traffic routing, optimized for
performance and high availability failover. Front Door is useful in all types of scenar‐
ios, especially multiregional deployments. As the name implies, Front Door is meant
to be the first and primary access point between your client and your web service.
Front Door always answers your client with a local connection, and then works as an
operator to connect the client to the closest available next hop for that request. By
acting as a configurable distributed proxy, Front Door enables you to have Layer 7
routing and network control at the edge.

Front Door uses latency-based DNS routing to connect the client to the nearest Front
Door POP, or point of presence. POP locations differ from regions in that there are
more of them, and they are distributed to be closer to the user. Latency-based routing
is used for the backend connection as well, routing client requests to the nearest
installation to a given service, wherever in the world it may be. Being health aware,
Front Door automatically enables multiregion failover. Backend pools can be con‐
structed with a number of different Azure services and internet standard endpoints.
What makes Azure Front Door special is that it is network-optimized by use of a split
TCP-based anycast protocol.

Split TCP
Split TCP is a technique aimed at reducing latency packet delivery issues by separat‐
ing the TCP connections between client and backend. This has an impact on distant
and dynamic mobile connections, optimizing at the TCP and TLS handshake layers
by use of proximity to reduce network latency. The Front Door Service takes on the
role of a proxy; the client’s TCP connection to the Front Door is quick because of the

67

network proximity of the Front Door POP. On the backend, Front Door can prees‐
tablish and reuse TCP connections. By reusing connections to secure backends, Front
Door also reduces the amount of TCP and TLS negotiations that need to happen. The
anycast aspect happens at the DNS level to determine the closest POP, as well as at the
backend to determine the closest endpoint. This use of anycast connects global users
to a healthy service with the least number of network hops, thereby lowering network
latency.

Front Door Features
Azure Front Door Service includes a number of other useful features you would want
at the edge layer—caching and Web Application Firewall (WAF), for example. If a
managed edge service can validate the request and respond to your client, the user
experience is enhanced by the response time, and your business logic receives only
valid, necessary requests. Better response times and less stress on your resources add
up to a clear win-win for you and your clients.

Other Azure Front Door features, such as TLS termination, session persistence, redi‐
rects, and rewrites, are what you would expect of a proxy. In our experience in the
industry, the term TLS termination is sometimes used to describe what we would con‐
sider necessary to Layer 7 routing. An application-aware router must decrypt the
packet to operate on Layer 7. On the other hand, we and others use the term TLS ter‐
mination to describe when a proxy receives a secure connection and then proxies the
request over an insecure connection, effectively terminating the encryption. Both
uses are acceptable; just make sure you know how the term is being used. Front Door
must decrypt the request for it to route appropriately. Front Door may route the
request to a secure or insecure endpoint upstream. If you have a number of backend
pools that consist of varying TLS certificates and want to consolidate or extrapolate
their frontend presence, Azure Front Door is a great choice.

In the event that backend services rely on session persistence and are incapable of
sharing session data, Front Door can create a cookie for the client to bind it to a back‐
end endpoint. Based on the client cookie, Front Door will continually route specific
client requests to that same backend endpoint.

When using a redirect, Azure Front Door simply provides a 3xx-level HTTP response
to the client for a given rule match. However, rewrites enable you to alter the request
URI. If you’re familiar with NGINX rewrites, Azure Front Door’s rewrites are much
simpler. In NGINX, the notion of a rewrite triggers reprocessing of the request
through the proxy rules. A rewrite in Azure Front Door enables you to modify the
requested URI path before making an upstream request to the backend pool end‐
point. Think of a rewrite with Front Door as the functionality NGINX provides by
allowing manipulation of the request URI before using the proxy_pass directive.

68 | Chapter 5: Azure Front Door with NGINX

Front Door’s Place in the Stack
Azure Front Door can listen for multiple frontend configuration endpoints and
directly respond with blocks, redirects, and cached content. Requests not served
directly have routing rules applied to direct the request to the intended healthy back‐
end service. Network optimization for latency happens by proximity and connection
management. Request routing with Front Door is at the macro level, connecting
frontend listeners with backend service providers by hostname or by URI path. Using
Azure Front Door provides the usefulness of a proxy in close proximity to the client,
which you can configure but do not have to actively manage. Figure 5-1 depicts how
a client would connect to an application through Azure Front Door.

Figure 5-1. The closest Front Door point of presence receives the client’s request and then
proxies it over an optimized connection to the closest application endpoint. One Front
Door POP makes that connection across regions, because Application B does not exist in
Region 2.

Benefits of Azure Front Door Service with NGINX
Azure Front Door and NGINX have a lot of overlapping functionality, but they com‐
plement each other by being at different layers of the stack. Front Door initially
receives the request, doing high-level routing and optimization closest to the con‐
sumer before proxying requests to a more centralized location for more specific rout‐
ing and load balancing.

Benefits of Azure Front Door Service with NGINX | 69

Front Door’s physical distribution adds a lot of benefits itself, but using Front Door
with NGINX allows for further optimization. By knowing the way Front Door oper‐
ates, NGINX can be optimized to keep client connections and TLS sessions open
longer. Usually client connections and TLS sessions would be kept fairly low when
serving directly to the end consumer to limit the memory and file-handling limita‐
tions of a server. In a scenario in which we do control the client, Front Door, we can
lengthen the amount of time client connections are open to optimize connections
safely. This optimization can also be made between NGINX and the upstream appli‐
cation server, as we have complete control over that client-server communication
as well.

You may want to employ some of the overlapping functionality at a single layer. If you
can offload processing or responses to a managed edge service, you should do so.
Limiting the amount of processing for a given request will result in optimizing usage
costs. When using Azure Front Door in conjunction with NGINX, focus your atten‐
tion on content caching, macro-level routing, and regional failover at the edge, Front
Door. Use NGINX as the reverse proxy load balancer at the micro level, routing
between internal microservices that make up a service offering. In regards to block‐
ing, security is done in layers, enabling Front Door WAF, along with NGINX working
as a WAF, to provide a second layer of protection; this is an example of where over‐
lapping functionality would be desired at both layers.

NGINX fits as the last layer between the public internet or other Azure services and
your internal applications on the private network. In that regard, NGINX is much
more intimate with the applications that make up the service offering and is prime for
private communication between machines on the internal network. Whereas Azure
provides the building’s Front Door, NGINX acts as the office suite door. Once the
request has entered the office, it’s directed to a specific conference room or personal
office for fulfillment. If a posted sign or a lock on the outside of a building does not
meet the need, an office door or front desk attendant may; if not, only then will inter‐
nal resources be utilized.

This sort of layering of application delivery controllers, or Layer 7 proxies, provides
security, as well as thorough customization for web request routing.

Integrating Azure Front Door Service with NGINX
To integrate Azure Front Door with NGINX, you need to configure NGINX as a
backend pool to Front Door.

If you have not already done so, you’ll need to build a Front Door. Using the Azure
Console or some other infrastructure management tool, construct a Front Door con‐
figured for your subscription ID, resource group, and region. Next, configure a front‐
end host for Front Door by defining the hostname and enabling session affinity or

70 | Chapter 5: Azure Front Door with NGINX

WAF if necessary. To utilize the WAF capabilities, you will need to have pre-existing
Azure WAF policies.

Front Door Features
Once you have a frontend host configured, you can set up a backend pool. You can
add multiple backend pools to a Front Door, so if you already have a Front Door set
up, you can add another backend pool for your NGINX backend.

Backends are logical; if a service is distributed regionally, each endpoint should be
grouped and added to the same backend pool. In this manner, Front Door will enable
failover and automatically route to the closest endpoint.

Add NGINX endpoints as backend hosts to a backend pool. The host header used
when proxying the request to NGINX is configurable, which may be useful when the
NGINX node receives requests for multiple domains and then routes appropriately,
even if DNS for the hostname is not actually pointed at the NGINX endpoint but
rather is pointed somewhere else, such as at Front Door. Configure any health probes
that determine whether the nodes in the backend pool are healthy. Azure Front Door
will direct requests only to backend pools that pass their health probes.

Routing Rules
Next, apply routing rules to map the frontend host to the backend pool. In this sec‐
tion of the Front Door configuration, you can match based on the request URI and
choose to redirect or forward the request. To route to NGINX, you would forward
the request, at which point you can choose to rewrite it to manipulate its URI.

Once this section is configured and the Front Door is deployed, it is passing requests
to NGINX.

Optimizing with NGINX
To optimize NGINX for use with Azure Front Door Service, tune the length of time
NGINX allows for client connections and TLS sessions. You can do so by use of the
keepalive_timeout directive and the ssl_session_timeout directive. The default
keepalive_timeout is 75 seconds, and the default ssl_session_timeout is 5
minutes:

server {
 # Your server configuration
 keepalive_timeout 300s;
 ssl_session_timeout 300s;
}

Integrating Azure Front Door Service with NGINX | 71

Conclusion
In this chapter, you learned about the Azure Front Door Service and the optimiza‐
tions it can provide for your application. Now that you have a full view of the services
Azure provides for the data plane layer, you can start to see how the pieces fit
together for your scenario. This layer of Azure managed service provides a way to
distribute the endpoint connection for the client to the closest location to lower
latency. Together with NGINX, Azure Front Door can handle the initial request,
run it through initial managed WAF, and then proxy the request over an optimized
connection to an NGINX API gateway for more control over delivery of your
application.

72 | Chapter 5: Azure Front Door with NGINX

CHAPTER 6

Monitoring NGINX in Microsoft Azure

Monitoring application performance is as important as monitoring your network,
infrastructure, or security. Applications contain valuable data that you can use to fine-
tune performance and function or prevent possible failures. Both Microsoft Azure
and NGINX offer several tools and plug-ins for detailed application performance
monitoring.

Azure Monitor
Monitoring and understanding your application’s performance and being able to
identify and address any issues that may affect the application or its resources are
necessary tasks. Azure Monitor collects data from your Azure environment for analy‐
sis and proactive planning.

Azure Monitor captures data from a variety of sources, such as the application, OS, or
custom sources. The two primary data types, metrics and logs, are kept in data stores.
Metrics are measured numerical values or counts that provide a snapshot of the appli‐
cation or system at a specific time. They are light and fast, with a near real-time capa‐
bility. Logs contain records for all sorts of different data types captured from your
telemetry, such as performance data and events.

Data can be collected from any number of sources in your environment. Azure breaks
these sources down into application tiers, with your application at the top and con‐
tinuing down through the operating system and internal Azure resources. Each of
these tiers is broken down further into more detailed sources. For example, Azure
Monitor can collect data from within the application to monitor the application and
code itself through user telemetry, logs, and performance indicators. It can even col‐
lect data through a REST service, allowing for custom monitoring options that won’t
expose streaming data via other sources.

73

Azure Monitor has five categories of functions that it can perform on the metrics and
logs data stores: insights, visualizations, analysis, response, and integration. These
functions allow you to create dashboards, alerts, views, and much more.

There is an overview page for most Azure resources in the Azure portal that shows
data collected by the monitor. For example, with the metrics explorer for a virtual
machine, you can view graphs that track multiple metrics over a period of time to
monitor long- or short-term performance. Or you can pin individual charts to a
dashboard to provide a broad view of the information you’re monitoring across your
environment.

Additional Tools Available in Azure for Monitoring
Dozens of monitoring tools made by third-party vendors are compatible with Azure.
Among these, AppDynamics, Datadog, and Dynatrace also offer plug-ins for both
NGINX OSS and NGINX Plus.

AppDynamics
This is a full application performance–monitoring suite for monitoring enter‐
prise applications for optimization and fine-tuning. In Azure, it has tools to
monitor native services like Azure Cloud Services, virtual machines, and data
storage. The AppDynamics NGINX plug-in offers additional monitoring of
active connections, number of requests, accepted and handled requests, and
more.

Datadog
This is a popular monitoring and analytics tool in DevOps for monitoring
servers, databases, and applications throughout Azure. For NGINX OSS, Data‐
dog monitors total requests and accepted/handled/active connections. More met‐
rics are available for NGINX Plus, such as SSL, caches, upstream server metrics,
and errors.

Dynatrace
Dynatrace provides monitoring for the full Azure environment without manual
configuration. It uses AI for automated monitoring. NGINX integration is very
robust, including network traffic analysis and retransmission metrics.

TICK with Grafana
This is an open source monitoring solution. TICK stands for Telegraf, InfluxDB,
Chronograf, and Kapacitor. Grafana is best known for its data visualization capa‐
bilities. Telegraf is a Python-based data collector agent used mostly for its ease of
configuration, while InfluxDB is a time-series database known for its speed;
Chronograf is the UI and administrative component of InfluxDB. Kapacitor is an
open source data processing framework.

74 | Chapter 6: Monitoring NGINX in Microsoft Azure

Azure Security Center with NGINX
The move to cloud and hybrid solutions requires additional security practices. As its
name implies, Azure Security Center is a native Azure service that provides threat
prevention, detection, and response tools. There is a free tier with limited functional‐
ity and a fee-based standard tier with a complete set of security capabilities for organ‐
izations that need enhanced functionality. The free tier monitors compute, network,
storage, and application resources in Azure. It also provides security policy, security
assessment, security recommendations, and the ability to connect with other security
partner solutions. The standard tier includes the capabilities of the free tier for on-
premises environments (private cloud) plus other public clouds such as Amazon Web
Services (AWS) and Google Cloud Platform (GCP). The standard tier also includes
many more security features, along with the following critical security controls:

• Built-in and custom alerts
• Security event collection and advanced search
• Just-in-time virtual machine (VM) access
• Application-specific permissiveness

The NGINX configuration deployed to Azure VMs and VMSSs can have the Micro‐
soft Monitoring Agent installed to read various security-related configurations and
event logs from the VM for monitoring in Security Center. This provides a unified
view of Azure resources, including NGINX resources.

Azure Monitor with NGINX
Meaningful metrics play a crucial role in helping to understand applications and the
underlying services and infrastructure they run to create nominal operational base‐
lines and detect, investigate, and diagnose issues.

Azure Monitor integrates the capabilities of Log Analytics and Application Insights
for end-to-end monitoring of applications that include NGINX as well as the VMs
and VMSSs hosting NGINX.

Syslog is an event-logging protocol common to Linux and is the best way to consoli‐
date logs from multiple sources into a single location. The Microsoft Monitoring
Agent (MMA) for Linux hosting NGINX configures the local syslog daemon to for‐
ward messages to MMA, which then sends the messages to Azure Monitor, where a
record is created.

Azure Governance and Policy Management for NGINX
Azure provides a suite of tools and services to provide management to maintain
applications and their supporting resources. Azure Governance is one of those tools.

Azure Security Center with NGINX | 75

Azure Governance offers the following features and services that can be implemented
across all your Azure environments:

• With Azure Management Groups, you can create flexible hierarchies for applying
policies across multiple subscriptions.

• Azure policies enforce different rules and effects over your resources.
• Azure Blueprints allow the creation of fully compliant environments and the abil‐

ity to apply group policies to new Azure subscriptions.
• Azure Resource Graph allows fast visibility into all your resources.
• Cost Management allows the analysis of costs and the ability to monitor usage

from a single dashboard.

NGINX, as well as the VMs and VMSSs hosting NGINX, can be managed with the
functionality provided in Azure Governance.

Azure Sentinel
Azure Sentinel is a managed SIEM (security information and event management) and
SOAR (security orchestration, automation, and response) solution. Azure Sentinel
collects all of your log and metric data and analyzes it for security incidents using
machine learning. This machine learning is bootstrapped by training from years of
security work done at Microsoft and further learns from your data to correlate what is
normal for your application.

Sentinel Integration
Azure Sentinel looks at all the data with which you can provide it to correlate and
hunt for threats and incidents. The more data sources you provide to Sentinel, the
more perspective it has. Azure Sentinel can monitor a vast array of different types of
data. The simplest integrations are called service to service and are direct integrations:

• Amazon Web Services—CloudTrail
• Azure Active Directory (audit logs and sign-in logs)
• Azure Active Directory (AD) Identity Protection
• Azure Activity
• Microsoft Defender for Identity (formerly Azure Advanced Threat Protection)
• Azure Information Protection
• Azure Security Center
• Azure Web Application Firewall
• Domain name server (DNS)

76 | Chapter 6: Monitoring NGINX in Microsoft Azure

https://oreil.ly/qG-Il
https://oreil.ly/53GCc
https://oreil.ly/WSBJn
https://oreil.ly/zL65e
https://oreil.ly/ifxs5
https://oreil.ly/fGxxD
https://oreil.ly/0BhWF
https://oreil.ly/sP1Az
https://oreil.ly/pynGL

• Microsoft Cloud App Security
• Microsoft Defender for Endpoint (formerly Microsoft Defender ATP)
• Microsoft Office 365
• Windows Defender Firewall with Advanced Security
• Windows security events

This set of integrations puts you in a really good place to detect threats and security
incidents. Azure Sentinel can correlate events from AD with Office 365 and deter‐
mine how events in those services may have been related to an Azure WAF incident.

Next, Sentinel is able to connect to a number of external solutions though their APIs.
These solutions have integrated with Sentinel in such a way that Sentinel understands
how to retrieve logs from the service’s API. These logs are harvested and put into
Azure Log Analytics where Sentinel can utilize them. Some of these external sources
include:

• Alcide kAudit
• Barracuda CloudGen Firewall
• Barracuda WAF
• Citrix Analytics (Security)
• F5 BIG-IP
• Forcepoint DLP
• Perimeter 81 activity logs
• Squadra Technologies secRMM
• Symantec ICDx
• Zimperium Mobile Threat Defense

These integrations will enable Sentinel’s use of common security systems that may
live outside of your Azure cloud footprint. By connecting multiple solutions as data
sources, we’re able to bring all our security monitoring under a single pane of glass,
which not only aids in our discovery but also strengthens the machine learning that’s
flagging events.

Other services that are not yet listed can be integrated with Sentinel through the use
of an agent that acts as a syslog receiver. The logs are collected by the syslog receiver
and then sent to Log Analytics, where they’re made available to Sentinel. The syslog
receiver converts the log stream from the common event format (CEF) and into the
format needed for Log Analytics. Services that can integrate with syslog to use the
Log Analytics/Sentinel agent include the following:

Azure Sentinel | 77

https://oreil.ly/AUCaL
https://oreil.ly/y8zxn
https://oreil.ly/zf1M3
https://oreil.ly/xZkvX
https://oreil.ly/iUBZM
https://oreil.ly/lL_W3
https://oreil.ly/UEitF
https://oreil.ly/Icdt7
https://oreil.ly/c4knc
https://oreil.ly/Gz5ZB
https://oreil.ly/sPsnH
https://oreil.ly/Bpv7D
https://oreil.ly/QM798
https://oreil.ly/6Yx7x
https://oreil.ly/LPiK3

• Firewalls, proxies, and endpoints:
— NGINX
— AI Vectra Detect
— Check Point
— Cisco ASA
— ExtraHop Reveal(x)
— F5 ASM
— Forcepoint products
— Fortinet
— One Identity Safeguard
— Other CEF appliances
— Other syslog appliances
— Palo Alto Networks
— Trend Micro Deep Security
— Zscaler

• ALP solutions
• Threat intelligence providers
• DNS machines (agent installed directly on the DNS machine)
• Linux servers
• Other clouds

NGINX Sentinel integration
To integrate NGINX with the Log Analytics/Sentinel agent, you just need to turn on
syslog in the NGINX configuration for the log directives:

error_log syslog:server={ip_of_Receiver} debug;
access_log syslog:server={ip_of_Receiver},facility=local,tag=NGX,severity=info;

The prior example configures NGINX to send syslog messages for errors generated
by NGINX and also turns on the debug log, which provides valuable connection
information when looking for security events. The example then logs all access logs to
the syslog receiver, tagging them with information compliant with the common event
format.

The facility attribute is meant to identify which part of the system the log came from;
examples of facility names include kern (for kernel), mail, daemon, auth, and audit.
The tag attribute can be any value we’d like to use; NGINX is a good identifier, but we

78 | Chapter 6: Monitoring NGINX in Microsoft Azure

https://oreil.ly/T5O7e
https://oreil.ly/Wki7Q
https://oreil.ly/hc1VG
https://oreil.ly/ShHC0
https://oreil.ly/UZ9Hz
https://oreil.ly/9QqO4
https://oreil.ly/fmSha
https://oreil.ly/9qqCp
https://oreil.ly/jGXVi
https://oreil.ly/0OhdU
https://oreil.ly/vvRd4
https://oreil.ly/7GmbW
https://oreil.ly/tgJyi
https://oreil.ly/uOB0D
https://oreil.ly/5onOp

may want to set this to be specific to a DNS name NGINX is listening for, in which
case we would define our aces_log directive within a server block and use something
more specific. The severity attribute is a predefined severity type; NGINX sets this to
info by default. There are a number of other options, such as debug, warning, error,
and critical.

More information about the syslog protocol and the CEF format can be found in the
RFC 3164.

Sentinel Monitoring
Sentinel Workbooks are the same as Azure Monitor Workbooks; however, they’re
presented differently, with security in mind. You can configure your own workbooks
to enable you to view your data in any way useful to your security processes. These
dashboards allow you to build detailed or high-level views of specific portions of your
system while also being able to pull information from any of the data sources you’ve
enabled.

When Sentinel detects a threat or security event, it produces analytics about that inci‐
dent. An incident is reported, and data about the incident is correlated and presented
to you in a concise format. Incidents are classified into severity groups: Critical, High,
Medium, Low, and Informational. An incident goes through the Open, In progress,
and Resolved states. This enables your security team to work from a queue of inci‐
dents that need further investigation or remediation.

Sentinel Automation
Sentinel enables you to automatically respond to security incidents with automation
through the use of playbooks. A large number of playbook integrations enable Senti‐
nel to send messages to different systems, which may issue an alarm or take action.
These integrations can also respond to the playbook so that it can further process
the incident until it is resolved or sent to a human for further investigation and
remediation.

A playbook is able to control the workflow as a state machine, sending notifications
to managed or on-premises connectors. During the workflow, the information passed
to such connectors can be manipulated with variables about the incident for basic
string and object manipulation. Custom code can also be triggered to enable integra‐
tion with any system or to build custom response actions by use of Azure Functions
and direct inline JavaScript. You may use these abilities to integrate with third-party
systems that are not prebuilt connectors or respond to incidents directly.

Sentinel provides a one-stop shop for security monitoring and response. Collecting
information from all data sources possible provides Sentinel with a bird’s eye view of
your technology and the events that happen within it. Through the use of machine

Azure Sentinel | 79

https://oreil.ly/Q84nt

learning, Sentinel is out-of-the-box smart on security events and will automatically
start to determine patterns of normal usage to spot anomalies. The incident manage‐
ment enables your team to stay on top of events and make sure that they’ve been han‐
dled. And finally, the automation abilities provide you with the capability to
automatically respond to incidents, by notifying the appropriate parties, taking some
action, or processing the data further. Azure Sentinel is an extremely valuable addi‐
tion to any security team’s tool box.

Azure Governance and Policy Management
Azure Governance is a portion of the Azure Management area that specifically focu‐
ses on policy and cost management. Azure Governance is not a single product but
rather a methodology that employs a number of Azure’s features.

Governance starts by organizing your subscriptions into management groups. Man‐
agement groups are logical containers of Azure subscriptions that create a hierarchy.
The hierarchy enables you to apply group-wide policies that are inherited by a child
from a parent. When you get started with Azure Management Groups, a root group is
automatically created for you, and all subscriptions within the directory become chil‐
dren of the root group. Azure enforces a single hierarchy strategy to provide the
administrator the ability to create top-down policies that apply to the entire directory.

Management groups
Management groups can be divided into a hierarchy that makes sense for your orga‐
nization. It’s typical to see groups organized by business units, by teams, and then
perhaps by project or product or environment. You can build up to 10,000 groups
and have a tree that branches six levels, not including the root group.

Once you have a root group, and some hierarchy built up, you can start to apply poli‐
cies to groups. Policies help to enforce standards and compliance within Azure. You
can use policies to govern things like which Azure regions can be used, which SKUs
can be consumed for different types of services, resource types available, and tagging.

Policies
With policies, you provide the intent of the standard you want to enforce. Policies can
be applied to audit or deny actions. When you get started with policies, resources
already provisioned to a subscription will be flagged in an audit capacity as non-
compliant, and remediation recommendations are provided; in addition, a remedia‐
tion task is created to track the remediation effort.

Policies are different from role-based access control (RBAC). Policies do not have
anything to do with the user’s permissions; they’re specifically about the resources
being requested and ensuring that they meet the organization’s standards.

80 | Chapter 6: Monitoring NGINX in Microsoft Azure

When a resource is requested that does not conform to the policy, either the resource
is flagged as noncompliant when the policy is in audit mode, or it is blocked from
being created if the policy is set to deny. Other actions can be performed as well, such
as auto-remediation, where the policy can alter the resource change request before or
after the resource is provisioned.

Policies or sets of policies can be applied to management groups and subscriptions as
well as to resource groups. It’s suggested that you start from the topmost, broadest
policy and work your way down to the lowest, most restrictive level, because of the
hierarchy structure.

Any of the load balancers that you create will exist within a resource group. There can
be multiple resource groups within a subscription, and multiple subscriptions within
a management group. As described previously, there can be multiple management
groups within an Azure directory that make up a hierarchy. Given that, at any point
there may be up to three or more policies applied. The highest level takes precedence,
and rules are applied from the top down within the hierarchy of management groups,
subscriptions, and resource groups.

With this layered approach, administrators are able to build complex, multitiered
governance over the organization’s use of Azure. This control enables them to specify
which regions are available for use, what type of resources can be used, and the size of
those resources.

Cost management
These concepts pair with Cost Management because they enable the ability to restrict
usage for certain levels of logical resource groupings within Azure. Currently in
Azure Cost Management, you can scope by management group, but you can’t filter or
group by management groups. Azure Billing has its own separate hierarchy that is
unrelated to the management group hierarchy. This makes sense when you consider
that the management side of things does not always map one-to-one with the
accounting side of the organization.

One way to aggregate costs is through the use of tags, which, as you may remember, is
one of the resource attributes you can govern with policies. At your root management
group layer, you can enforce a policy that requires specific tags to be set for billing
aggregation. Within a child management group layer, you may default the tag to a
value, and so on down the hierarchy. Tag policies and defaults can be set at any layer;
it simply makes sense that sublevels are where things would be defaulted.

Example scenario
As an example, let’s examine an Azure VM running NGINX as our resource request.
The NGINX VM must exist within a resource group, within a subscription. The sub‐
scription is logically grouped under a management group named Sandbox. The sand‐

Azure Sentinel | 81

box management group is a child of the App-Dev management group, which is a
child of the root management group. Figure 6-1 shows this hierarchy in a diagram.

Figure 6-1. Example of governance hierarchy.

At the root layer, we may apply a policy that all resources must be tagged with the
following tags:

82 | Chapter 6: Monitoring NGINX in Microsoft Azure

• Business Unit
• Environment
• Application
• Service

In our child management group, Sandbox, we can enforce all of these tags as well but
default or require the Business Unit tag to be set to “App-Dev.” In the child manage‐
ment group of the App-Dev management group, we can default or require the Envi‐
ronment tag to be set to a value of “Sandbox.” The subscription may have a policy,
though it also may not enforce any tagging standards or defaults. Applying a policy to
the resource group may default or require the Application tag to be set to the name of
the application or service offering. At this point, the only tag that is not set by default
is the Service tag. This means that when we create our NGINX VM, we must specify
that a tag named Service is set to a value.

When we create the NGINX VM, specifying that the Service tag be set to a value of
“NGINX,” our VM will be created and automatically tagged as follows:

• Business Unit: App-Dev
• Environment: Sandbox
• Application: Ecommerce
• Service: NGINX

With this layer of governance, we’re able to ensure that accounting is able to aggregate
costs down to the service level of an application within any environment for any busi‐
ness unit.

Furthermore, we’re able to control what size of VM is used for NGINX by specifying
policies that restrict SKUs. For example, let’s say that marketing requires various types
of large instances for machine learning, and we do not wish to cap the SKU usage for
VMs at the root level. We can specify that the App-Dev business unit’s Sandbox man‐
agement group must run only Standard-level VMs but that the production environ‐
ment must be able to use certain specialized SKU types.

We would apply a policy to the Sandbox management unit that specifies that only
Standard SKU VMs are allowed to be created. This enables us to manage spend by
not allowing our development team to utilize overly provisioned machines for
testing.

With geological/regional controls, we’re able to define where the virtual machine is
created. The other feature of policies allows us to specify which services are available
for use—for example, enabling directory services in the IT management group but
not in other groups.

Azure Sentinel | 83

With these controls, you’re able, through a hierarchy, to govern what gets created
where in your Azure environment without having to consider who is requesting the
resource, enabling a high-to-low-level control interface over your environment.

Conclusion
This chapter covered general information about Azure governance, monitoring, and
security. This information provides you with multiple options for controlling your
Azure subscription hierarchy, in which your load balancers live, and for monitoring
your load-balancing solutions at multiple layers, including security.

In the final chapter, we will take a closer look at security in the context of NGINX and
Azure Firewall.

84 | Chapter 6: Monitoring NGINX in Microsoft Azure

CHAPTER 7

Security

Security is everyone’s job. To maintain a secure system, you need as many layers of
controls as possible. Azure and NGINX offer a number of those layers for the data
plane. These layers come as features of control and visibility. Managed Azure services
integrate directly with Azure Monitor. Third-party data plane services, such as
NGINX, can integrate with Azure Monitor, as well as through the use of an agent.
Third-party services such as NGINX sometimes offer their own monitoring capabili‐
ties as well.

The previous chapter focused on monitoring; the amount of information you can
gather from monitoring the data plane is vast. The data plane sees every request to
and within your web application. With what you learned in the monitoring chapter,
you now have visibility into those requests. With a public web application, you may
see metric values that surprise you—perhaps your application is popular with bots,
for instance. A look into the access logs, which show what requests are getting made,
may have scared you. It’s common for bots and hackers to scan an endpoint for
known vulnerabilities.

There’s a lot at stake for a web application. In the obvious cases, sensitive data must
not be leaked or breached. It’s our understanding that the Capital One data breach
was spawned from a Server-Side Request Forgery (SSRF) attack, a type of attack that
is well-known and covered by the OWASP Core Rule Set. It was not that Capital One
was not using a WAF; they were—ModSecurity, in fact. It was that the applied Mod‐
Security rules were misconfigured, allowing the attacker to run commands on the
server to return access credentials with more privilege than they should have had.
Once the attacker had the credentials, they were able to retrieve the data of 160 mil‐
lion people.

After seeing the type of requests your application is receiving, and knowing that sim‐
ple misconfiguration can cause such massive damage, you’re ready to do something

85

about it and protect your application. Securing a web application requires controls
around management, accurate detection of issues through audits and monitoring,
and active prevention. This chapter will focus on security controls and visibility of
those controls for audits and active monitoring use of NGINX and Azure products.

NGINX Management with NGINX Controller
NGINX Controller is an application-centric control plane for your application envi‐
ronments. Controller provides a web-based user interface and API for interacting
with a fleet of NGINX Plus servers. Controller elevates your data plane from a low-
level NGINX Plus file-based configuration to a higher-level configuration with
respect to the applications themselves. You tell Controller about your applications
and how you want them presented, and Controller handles the NGINX Plus configu‐
ration and distribution of that configuration to the NGINX Plus nodes. Controller is
a commercial product available from NGINX, Inc., as an add-on to an NGINX Plus
environment.

Figure 7-1 shows the NGINX Controller platform, depicting the type of users that
may interface with it, the available ecosystem integrations, and the controlled layers
between the application code and the user.

Figure 7-1. NGINX Controller platform.

Controller is infrastructure and cloud agnostic, which means you can use it to man‐
age NGINX Plus nodes wherever they may be. This is extremely useful for multicloud
or hybrid cloud deployments.

86 | Chapter 7: Security

When using NGINX Controller, you have a single interface to control and monitor
your NGINX Plus fleet. Controller provides different views that pertain to specific
sections of the stack. The platform view is used for managing NGINX Controller set‐
tings and user access. Users can be granted access only to specific views that pertain
to their role within an organization; this enables a self-service model. The infrastruc‐
ture view details information about the NGINX Plus nodes running the Controller
agent. The services view organizes and manages objects pertaining to applications,
environments, gateways, and APIs. The analytics view provides access to metric
information about services and NGINX Plus instances.

The applications, environments, gateways, and APIs are the application-centric con‐
figuration objects that make up how NGINX Controller delivers your applications.
An application represents your web application, which is further broken into compo‐
nents describing how to reach the services-offering portions of your application.

The end user–facing side of an application is defined at the gateway, which represents
an NGINX Plus node server configuration. An environment gives you the ability to
group and isolate configurations and access to resources across stages such as test and
production. This is a powerful way to take a single configuration and advance it
through stages until release. APIs provide the ability to tightly define specific API
configurations when NGINX Plus is acting as an API gateway or service mesh.

By splitting management and usage, Controller provides teams with an integration
point. It also applies a layer of safety for your teams as they share physical resources.
Infrastructure teams make servers available by connecting NGINX Plus nodes to
Controller. Security teams make TLS certificates available and have a single pane of
glass for data plane security controls and security events. Developers and Operations
teams can utilize these resources to focus on their application delivery with all these
other components abstracted.

NGINX Controller fits directly into an application code deployment pipeline by cen‐
tralizing NGINX Plus management into a single system. The NGINX Controller con‐
figuration is driven by an API that is available to its users. Each entity or
configuration object in Controller can be managed through this API; when using the
UI, each create or update action to an entity shows the exact API call that can be used
to perform the same action in an automated fashion. An NGINX-maintained Ansible
collection helps teams using Ansible configuration management to integrate directly
with the Controller API.

Ansible is a configuration management tool that defines the
desired state of system configuration through declarative configu‐
ration. It can be used to automate bootstrapping and ongoing con‐
figuration updates of a virtual machine.

NGINX Management with NGINX Controller | 87

NGINX Controller Application Delivery Module
with App Security Add-On
Centralizing control and monitoring of your data plane makes it easy to manage,
audit the current security state, and get visibility on security incidents as well. NGINX
Controller Application Delivery Module with App Security enables the use of a Web
Application Firewall to protect apps from web-based threats. The App Security Add-
On controls the NGINX App Protect module that runs on top of NGINX Plus, serv‐
ing as the WAF enforcement point on the data plane that sits in front of the
application. WAF can be enabled via NGINX Controller by adding a few more
parameters to the specification for enabling traffic management services via an
NGINX Controller API endpoint or the web-based user interface. It also collects
WAF information from the data plane to provide loopback and threat visibility (how
many violations and what violations) from WAF.

Figure 7-2 shows an example of a graph provided by NGINX Controller Application
Delivery Module with App Security Add-On that compares normal traffic and suspi‐
cious or blocked traffic trends over time.

Figure 7-2. Controller ADC comparing normal traffic versus suspicious or blocked
traffic.

This optional and separate NGINX product is fully functional within Azure and pro‐
vides an additional or exclusive way to manage NGINX without the use of Azure
Security Center, Azure Monitor, or Azure Portal or PowerShell. Figure 7-3 depicts
an administrator’s control of the data plane using high-level concepts provided by
Controller.

88 | Chapter 7: Security

Figure 7-3. Administration with high-level concepts to configure a fleet of NGINX Plus
servers with WAF capabilities.

NGINX App Protect
As mentioned in “Comparing NGINX and Azure Web Application Firewall Capabili‐
ties” on page 60, you can add WAF to NGINX Plus without using NGINX Controller.
NGINX App Protect is built on F5’s WAF and bot protection, runs natively on
NGINX Plus, and integrates security controls into your application.

NGINX ModSecurity WAF
Also mentioned in “Comparing NGINX and Azure Web Application Firewall Capa‐
bilities” on page 60, NGINX can use ModSecurity directly to act as a Web Application
Firewall. To use ModSecurity, you need to build and install the ModSecurity project
as well as the NGINX module. NGINX’s “Compiling and Installing ModSecurity for
NGINX Open Source” guide is extremely useful when going through this process.

To those using NGINX Plus, NGINX, Inc., offers an additional product, NGINX
ModSecurity WAF. This product includes a ModSecurity module built, tested,
and supported by NGINX, Inc. This product is an add-on to an NGINX Plus
subscription.

An open source security scanning tool called Nikto can be used to test the WAF rules.
Nikto scans an HTTP endpoint for known common security vulnerabilities and will
demonstrate that the ModSecurity rules are working.

An important part of security is control. When managing a fleet of NGINX servers,
their configuration should be under management through a configuration manage‐
ment tool. Configuration management tools enable keeping configuration as code in
source control. With configuration management, you can enforce the use of these

NGINX ModSecurity WAF | 89

https://oreil.ly/uC1H_
https://oreil.ly/uC1H_

rules on your NGINX configuration. To ensure that the enforcement does not get
turned off, many source control systems have a feature called code owners. This
enables the source control repository to require approval from certain users or teams
for updates to specific files. It’s possible to require approval from security personnel
for changes to base templates that enable the WAF settings, for example. We bring
this up because this type of integration between teams lessens the burden of change
management.

Microsoft Azure Firewall Integration into a
Load-Balancing Solution
Azure Firewall is a managed, cloud-based network security service that protects your
Azure Virtual Network resources. It is a fully stateful Firewall-as-a-Service with built-
in high availability and unrestricted cloud scalability. You can centrally create,
enforce, and log application and network connectivity policies across subscriptions
and virtual networks.

Azure Firewall is a regional service that spans availability zones. Azure Firewall works
like a traditional network firewall but is fully managed. You can add NAT, network,
and application rules, grouped as collections. Azure Firewall filters in and out of
Azure Virtual Network.

To integrate with a load-balancing solution, you would configure inbound DNAT
support. This feature enables you to run a traditional firewall in front of your load-
balancing device. Your rule would simply specify the source address as the network
you want to allow traffic from. The destination address would be the public IP of the
Firewall, and the port value would be set to the port in which your application
receives traffic from the public. The translated address and port values tell the Azure
Firewall where to direct the traffic if it’s allowed; this is where you would enter your
load balancer information. This may be an NGINX virtual machine, or it may be an
Azure Load Balancer that is load balancing for specific services or for NGINX acting
as an API gateway.

Once configured, your traffic should be directed to the Azure Firewall public IP
address. The Azure Firewall will filter inbound traffic to your load balancer for only
network communication approved by the rule groups.

The Azure Firewall can also work as an outbound NAT that receives traffic from
within the Virtual Network and filters outbound communication for only known
allowed traffic. It can even be directed to send outbound traffic to a specific next hop,
such as another firewall either on-premises or on a virtual machine within Azure.
Outbound filtering can be done with FQDNs as well as network rules and does not
interrupt a TLS connection.

90 | Chapter 7: Security

The threat intelligence feature applies the Microsoft Threat Intelligence feed to your
Firewall rules. Threat Intelligence is a feed of security signatures produced by years of
research and machine learning on Microsoft’s global view of the internet’s threat
landscape. This feature keeps your firewall up to date to block and alert for traffic
going to or coming from known malicious IPs and domain names.

The Azure Firewall is a nice security bonus in the Azure cloud. Its integration with
Azure Monitor and Azure Firewall Manager makes analytics, monitoring, and man‐
agement native.

NGINX Integration as an NVA Firewall
NVA, or network virtual appliance, is the name for a pattern in which a virtual
machine performs networking functions. It is usually isolated in its own virtual net‐
work segment and is the main entry point to and/or from the internet. To utilize
NGINX as a Layer 7 NVA, you would construct a subnet within your virtual network
and label it something like “Public DMZ,” for “demilitarized zone.” Your NGINX
nodes would go in this subnet.

A separate subnet for your application servers would also be built. Routing to the
application or private subnet is possible only through internal route tables for the vir‐
tual network. This means that these servers are not accessible from the public inter‐
net. Requests must be routed through your DMZ and your NVA before being passed
to your application. This gives NGINX the position of sitting between public traffic
and your applications. Figure 7-4 depicts the network and infrastructure when using
an NVA inline between the public internet and your applications.

You can use a public Azure Load Balancer to balance traffic over highly available
NGINX nodes. The NGINX nodes would filter traffic based on the Load Balancer’s
own rules, such as allowed networks, request valuation, and WAF rules.

NGINX would not be used for outbound filtering; for an outbound Layer 7 NVA, you
could use something like Squid to provide an outbound HTTP(S) proxy.

NGINX Integration as an NVA Firewall | 91

Figure 7-4. Highly available Layer 7 ingress NVA firewalls in front of a set of servers.

Conclusion
Throughout this book, you’ve learned a lot about application delivery and load bal‐
ancing. Our hope is that you now understand that there are different layers of proxies
and load balancers that can provide functionality at varying levels of the stack. With
this information, you can deliver your application at a global scale with features that
enable resiliency, performance, and security.

Azure managed services provide a lot of functionality out of the box. Our advice to
you is to always opt for managed services until your need outgrows their functional‐
ity. Managed services will always be cheaper when evaluated for total cost of owner‐
ship. The amount of cost, capital and opportunistic, that is saved by not sinking
engineering time and management into maintaining your own solution allows your
team to focus on its core objective: the application.

When the needs of advanced features do outgrow managed services, there are appli‐
cation delivery platforms and load balancers that can take your Layer 7 traffic routing
to the next level. NGINX and NGINX Plus have a lot of overlapping features that you
might also find in Azure managed services; however, they can be used in conjunction
with each other when operating at different levels—Front Door before NGINX as an
API gateway, for example. NGINX provides advanced controls when necessary but
still has all the core features necessary for building out a reliable, performant, and
secure data plane.

92 | Chapter 7: Security

The data plane is an optimal place to have good monitoring, as it sees every request
entering your system, as well as between services. This layer of your web stack pro‐
duces metrics and logs vital to understanding the overall health of your system.
Knowing who sent a request for what, to where, and when provides you all the infor‐
mation you need to tune and secure effectively. With the information you learned in
this book, you’re on your way to delivering meaningful information from your system
to your monitoring platform.

Resources like the Azure Firewall and NGINX put themselves at the edge to provide a
first-layer defense against attacks. Products like NGINX Controller or configuration
management tools centralize configuration to enable teams to efficiently manage and
audit configuration. Monitoring integrations provide feedback on the current state of
communication and active security events. These abilities combine to enable teams to
be in tune with their application security.

We hope you found this book useful and applicable to your web application footprint.
Go forth and use your new knowledge.

Conclusion | 93

Index

A
anycast protocol, 16, 67
AppDynamics, 74
application delivery

challenges of, 1
definition of term, 1
load balancing solution overview, 6

application delivery controllers (ADCs), 1-7
benefits of, 7
hardware versus software solutions, 2
load balancers and, 3
load balancing and OSI model, 3
load balancing benefits, 4
load balancing solutions, 5
purpose of, 2
solution overview, 6
structure and function of, 2

Azure Application Gateway
load-balancing dimensions, 10
OSI layers and, 9
overview of, 14
selection flowchart, 11
using with NGINX, 57-60

Azure Firewall, 90
Azure Front Door Service

features of, 68
load-balancing dimensions, 10
NGINX and, 69-71
OSI layers and, 9
overview of, 16, 67
place in the stack, 69
selection flowchart, 11
split TCP anycast protocol, 16, 67

Azure Governance

cost management, 81
example scenario, 81-84
features and services, 75
management groups, 80
overview of, 80
policies, 80

Azure Load Balancer
load-balancing dimensions, 10
OSI layers and, 9
overview of, 11
selection flowchart, 11
use scenarios, 13
using with NGINX, 56-57

Azure Marketplace, 28-31
Azure Monitor, 73
Azure Resource Manager (ARM), 32-35
Azure Security Center, 75
Azure Sentinel

automation, 79
Azure Governance, 80-84
benefits of, 76
integration, 76-79
monitoring, 79

Azure Traffic Manager
DNS-based load balancing in, 9
geographic traffic routing, 21
multiregion traffic routing, 23, 64
performance traffic routing, 20
priority traffic routing, 18
routing methods, 18
using with NGINX, 64-66
weighted traffic routing, 19

Azure virtual machine (VM), 29
Azure virtual machine scale sets (VMSSs), 31

95

Azure Web Application Firewall (WAF)
overview of, 15
using with NGINX, 60-62
WAF policies, 60

C
Capital One data breach, 85
CentOS, 41
common event format (CEF), 77
configuration management tools, 89
connection draining, 59
Controller (NGINX), 86-89
Core Rule Set (CRS), 62, 85
cost management, 81

D
data planes, ix, 2, 93
Datadog, 74
Debian, 39-41
Dynatrace, 74

F
firewalls

Azure Web Application Firewall (WAF), 15,
60

Microsoft Azure Firewall, 90
ModSecurity, 15, 61, 85, 89
NGINX Web Application Firewall, 89
NVA firewalls, 91
OSI layers and, 4

flows, 56
Front Door Service (see Azure Front Door Ser‐

vice)

G
geographic traffic routing, 21
Global Server Load Balancing (GSLB), 4, 10
Grafana, 74

H
hashing algorithms, 5
highly available systems, designing, 23, 64
HTTP(S) load balancing, 10
HTTP/2 traffic, 59

L
least latency algorithms, 17

Load Balancer (see Azure Load Balancer)
load balancing (see also managed load balanc‐

ing)
basic load-balancing solution, 3
evolution and goals of, 3
global versus regional, 10
HTTP(S) versus non-HTTP(S), 10
key feature of, 6
OSI model and, 3
problems solved by, 4
purpose of, ix
selection flowchart, 11
solution overview, 6
solutions provided by, 5

load distribution, 6
Log Analytics, 77

M
managed load balancing (see also load balanc‐

ing)
Azure native load balancing

Azure Application Gateway, 14, 57-60
Azure Front Door Service, 16, 67-72
Azure Load Balancer, 11, 56-57
Azure Web Application Firewall, 15,

60-62
global versus regional, 10
HTTP(S) versus non-HTTP(S), 10
load-balancing dimensions, 10
overview of, 9
selection flowchart, 11

Azure Traffic Manager
geographic traffic routing, 21
performance traffic routing, 20
priority traffic routing, 18
routing methods and monitoring, 18
using with NGINX, 64-66
weighted traffic routing, 19

benefits of combining with NGINX, 55, 92
cost, 9
designing highly available systems, 23, 64

Microsoft Azure (see Azure)
Microsoft Monitoring Agent (MMA), 75
ModSecurity, 15, 61, 85, 89
monitoring

Azure Monitor, 73
Azure Security Center, 75
Azure Sentinel, 76-84
third-party tools, 74

96 | Index

multiregion traffic routing, 23, 64

N
network firewalls (see firewalls)
NGINX

cost, 31
installing NGINX OSS

via Azure Marketplace, 28-31
via Azure Resource Manager, 32-35
in CentOS and RedHat Linux, 41
in Debian and Ubuntu Linux, 39-41
input variables file, 44
manually on VMs, 31
via Terraform, 36-39
virtual machine creation, 42

installing NGINX Plus
via Azure Marketplace, 28-31
manually on VMs, 31
via Terraform, 45-53

monitoring
Azure Monitor, 73
Azure Security Center, 75
Azure Sentinel, 76-84
third-party tools, 74

running Terraform, 45
uses for, 25
using with Azure Front Door Services,

69-71
using with Azure managed services

Azure Application Gateway, 57-60
Azure Load Balancer, 56-57
Azure Web Application Firewall, 60-62
benefits of combining services, 55
NGINX App Protect, 62-64
Traffic Manager, 64-66

version comparison: OSS versus Plus, 25-27
NGINX App Protect, 62-64, 89
NGINX Controller, 86-89
NGINX ModSecurity WAF, 89
NGINX Web Application Firewall, 89
Nikto, 89
non-HTTP(S) load balancing, 10
NVA (network virtual appliance) firewalls, 91

O
Open Web Application Security Project

(OWASP), 15
OSI (Open System Interconnection) model, 3

OWASP ModSecurity Core Rule Set (CRS), 62,
85

P
performance traffic routing, 20
point of presence (POP), 16
policy management, 75, 80
PowerShell, 32-35
priority traffic routing, 18

R
Red Hat Linux, 41
regional load balancing, 10
round-robin load balancing, 5

S
security (see also firewalls)

Azure Firewall integration, 90
NGINX Controller, 86-89
NGINX integration as NVA firewall, 91
NGINX WAF with ModSecurity 3.0, 89

Sentinel (see Azure Sentinel)
session affinity, 59
session persistence, 6
SpiderLabs, 62
split TCP anycast protocol, 16, 67
sticky sessions (see session persistence)
Syslog, 75

T
Terraform, 36-39, 45-53
TICK, 74
TLS termination, 68
Traffic Manager (see Azure Traffic Manager)
traffic routing

in Azure Traffic Manager, 18
geography-based, 21
multiregion, 23, 64
performance-based, 20
priority, 18
weighted, 19

Trustwave SpiderLabs, 62

W
Websockets, 59
weighted load balancing, 5
weighted traffic routing, 19

Index | 97

About the Authors
Derek DeJonghe has had a lifelong passion for technology. His background and
experience in web development, system administration, and networking give him a
well-rounded understanding of modern web architecture. Derek leads a team of site
reliability and cloud solution engineers and produces self-healing, autoscaling infra‐
structure for numerous applications. He specializes in Linux cloud environments.
While designing, building, and maintaining highly available applications for clients,
he consults for larger organizations as they embark on their journey to the cloud.
Derek and his team are on the forefront of a technology tidal wave and are engineer‐
ing cloud best practices every day. With a proven track record for resilient cloud
architecture, Derek pioneers cloud deployments for security and maintainability in
the best interest of his clients.

Arlan Nugara is a cloud solution architect who speaks widely on Azure and DevOps.
Microsoft has awarded him an MVP (Most Valuable Professional) in Azure for the
past two years for his expertise and contributions to the technical community across
the United States and Canada. Arlan’s original background is in software develop‐
ment with a specialization in enterprise software development and architecture for
financial institutions over the previous 20 years. Arlan’s focus over the past two years
has been the building of Azure Virtual Datacenters, where security is a key driving
factor for a client’s migration to the Azure cloud. A critical part of this approach is
the building of a landing zone as a configured environment with a standard set of
secured cloud infrastructure, policies, best practices, guidelines, and centrally man‐
aged services.

Colophon
The animal on the cover of Application Delivery and Load Balancing in Microsoft
Azure is a blue-bearded bee eater (Nyctyornis athertoni). This bird is found in a vari‐
ety of habitats across the Indian subcontinent and parts of Southeast Asia. As its
name suggests, it feeds primarily on bees.

The blue-bearded bee eater has a long sick-shaped bill, a green body with a turquoise
head and chin, and a yellowish breast and belly with streaks of green or blue. Its elon‐
gated throat feathers are often fluffed out, giving the bird its ‘bearded’ moniker. The
bird’s overall coloration changes depending on its region, with the birds in peninsular
India having slightly lighter green body coloration, for example. Male and female
blue-bearded bee-eaters look similar for the most part, although the male’s blue
throat-feathers tend to have higher ultraviolet reflectivity.

The call of this bird is loud and has some variation, but is relatively infrequent; they
are not as vocal or active as other bee-eater species. Pairs of these birds, however, may
engage in chatter that culminates in a kind of purring. The mating rituals of these
birds include feeding, bowing, and tail fanning. Their nests are deep tunnels in mud
banks, and the eggs they lay are white and spherical. While the blue-bearded bee-
eater has been observed around various flower species, it’s unclear whether they feed
on the nectar or the insects it attracts.

Although challenging to spot in the wild in some regions, the conservation status of
this species is “Least Concern.” Many of the animals on O’Reilly covers are endan‐
gered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	NGINX
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. What Are Application Delivery and Load Balancing, and Why Are They Important?
	Application Delivery Controllers
	Hardware or Software
	Structure and Function of ADCs
	Load Balancers
	The OSI Model and Load Balancing
	Problems Load Balancers Solve
	The Solutions Load Balancers Provide
	Application Delivery and Load Balancing: A Solution Overview

	Conclusion

	Chapter 2. Managed Load-Balancing Options in Azure
	Azure Native Load Balancing
	Azure Load-Balancing Dimensions

	Azure Load Balancer
	Azure Application Gateway for Load Balancing
	Azure Web Application Firewall (WAF) with ModSecurity
	Azure Front Door
	Azure Traffic Manager for Cloud-Based DNS Load Balancing
	Priority Traffic Routing
	Weighted Traffic Routing
	Performance Traffic Routing
	Geographic Traffic Routing

	Designing Highly Available Systems
	Conclusion

	Chapter 3. NGINX and NGINX Plus on Azure
	NGINX Versus NGINX Plus
	Installing NGINX OSS and NGINX Plus
	Installing via Azure Marketplace
	Installing Manually on VMs
	Installing NGINX OSS via Azure Resource Manager and PowerShell
	Deploying Infrastructure for NGINX OSS via Terraform
	Deploying NGINX OSS in Debian and Ubuntu Linux
	Deploying NGINX OSS in CentOS and Red Hat Linux
	Running Terraform
	Installing NGINX Plus via Terraform
	Running Terraform

	Conclusion

	Chapter 4. NGINX and Microsoft Managed Options
	Comparing NGINX and Azure Load Balancer
	Use Cases

	Comparing NGINX and Azure Application Gateway Functionality
	Comparing NGINX and Azure Web Application Firewall Capabilities
	ModSecurity

	NGINX App Protect
	Highly Available Multiregion NGINX Plus with Traffic Manager
	Conclusion

	Chapter 5. Azure Front Door with NGINX
	What Is the Azure Front Door Service?
	Split TCP
	Front Door Features
	Front Door’s Place in the Stack

	Benefits of Azure Front Door Service with NGINX
	Integrating Azure Front Door Service with NGINX
	Front Door Features
	Routing Rules
	Optimizing with NGINX

	Conclusion

	Chapter 6. Monitoring NGINX in Microsoft Azure
	Azure Monitor
	Additional Tools Available in Azure for Monitoring

	Azure Security Center with NGINX
	Azure Monitor with NGINX
	Azure Governance and Policy Management for NGINX

	Azure Sentinel
	Sentinel Integration
	Sentinel Monitoring
	Sentinel Automation
	Azure Governance and Policy Management

	Conclusion

	Chapter 7. Security
	NGINX Management with NGINX Controller
	NGINX Controller Application Delivery Module with App Security Add-On
	NGINX App Protect

	NGINX ModSecurity WAF
	Microsoft Azure Firewall Integration into a Load-Balancing Solution
	NGINX Integration as an NVA Firewall
	Conclusion

	Index
	About the Authors
	Colophon

