O'REILLY”®

Container
Networking

Michael Hausenblas

The NGINX Application Platform
powers Load Balancers,
Microservices & APl Gateways

P

& Vg o

Load

. Microservices Cloud
Balancing

FREE TRIAL

Learn more at

6 @ &

Web & Mobile API

Security Performance Gateway

LEARN MORE

NGINX

https://www.nginx.com/solutions/adc/
https://www.nginx.com/solutions/microservices/
https://www.nginx.com/solutions/cloud/
https://www.nginx.com/solutions/application-security/
https://www.nginx.com/solutions/web-mobile-acceleration/
https://www.nginx.com/solutions/api-gateway/
https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/free-trial-request/?utm_source=oreilly&utm_campaign=container-networking&utm_medium=ebook
https://www.nginx.com/

Container Networking

From Docker to Kubernetes

Michael Hausenblas

Beijing + Boston « Farnham -« Sebastopol + Tokyo [K@Ax{=l|NA4

Container Networking
by Michael Hausenblas

Copyright © 2018 O’Reilly Media. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online edi-
tions are also available for most titles (http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Nikki McDonald Proofreader: Charles Roumeliotis
Production Editors: Melanie Yarbrough Interior Designer: David Futato

and Justin Billing Cover Designer: Karen Montgomery
Copyeditor: Rachel Head lllustrator: Rebecca Demarest

May 2018: First Edition

Revision History for the First Edition
2018-04-17: First Release

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Container Networking, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsi-
bility for errors or omissions, including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial
independence.

978-1-492-03681-4
[LSI]

http://oreilly.com/safari
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Preface

1.

Table of Contents

Motivation.ovvii ittt ittt iiieeneieenes

Introducing Pets Versus Cattle
Go Cattle!

The Container Networking Stack
Do I Need to Go “All In?

Introduction to Container Networking........................

Single-Host Container Networking 101
Modes for Docker Networking
Administrative Considerations
Wrapping It Up

. Multi-Host Networking.ccovviiiiiiiiiiiiinnnnn.

Multi-Host Container Networking 101
Options for Multi-Host Container Networking
Docker Networking

Administrative Considerations

Wrapping It Up

Orchestration.ovnvvriiii i iieieieieenenennenenenns

What Does a Scheduler Actually Do?
Docker

Apache Mesos

Hashicorp Nomad

Community Matters

Wrapping It Up

10
11

13
13
13
15
16
16

17
19
20
21
23
25
25

A. References

vi

. Service Discovery.......covvviiiiiiiiiiiiiiiiiii i

The Challenge
Technologies
Load Balancing
Wrapping It Up

. The Container Network Interface................oo.....

History

Specification and Usage
Container Runtimes and Plug-ins
Wrapping It Up

Kubernetes Networking...............ooocivvinnnnn.

A Gentle Kubernetes Introduction
Kubernetes Networking Overview
Intra-Pod Networking

Inter-Pod Networking

Service Discovery in Kubernetes
Ingress and Egress

Advanced Kubernetes Networking Topics

Wrapping It Up

| Table of Contents

27
28
32
34

37
38
38
40
41

43
43
45
46
47
50
53
55
57

Preface

When you start building your first containerized application, youre excited
about the capabilities and opportunities you encounter: it runs the same in dev
and in prod, it’s straightforward to put together a container image using Docker,
and the distribution is taken care of by a container registry.

So, you're satisfied with how quickly you were able to containerize an existing,
say, Python app, and now you want to connect it to another container that has a
database, such as PostgreSQL. Also, you don’t want to have to manually launch
the containers and implement your own system that takes care of checking if the
containers are still running and, if not, relaunching them.

At this juncture, you might realize there’s a challenge youre running into: con-
tainer networking. Unfortunately, there are still a lot of moving parts in this
domain and there are currently few best practice resources available in a central
place. Fortunately, there are tons of articles, repos, and recipes available on the
wider internet and with this book you have a handy way to get access to many of
them in a simple and comprehensive format.

Why | Wrote This Book

I thought to myself: what if someone wrote a book providing basic guidance for
the container networking topic, pointing readers in the right direction for each of
the involved technologies, such as overlay networks, the Container Network
Interface (CNI), and load balancers?

That someone turned out to be me. With this book, I want to provide you with an
overview of the challenges and available solutions for container networking, con-
tainer orchestration, and (container) service discovery. I will try to drive home
three points throughout this book:

vii

« Without a proper understanding of the networking aspect of (Docker) con-
tainers and a sound strategy in place, you will have more than one bad day
when adopting containers.

o Service discovery and container orchestration are two sides of the same coin.

o The space of container networking and service discovery is still relatively
young: you will likely find yourself starting out with one set of technologies
and then changing gears and trying something else. Don’t worry, youre in
good company.

Who Is This Book For?

My hope is that you'll find the book useful if one or more of the following applies
to you:

 You are a software developer who drank the (Docker) container Kool-Aid.

+ You work in network operations and want to brace yourself for the upcom-
ing onslaught of your enthusiastic developer colleagues.

 You are an aspiring Site Reliability Engineer (SRE) who wants to get into the
container business.

 You are an (enterprise) software architect who is in the process of migrating
existing workloads to a containerized setup.

Last but not least, distributed application developers and backend engineers
should also be able to extract some value out of it.

Note that this is not a hands-on book. Besides some single-host Docker network-
ing stuff in Chapter 2 and some of the material about Kubernetes in Chapter 7, I
don’t show a lot of commands or source code; consider this book more like a
guide, a heavily annotated bookmark collection. You will also want to use it to
make informed decisions when planning and implementing containerized appli-
cations.

About Me

I work at Red Hat in the OpenShift team, where I help devops to get the most out
of the software. I spend my time mainly upstream—that is, in the Kubernetes
community, for example in the Autoscaling, Cluster Lifecycle, and Apps Special
Interest Groups (SIGs).

Before joining Red Hat in the beginning of 2017 I spent some two years at Meso-
sphere, where I also did containers, in the context of (surprise!) Mesos. I also
have a data engineering background, having worked as Chief Data Engineer at

viii | Preface

MapR Inc. prior to Mesosphere, mainly on distributed query engines and data-
stores as well as building data pipelines.

Last but not least, 'm a pragmatist and tried my best throughout the book to
make sure to be unbiased toward the technologies discussed here.

Acknowledgments

A big thank you to the O’Reilly team, especially Virginia Wilson. Thanks for your
guidance and feedback on the first iteration of the book (back then called Docker
Networking and Service Discovery), which came out in 2015, and for putting up
with me again.

A big thank you to Nic (Sheriff) Jackson of HashiCorp for your time around
Nomad. You rock, dude!

Thanks a million Bryan Boreham of Weaveworks! You provided super-valuable
feedback and I appreciate your suggestions concerning the flow as well as your
diligence, paying attention to details and calling me out when I drifted off and/or
made mistakes. Bryan, who's a container networking expert and CNI 7th dan, is
the main reason this book in its final version turned out to be a pretty good read
(I think).

Last but certainly not least, my deepest gratitude to my awesome and supportive
family: our two girls Saphira (aka The Real Unicorn—love you hun :) and Ranya
(whose talents range from Scratch programming to Irish Rugby), our son Iannis
(sigh, told you so, you ain't gonna win the rowing championship with a broken
hand, but you're still dope), and my wicked smart and fun wife Anneliese (did I
empty the washing machine? Not sure!).

Preface | ix

CHAPTER1
Motivation

In this chapter I'll introduce you to the pets versus cattle approach concerning
compute infrastructure as well as what container networking entails. It sets the
scene, and if you're familiar with the basics you may want to skip this chapter.

Introducing Pets Versus (attle

In February 2012, Randy Bias gave an impactful talk on architectures for open
and scalable clouds. In his presentation, he established the pets versus cattle
meme:!

« With the pets approach to infrastructure, you treat the machines as individu-
als. You give each (virtual) machine a name, and applications are statically
allocated to machines. For example, db-prod-2 is one of the production
servers for a database. The apps are manually deployed, and when a machine
gets ill you nurse it back to health and manually redeploy the app it ran onto
another machine. This approach is generally considered to be the dominant
paradigm of a previous (non-cloud native) era.

o With the cattle approach to infrastructure, your machines are anonymous;
they are all identical (modulo hardware upgrades), they have numbers rather
than names, and apps are automatically deployed onto any and each of the
machines. When one of the machines gets ill, you dont worry about it
immediately; you replace it—or parts of it, such as a faulty hard disk drive—
when you want and not when things break.

1 In all fairness, Randy did attribute the origins to Bill Baker of Microsoft.

http://slidesha.re/YqJgFB
http://slidesha.re/YqJgFB

While the original meme was focused on virtual machines, we apply the cattle
approach to infrastructure.

Go Cattle!

The beautiful thing about applying the cattle approach to infrastructure is that it
allows you to scale out on commodity hardware.?

It gives you elasticity with the implication of hybrid cloud capabilities. This is a
fancy way of saying that you can have parts of your deployments on premises and
burst into the public cloud—using services provided by the likes of Amazon,
Microsoft, and Google, or the infrastructure-as-a-service (IaaS) offerings of dif-
ferent provides like VMware—if and when you need to.

Most importantly, from an operator’s point of view, the cattle approach allows
you to get a decent night’s sleep, as you're no longer paged at 3 a.m. just to replace
a broken hard disk drive or to relaunch a hanging app on a different server, as
you would have done with your pets.

However, the cattle approach poses some challenges that generally fall into one of
the following two categories:

Social challenges
I dare say most of the challenges are of a social nature: How do I convince
my manager? How do I get buy-in from my CTO? Will my colleagues oppose
this new way of doing things? Does this mean we will need fewer people to
manage our infrastructure?

I won't pretend to offer ready-made solutions for these issues; instead, go
buy a copy of The Phoenix Project by Gene Kim, Kevin Behr, and George
Spafford (O’Reilly), which should help you find answers.

Technical challenges
This category includes issues dealing with things like base provisioning of
the machines—e.g., using Ansible to install Kubernetes components, how to
set up the communication links between the containers and to the outside
world, and most importantly, how to ensure the containers are automatically
deployed and are discoverable.

Now that you know about pets versus cattle, you are ready to have a look at the
overall container networking stack.

2 Typically even heterogeneous hardware. For example, see slide 7 of Thorvald Natvig’s talk “Challenging
Fundamental Assumptions of Datacenters: Decoupling Infrastructure from Hardware” from Velocity
2015.

2 | Chapter 1: Motivation

http://oreil.ly/1mCsJei
http://oreil.ly/1mCsJei
http://oreil.ly/1PfgBX8

The Container Networking Stack

The overall stack we're dealing with here is comprised of the following:

The low-level networking layer
This includes networking gear, iptables, routing, IPVLAN, and Linux
namespaces. You usually don’t need to know the details of this layer unless
youre on the networking team, but you should at least be aware of it. Note
that the technologies here have existed and been used for a decade or more.

The container networking layer
This layer provides some abstractions, such as the single-host bridge net-
working mode and the multi-host, IP-per-container solution. I cover this
layer in Chapters 2 and 3.

The container orchestration layer
Here, we're marrying the container scheduler’s decisions on where to place a
container with the primitives provided by lower layers. In Chapter 4 we look
at container orchestration systems in general, and in Chapter 5 we focus on
the service discovery aspect, including load balancing. Chapter 6 deals with
the container networking standard, CNI, and finally in Chapter 7 we look at
Kubernetes networking.

Software-Defined Networking (SDN)

SDN is really an umbrella (marketing) term, providing essentially the same
advantages to networks that virtual machines (VMs) introduced over bare-metal
servers. With this approach, the network administration team becomes more
agile and can react faster to changing business requirements. Another way to
view it is this: SDN is the configuration of networks using software, whether that
is via APIs, complementing network function virtualization, or the construction
of networks from software.

Especially if youre a developer or an architect, I suggest taking a quick look at
Cisco’s nice overview on this topic as well as SDxCentral’s article, “What Is
Software-Defined Networking (SDN)?”

If you are on the network operations team, youre probably good to go for the
next chapter. However, if you're an architect or developer and your networking
knowledge might be a bit rusty, I suggest brushing up by studying the Linux Net-
work Administrators Guide before advancing.

The Container Networking Stack | 3

http://bit.ly/1MTB02b
http://bit.ly/1O5p7KB
https://bit.ly/2jvUkiO
https://bit.ly/2jvUkiO
http://www.tldp.org/LDP/nag2/nag2.pdf
http://www.tldp.org/LDP/nag2/nag2.pdf

Do | Need to Go “All In”?

Oftentimes, when I'm at conferences or user groups, I meet people who are very
excited about the opportunities in the container space. At the same time, folks
rightfully worry about how deeply they need to commit to containers in order to
benefit from them. The following table provides an informal overview of deploy-
ments I have seen in the wild, grouped by level of commitment expressed via
stages:

Stage Typical setup Examples
Traditional Bare metal or VM, no containers Majority of today’s prod
deployments
Simple Manually launched containers used for app-level dependency Development and test
management environments
Ad hoc A custom, homegrown scheduler to launch and potentially restart RelatelQ, Uber
containers

Full-blown An established scheduler from Chapter 4 to manage containers; fault ~ Google, Zulily, Gutefrage.de
tolerant, self-healing

Note that the stage doesn’t necessarily correspond with the size of the deploy-
ment. For example, Gutefrage.de only has six bare-metal servers under manage-
ment but uses Apache Mesos to manage them, and you can run a Kubernetes
cluster easily on a Raspberry Pi.

One last remark before we move on: by now, you might have realized that we are
dealing with distributed systems in general here. Given that we will usually want
to deploy containers into a network of computers, may I suggest reading up on
the fallacies of distributed computing, in case you are not already familiar with
this topic?

And now let’s move on to the deep end of container networking.

4 | Chapter1: Motivation

http://bit.ly/2qp6iNI
http://bit.ly/2qp6iNI
http://bit.ly/1Jus20x

CHAPTER 2
Introduction to Container Networking

This chapter focuses on networking topics for single-host container networking,
with an emphasis on Docker. We'll also have a look at administrative challenges
such as IP address management and security considerations. In Chapter 3, we
will discuss multi-host scenarios.

Single-Host Container Networking 101

A container needs a host to run on. This can be a physical machine, such as a
bare-metal server in your on-premises datacenter, or a virtual machine, either on
premises or in the cloud.

In the case of a Docker container the host has a daemon and a client running, as
depicted in Figure 2-1, enabling you to interact with a container registry. Further,
you can pull/push container images and start, stop, pause, and inspect containers.
Note that nowadays most (if not all) containers are compliant with the Open
Container Initiative (OCI), and alongside Docker there are interesting alterna-
tives, especially in the context of Kubernetes, available.

http://bit.ly/1IR4wL9
https://www.opencontainers.org
https://www.opencontainers.org

b= b=
S S
5 5
7 7 Docker
g g registry
é app é app
+ +
2 2
2 2 Dock
g g ocker |,
. iy ull, push, search, ...
5 5 client ’%;‘,,,ag pullp
el
¥ ex
ibcontainer A—Y
ipcontainer
Host 05 » Docker
daemon
| Hardware |

Figure 2-1. Simplified Docker architecture for a single host

The relationship between a host and containers is 1:N. This means that one host
typically has several containers running on it. For example, Facebook reports that
—depending on how beefy the machine is—it sees on average some 10 to 40 con-
tainers per host running.

No matter if you have a single-host deployment or use a cluster of machines, you
will likely have to deal with networking:

o For single-host deployments, you almost always have the need to connect to
other containers on the same host; for example, an application server like
WildFly might need to connect to a database.

o In multi-host deployments, you need to consider two aspects: how containers
are communicating within a host and how the communication paths look
between different hosts. Both performance considerations and security
aspects will likely influence your design decisions. Multi-host deployments
usually become necessary either when the capacity of a single host is insuffi-
cient, for resilience reasons, or when one wants to employ distributed sys-
tems such as Apache Spark or Apache Kafka.

Distributed Systems and Data Locality

The basic idea behind using a distributed system (for computation or storage) is
to benefit from parallel processing, usually together with data locality. By data
locality I mean the principle of shipping the code to where the data is rather than
the (traditional) other way around.

6 | Chapter2: Introduction to Container Networking

http://bit.ly/1PfgJFU

Think about the following for a moment: if your dataset size is in TB scale and
your code size is in MB scale, it's more efficient to move the code across the clus-
ter than it would be to transfer all the data to a central processing place. In addi-
tion to being able to process things in parallel, you usually gain fault tolerance
with distributed systems, as parts of the system can continue to work more or
less independently.

Simply put, Docker networking is the native container SDN solution you have at
your disposal when working with Docker.

Modes for Docker Networking

In a nutshell, there are four single-host networking modes available for Docker:

Bridge mode
Usually used for apps running in standalone containers; this is the default
network driver. See “Bridge Mode Networking” on page 7 for details.

Host mode
Also used for standalone containers; removes network isolation to the host.
See “Host Mode Networking” on page 8 for details.

Container mode
Lets you reuse the network namespace of another container. Used in Kuber-
netes. See “Container Mode Networking” on page 9 for details.

No networking
Disables support for networking from the Docker side and allows you to, for
example, set up custom networking. See “No Networking” on page 10 for
details.

We'll take a closer look at each of these modes now, and end this chapter with
some administrative considerations, including IP/port management and security.

Bridge Mode Networking

In this mode (see Figure 2-2), the Docker daemon creates docker0, a virtual

Ethernet bridge that automatically forwards packets between any other network
interfaces that are attached to it. By default, the daemon then connects all con-
tainers on a host to this internal network by creating a pair of peer interfaces,
assigning one of the peers to become the container’s eth® interface and placing
the other peer in the namespace of the host, as well as assigning an IP address/
subnet from the private IP range to the bridge. Here’s an example of using bridge
mode:

Modes for Docker Networking | 7

https://tools.ietf.org/html/rfc1918

$ docker run -d -P --net=bridge nginx:1.9.1

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

17d447b7425d nginx:1.9.1 nginx -g 19 seconds ago

Up 18 seconds 0.0.0.0:49153->443/tcp,
0.0.0.0:49154->80/tcp trusting_feynman

run -d -P nginx:1.9.1 in the previous command instead. If you do
not use the -P argument, which publishes all exposed ports of the con-
tainer, or -p <host_port>:<container_port>, which publishes a spe-
cific port, the IP packets will not be routable to the container outside of
the host.

m Because bridge mode is the Docker default, you could have used docker

F=—=—=ar===1
1 N |
1 1 1 eth0
1 N |
e oo d b

I docker I

| iptables f---»] etho |

Docker host 1.2.3.4:80

Figure 2-2. Bridge mode networking setup

Host Mode Networking

This mode effectively disables network isolation of a Docker container. Because
the container shares the network namespace of the host, it may be directly
exposed to the public network if the host network is not firewalled. As a conse-
quence of the shared namespace, you need to manage port allocations somehow.
Here’s an example of host mode networking in action:

$ docker run -d --net=host ubuntu:14.04 tail -f /dev/null
$ ip addr | grep -A 2 ethO:
2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP group
default qlen 1000
link/ether 06:58:2b:07:d5:f3 brd ff:ff:ff:ff:ff:ff
inet **10.0.7.197**/22 brd 10.0.7.255 scope global dynamic eth®

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED

8 | Chapter2: Introduction to Container Networking

STATUS PORTS NAMES
b44d7d5d3903 ubuntu:14.04 tail -f 2 seconds ago
Up 2 seconds jovial_blackwell
$ docker exec -it b44d7d5d3903 ip addr
2: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP group
default qlen 1000
link/ether 06:58:2b:07:d5:f3 brd ff:ff:ff:ff:ff:ff
inet **10.0.7.197**/22 brd 10.0.7.255 scope global dynamic eth®

And there we have it: the container has the same IP address as the host, namely
10.0.7.197.

In Figure 2-3 we see that when using host mode networking, the container effec-
tively inherits the IP address from its host. This mode is faster than the bridge
mode because there is no routing overhead, but it exposes the container directly
to the public network, with all its security implications.

eth0

-]
-]

eth0

Docker host 10.0.7.197

Figure 2-3. Docker host mode networking setup

Container Mode Networking

In this mode, you tell Docker to reuse the network namespace of another con-
tainer. In general, this mode is useful if you want to have fine-grained control
over the network stack and/or to control its lifecycle. In fact, Kubernetes net-
working uses this mode, and you can read more about it in Chapter 7. Here it is
in action:

$ docker run -d -P --net=bridge nginx:1.9.1

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

eb19088be8ad® nginx:1.9.1 nginx -g 3 minutes ago Up 3 minutes
0.0.0.0:32769->80/tcp,

0.0.0.0:32768->443/tcp admiring_engelbart

$ docker exec -it admiring_engelbart ip addr

8: ethO@if9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc noqueue state

Modes for Docker Networking | 9

UP group default
link/ether 02:42:ac:11:00:03 brd ff:ff:ff:ff:ff:ff
inet **172.17.0.3**/16 scope global eth@

$ docker run -it --net=container:admiring_engelbart ubuntu:14.04 ip addr

8: ethO@if9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 gqdisc nogqueue state
UP group default
link/ether 02:42:ac:11:00:03 brd ff:ff:ff:ff:ff:ff
inet **172.17.0.3**/16 scope global eth®
The result as shown in this example is what we would have expected: the second
container, started with --net=container, has the same IP address as the first
container (namely 172.17.0.3), with the glorious autoassigned name admir
ing_engelbart.

No Networking

This mode puts the container inside its own network namespace but doesn't con-
figure it. Effectively, this turns off networking and is useful for two cases: for con-
tainers that don't need a network, such as batch jobs writing to a disk volume, or
if you want to set up your own custom networking (see Chapter 3 for a number
of options that leverage this). Here’s an example:

$ docker run -d -P --net=none nginx:1.9.1

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

d8c26d68037c nginx:1.9.1 nginx -g 2 minutes ago

Up 2 minutes grave_perlman

$ docker inspect d8c26d68037c | grep IPAddress
"IPAddress": "",

"SecondaryIPAddresses": null,

As this example shows, there is no network configured, precisely as we would
have expected.

You can read more about networking and learn about configuration options via
the Docker docs.

Administrative Considerations

We will now briefly discuss other aspects you should be aware of from an admin-
istrative point of view. Most of these issues are equally relevant for multi-host
deployments:

10 | Chapter2: Introduction to Container Networking

https://docs.docker.com/network/

Allocating IP addresses
Manually allocating IP addresses when containers come and go frequently
and in large numbers is not sustainable.' The bridge mode takes care of this
issue to a certain extent. To prevent ARP collisions on a local network, the
Docker daemon generates a MAC address from the allocated IP address.

Managing ports
There are two approaches to managing ports: fixed port allocation or
dynamic allocation of ports. The allocation can be per service (or applica-
tion) or it can be applied as a global strategy. For bridge mode, Docker can
automatically assign (UDP or TCP) ports and consequently make them rout-
able. Systems like Kubernetes that sport a flat, IP-per-container networking
model don't suffer from this issue.

Network security

Out of the box, Docker has inter-container communication enabled (mean-
ing the default is - -icc=true). This means containers on a host can commu-
nicate with each other without any restrictions, which can potentially lead to
denial-of-service attacks. Further, Docker controls the communication
between containers and the wider world through the --ip_forward and
--iptables flags. As a good practice, you should study the defaults of these
flags and loop in your security team concerning company policies and how
to reflect them in the Docker daemon setup.

Systems like CRI-O, the Container Runtime Interface (CRI) using OCI, offer
alternative runtimes that don’t have one big daemon like Docker has and
potentially expose a smaller attack surface.

Another network security aspect is that of on-the-wire encryption, which
usually means TLS/SSL as per RFC 5246.

Wrapping It Up

In this chapter, we had a look at the four basic single-host networking modes and
related admin issues. Now that you have a basic understanding of the single-host
case, let’s have a look at a likely more interesting case: multi-host container net-
working.

1 New Relic, for example, found the majority of the overall uptime of the containers in one particular
setup in the low minutes; see also the update here.

WrappingltUp | 11

http://bit.ly/1MTBK7q
http://bit.ly/1RinAEQ
http://bit.ly/1MTBOUL
http://cri-o.io
https://tools.ietf.org/html/rfc5246

CHAPTER 3
Multi-Host Networking

As long as you're using containers on a single host, the techniques introduced in
Chapter 2 are sufficient. However, if the capacity of a single host is not enough to
handle your workload or you want more resilience, you’ll want to scale out hori-
zontally.

Multi-Host Container Networking 101

When scaling out horizontally you end up with a network of machines, also
known as a cluster of machines, or cluster for short. Now, a number of questions
arise: How do containers talk to each other on different hosts? How do you con-
trol communication between containers, and with the outside world? How do
you keep state, such as IP address assignments, consistent in a cluster? What are
the integration points with the existing networking infrastructure? What about
security policies?

In order to address these questions, we'll review technologies for multi-host con-
tainer networking in the remainder of this chapter. Since different use cases and
environments have different requirements, I will abstain from providing a rec-
ommendation for a particular project or product. You should be aware of the
trade-offs and make an informed decision.

Options for Multi-Host Container Networking

In a nutshell, Docker itself offers support for overlay networks (creating a dis-
tributed network across hosts on top of the host-specific network) as well as net-
work plug-ins for third-party providers.

There are a number of multi-host container networking options that are often
used in practice, especially in the context of Kubernetes. These include:

13

https://docs.docker.com/network/overlay/
https://dockr.ly/2IR1dVl
https://dockr.ly/2IR1dVl

« Flannel by CoreOS (see “flannel” on page 14)

o Weave Net by Weaveworks (see “Weave Net” on page 14)

+ Metaswitch’s Project Calico (see “Project Calico” on page 14)

 Open vSwitch from the OpenStack project (see “Open vSwitch” on page 15)
o OpenVPN (see “OpenVPN” on page 15)

In addition, Docker offers multi-host networking natively; see “Docker Network-
ing” on page 15 for details.

flannel

CoreOS’s flannel is a virtual network that assigns a subnet to each host for use
with container runtimes. Each container—or pod, in the case of Kubernetes—has
a unique, routable IP inside the cluster. flannel supports a range of backends,
such as VXLAN, AWS VPC, and the default layer 2 UDP network. The advantage
of flannel is that it reduces the complexity of doing port mapping. For example,
Red Hat’s Project Atomic uses flannel.

Weave Net

Weaveworks's WeaveNet creates a virtual network that connects Docker contain-
ers deployed across multiple hosts. Applications use the network just as if the
containers were all plugged into the same network switch, with no need to con-
figure port mappings and links. Services provided by application containers on
the Weave network can be made accessible to the outside world, regardless of
where those containers are running.

Similarly, existing internal systems can be exposed to application containers irre-
spective of their location. Weave can traverse firewalls and operate in partially
connected networks. Traffic can be encrypted, allowing hosts to be connected
across an untrusted network. You can learn more about Weave’s discovery fea-
tures in the blog post “Automating Weave Deployment on Docker Hosts with
Weave Discovery” by Alvaro Saurin.

If you want to give Weave a try, check out its Katacoda scenarios.

Project Calico

Metaswitch’s Project Calico uses standard IP routing—to be precise, the venera-
ble Border Gateway Protocol (BGP), as defined in RFC 1105—and networking
tools to provide a layer 3 solution. In contrast, most other networking solutions
build an overlay network by encapsulating layer 2 traffic into a higher layer.

The primary operating mode requires no encapsulation and is designed for data-
centers where the organization has control over the physical network fabric.

14 | Chapter 3: Multi-Host Networking

https://coreos.com/flannel/docs/latest/
http://www.projectatomic.io
http://bit.ly/1UwQpem
http://weave.works
http://bit.ly/1n4DSnZ
http://bit.ly/1n4DSnZ
https://katacoda.com/courses/weave
http://www.projectcalico.org
https://tools.ietf.org/html/rfc1105

See also Canal, which combines Calicos network policy enforcement with the
rich superset of Calico and flannel overlay and nonoverlay network connectivi-
ties.

Open vSwitch

Open vSwitch is a multilayer virtual switch designed to enable network automa-
tion through programmatic extension while supporting standard management
interfaces and protocols, such as NetFlow, IPFIX, LACP, and 802.1ag. In addi-
tion, it is designed to support distribution across multiple physical servers and is
used in Red Hat’s Kubernetes distro OpenShift, the default switch in Xen, KVM,
Proxmox VE, and VirtualBox. It has also been integrated into many private cloud
systems, such as OpenStack and oVirt.

OpenVPN

OpenVPN, another OSS project that has a commercial offering, allows you to
create virtual private networks (VPNs) using TLS. These VPNs can also be used
to securely connect containers to each other over the public internet. If you want
to try out a Docker-based setup, I suggest taking a look at DigitalOcean’s “How to
Run OpenVPN in a Docker Container on Ubuntu 14.04” walk-through tutorial.

Docker Networking

Docker 1.9 introduced a new docker network command. With this, containers
can dynamically connect to other networks, with each network potentially
backed by a different network driver.

In March 2015, Docker Inc. acquired the SDN startup SocketPlane and rebran-
ded its product as the Overlay Driver. Since Docker 1.9, this is the default for
multi-host networking. The Overlay Driver extends the normal bridge mode
with peer-to-peer communication and uses a pluggable key-value store backend
to distribute cluster state, supporting Consul, etcd, and ZooKeeper.

To learn more, I suggest checking out the following blog posts:

o Aleksandr Tarasov’s “Splendors and Miseries of Docker Network”

o Project Calico’s “Docker 1.9 Includes Network Plugin Support and Calico Is
Ready!”

» Weaveworks’s “Life and Docker Networking — One Year On”

Docker Networking | 15

https://github.com/projectcalico/canal
http://openvswitch.org
https://www.openshift.org
https://openvpn.net
http://do.co/1PO0xAg
http://do.co/1PO0xAg
http://bit.ly/1Z64f8W
http://bit.ly/1MTMUZI
http://bit.ly/1IR9d7D
https://serfdom.io
http://bit.ly/1kMxQXn
http://bit.ly/1VJyKl1
http://bit.ly/1VJyKl1
http://bit.ly/1PO0GDO

Administrative Considerations

In the last section of this chapter we will discuss some administrative aspects you
should be aware of:

IPVLAN
Linux kernel version 3.19 introduced an IP-per-container feature. This
assigns each container on a host a unique and routable IP address. Effec-
tively, IPVLAN takes a single network interface and creates multiple virtual
network interfaces with different MAC addresses assigned to them.

This feature, which was contributed by Mahesh Bandewar of Google, is con-
ceptually similar to the macvlan driver but is more flexible because it’s oper-
ating both on L2 and L3. If your Linux distro already has a kernel > 3.19,
you're in luck. Otherwise, you cannot yet benefit from this feature.

IP address management (IPAM)
One of the key challenges of multi-host networking is the allocation of IP
addresses to containers in a cluster. There are two strategies one can pursue:
either find a way to realize it in your existing (corporate) network or spawn
an orthogonal, practically hidden networking layer (that is, an overlay net-
work). Note that with IPv6 this situation is relaxed, since it should be a lot
easier to find a free address space.

Orchestration tool compatibility
Many of the multi-host networking solutions discussed in this chapter are
effectively coprocesses wrapping the Docker API and configuring the net-
work for you. This means that before you select one, you should make sure
to check for any compatibility issues with the container orchestration tool
you're using. You’'ll find more on this topic in Chapter 4.

IPv4 versus IPv6
To date, most Docker deployments use the standard IPv4, but IPv6 is wit-
nessing some uptake. Docker has supported IPv6 since v1.5, released in Feb-
ruary 2015; however, the IPv6 support in Kubernetes is not yet complete.
The ever-growing address shortage in IPv4-land might encourage more IPv6
deployments down the line, also getting rid of network address translation
(NAT), but it is unclear when exactly the tipping point will be reached.

Wrapping It Up

In this chapter, we reviewed multi-host networking options and touched on
admin issues such as IPAM and orchestration. At this juncture you should have a
good understanding of the low-level single-host and multi-host networking
options and their challenges. Let’s now move on to container orchestration, look-
ing at how it depends on networking and how it interacts with it.

16 | Chapter 3: Multi-Host Networking

http://kernelnewbies.org/Linux_3.19
http://bit.ly/1Z9hD1e
http://bit.ly/1JXUHWI
http://distrowatch.com
http://bit.ly/1ZO6aBk
http://bit.ly/1ZO6aBk
http://bit.ly/1Riyzyn
https://www.youtube.com/watch?v=eF50OxZ5u4o

CHAPTER 4
Orchestration

With the cattle approach to managing infrastructure, you don’t manually allocate
certain machines for running an application. Instead, you leave it up to an
orchestrator to manage the life cycle of your containers. In Figure 4-1, you can
see that container orchestration includes a range of functions, including but not
limited to:

o Organizational primitives, such as labels in Kubernetes, to query and group
containers

o Scheduling of containers to run on a host

o Automated health checks to determine if a container is alive and ready to
serve traffic and to relaunch it if necessary

o Autoscaling (that is, increasing or decreasing the number of containers based
on utilization or higher-level metrics)

o Upgrade strategies, from rolling updates to more sophisticated techniques
such as A/B and canary deployments

o Service discovery to determine which host a scheduled container ended
upon, usually including DNS support

17

http://bit.ly/2vdQ7ru

Organizational
primitives

Orchestration

Health
checking

Upgrades

Service
discovery

Figure 4-1. Orchestration and its constituents

Sometimes considered part of orchestration but outside the scope of this book is
the topic of base provisioning—that is, installing or upgrading the local operating
system on a node or setting up the container runtime there.

Service discovery (covered in greater detail in Chapter 5) and scheduling are
really two sides of the same coin. The scheduler decides where in a cluster a con-
tainer is placed and supplies other parts with an up-to-date mapping in the form
containers -> locations. This mapping can then be represented in various
ways, be it in a distributed key-value store such as etcd, via DNS, or through
environment variables.

In this chapter we will discuss networking and service discovery from the point
of view of the following container orchestration solutions: Docker Swarm and
swarm mode, Apache Mesos, and HashiCorp Nomad. These three are (along
with Kubernetes, which we will cover in detail in Chapter 7) alternatives your
organization may already be using, and hence, for the sake of completeness, it’s
worth exploring them here. To make it clear, though, as of early 2018 the indus-
try has standardized on Kubernetes as the portable way of doing container
orchestration.

other (closed source) solutions out there you could have a look at,
including Facebook’s Bistro or hosted solutions such as Amazon ECS.

m In addition to the three orchestrators discussed in this chapter, there are

Should you want to more fully explore the topic of distributed system
scheduling, I suggest reading Google’s research papers on Borg and
Omega.

18 | Chapter4: Orchestration

https://facebook.github.io/bistro/
http://aws.amazon.com/ecs/details/
http://bit.ly/google-borg
http://bit.ly/g-omega

Before we dive into container orchestration systems, though, let’s step back and
review what the scheduler—which is the core component of orchestration—
actually does in the context of containerized workloads.

What Does a Scheduler Actually Do?

A scheduler for a distributed system takes an application—binary or container
image—as requested by a user and places it on one or more of the available hosts.
For example, a user might request to have 100 instances of the app running, so
the scheduler needs to find space (CPU, RAM) to run these 100 instances on the
available hosts.

In the case of a containerized setup, this means that the respective container
image must exist on a host (if not, it must be pulled from a container registry
first), and the scheduler must instruct the container runtime on that host to
launch a container based on the image.

Let’s look at a concrete example. In Figure 4-2, you can see that the user reques-
ted three instances of the app running in the cluster. The scheduler decides the
placement based on its knowledge of the state of the cluster. The cluster state may
include the utilization of the machines, the resources necessary to successfully
launch the app, and constraints such as launch this app only on a machine that is
SSD-backed.

Further, quality of service might be taken into account for the placement deci-
sion; see Michael Gasch’s great article “QoS, Node allocatable and the Kubernetes
Scheduler” for more details.

DDDDB—Host

Cluster of machines

Figure 4-2. Distributed system scheduler in action

If you want to learn more about scheduling in distributed systems I suggest you
check out the excellent resource “Cluster Management at Google” by John
Wilkes.

What Does a Scheduler Actually Do? | 19

https://embano1.github.io/post/sched-reconcile/
https://embano1.github.io/post/sched-reconcile/
http://bit.ly/1TEWJAs

containers. For example, I once gave a demo using Marathon that
wouldn’t work as planned because I screwed up the placement con-
straints: I used a combination of unique hostname and a certain role,
and it wouldn’t scale because there was only one node with the specified
role in the cluster. The same thing can happen with Kubernetes labels.

v Beware of the semantics of constraints that you can place on scheduling

Docker

Docker at the time of writing uses the so-called swarm mode in a distributed set-
ting, whereas previous to Docker 1.12 the standalone Docker Swarm model was
used. We will discuss both here.

Swarm Mode

Since Docker 1.12, swarm mode has been integrated with Docker Engine. The
orchestration features embedded in Docker Engine are built using SwarmKit.

A swarm in Docker consists of multiple hosts running in swarm mode and acting
as managers and workers—hosts can be managers, workers, or perform both
roles at once. A task is a running container that is part of a swarm service and
managed by a swarm manager, as opposed to a standalone container. A service in
the context of Docker swarm mode is a definition of the tasks to execute on the
manager or worker nodes. Docker works to maintain that desired state; for
example, if a worker node becomes unavailable, Docker schedules the tasks onto
another host.

Docker running in swarm mode doesn’t prevent you from running standalone
containers on any of the hosts participating in the swarm. The essential differ-
ence between standalone containers and swarm services is that only swarm man-
agers can manage a swarm, while standalone containers can be started on any
host.

To learn more about Docker’s swarm mode, check out the official “Getting
Started with Swarm Mode” tutorial or check out the Katacoda “Docker Orches-
tration — Getting Started with Swarm Mode” scenario.

Docker Swarm

Docker historically had a native clustering tool called Docker Swarm. Docker
Swarm builds upon the Docker API' and works as follows: there’s one Swarm

1 Essentially, this means that you can simply keep using docker run commands and the deployment of
your containers in a cluster happens automagically.

20 | Chapter4:Orchestration

http://bit.ly/1n4Eryh
http://bit.ly/1n4Eryh
https://docs.docker.com/engine/swarm/
https://github.com/docker/swarmkit/
https://dockr.ly/2Hic2T3
https://dockr.ly/2Hic2T3
http://bit.ly/2qqjjX9
http://bit.ly/2qqjjX9
https://docs.docker.com/swarm/
http://bit.ly/1SAlyz0

manager that’s responsible for scheduling, and on each host an agent runs that
takes care of the local resource management (Figure 4-3).

Swarm (Manager Node)

swarm create
swarm manage

F 3

TCP/TLS Channel
v
docker -H —label docker -H --label docker -H --label
swarm join swarm join swarm join
Host 1 Host 2 Host 3

Figure 4-3. Docker Swarm architecture, based on the T-Labs presentation “Swarm -
A Docker Clustering System”

Docker Swarm supports different backends: etcd, Consul, and ZooKeeper. You
can also use a static file to capture your cluster state with Swarm, and recently a
DNS-based service discovery tool for Swarm called wagl has been introduced.

for single-node deployments called Docker links. Linking allows a user
to let any container discover both the IP address and exposed ports of
other Docker containers on the same host. In order to accomplish this,
Docker provides the - -1ink flag. But hard-wiring of links between con-
tainers is neither fun nor scalable. In fact, it’s so bad that this feature has
been deprecated.

m Out of the box, Docker provides a basic service discovery mechanism

Apache Mesos

Apache Mesos (Figure 4-4) is a general-purpose cluster resource manager that
abstracts the resources of a cluster (CPU, RAM, etc.) in such a way that the clus-
ter appears like one giant computer to the developer. In a sense, Mesos acts like
the kernel of a distributed operating system. It is hence never used on its own,
but always together with so-called frameworks such as Marathon (for long-
running stuff like a web server) or Chronos (for batch jobs), or big data and fast
data frameworks like Apache Spark or Apache Cassandra.

Apache Mesos | 21

http://bit.ly/1JuBErX
http://bit.ly/1n4EwSk
http://bit.ly/1n4EwSk
https://docs.docker.com/swarm/discovery/
http://ahmetb.github.io/wagl/
https://docs.docker.com/network/links/
http://mesos.apache.org

Mesos Master Frameworks
oade Marathon Chronos Spark
Resource scheduler scheduler scheduler
4 offers
Ay
Standby
Standb
) Marathon
— Executor
Launch
task task | task Il | | tasklll
Marathon | | Marathon
Spark Chronos
Mesos Agents

Figure 4-4. Apache Mesos architecture at a glance

Mesos supports both containerized workloads (that is, running Docker contain-
ers) and plain executables (for example, bash scripts or Linux ELF format binar-

ies for both stateless and stateful services).

In the following discussion, 'm assuming youre familiar with Mesos and its ter-
minology. If youre new to Mesos, I suggest checking out David Greenberg’s won-
derful book Building Applications on Mesos (O’'Reilly), a gentle introduction to

this topic that’s particularly useful for distributed application developers.

The networking characteristics and capabilities mainly depend on the Mesos

containerizer used:

o For the Mesos containerizer there are a few prerequisites, such as having a
Linux Kernel version > 3.16 and 1ibnl installed. You can then build a Mesos
agent with network isolator support enabled. At launch, you would use

something like the following:

$mesos-slave --containerizer=mesos
--isolation=network/port_mapping
--resources=ports:[31000-32000];ephemeral_ports:[33000-35000]

This would configure the Mesos agent to use nonephemeral ports in the
range from 31,000 to 32,000 and ephemeral ports in the range from 33,000 to

22 | Chapter4:Orchestration

http://bit.ly/building-applications-on-mesos

35,000. All containers share the hosts IP, and the port ranges are spread over
the containers (with a 1:1 mapping between destination port and container
ID). With the network isolator, you also can define performance limitations
such as bandwidth, and it enables you to perform per-container monitoring
of the network traffic. See Jie Yu’s MesosCon 2015 talk “Per Container Net-
work Monitoring and Isolation in Mesos” for more details on this topic.

o For the Docker containerizer, see Chapter 2.

Note that Mesos supports IP-per-container since version 0.23. If you want to
learn more about Mesos networking check out Christos Kozyrakis and Spike
Curtis’s “Mesos Networking” talk from MesosCon 2015.

While Mesos is not opinionated about service discovery, there is a Mesos-specific
solution that is often used in practice: Mesos-DNS (see “Pure-Play DNS-Based
Solutions” on page 31). There are also a multitude of emerging solutions, such as
traefik (see “Wrapping It Up” on page 34) that are integrated with Mesos and
gaining traction.

mechanism with Mesos, it's important to pay attention to how Mesos-
DNS represents tasks. For example, a running task might have the (logi-
cal) service name webserver.marathon.mesos, and you can find out the
port allocations via DNS SRV records.

m Because Mesos-DNS is the recommended default service discovery

If you want to try out Mesos online for free you can use the Katacoda “Deploying
Containers to DC/OS” scenario.

Hashicorp Nomad

Nomad is a cluster scheduler by HashiCorp, the makers of Vagrant. It was intro-
duced in September 2015 and primarily aims at simplicity. The main idea is that
Nomad is easy to install and use. Its scheduler design is reportedly inspired by
Google’s Omega, borrowing concepts such as having a global state of the cluster
as well as employing an optimistic, concurrent scheduler.

Nomad has an agent-based architecture with a single binary that can take on dif-
ferent roles, supporting rolling upgrades as well as draining nodes for re-
balancing. Nomad makes use of both a consensus protocol (strongly consistent)
for all state replication and scheduling and a gossip protocol used to manage the
addresses of servers for automatic clustering and multiregion federation. In
Figure 4-5, you can see Nomad’s architecture:

« Servers are responsible for accepting jobs from users, managing clients, and
computing task placements.

Hashicorp Nomad | 23

http://bit.ly/1PKNPAf
http://bit.ly/1PKNPAf
http://bit.ly/1OblEI3
http://bit.ly/1PO2NYh
http://bit.ly/22L9T4Q
https://katacoda.com/courses/dcos/getting-started
https://katacoda.com/courses/dcos/getting-started
https://www.nomadproject.io
http://bit.ly/1Z66gC1
http://bit.ly/1Z66gC1
http://bit.ly/1n4ELgj
http://bit.ly/1TEXlpy

o Clients (one per VM instance) are responsible for interacting with the tasks
or applications contained within a job. They work in a pull-based manner;
that is, they register with the server and then they poll it periodically to
watch for pending work.

Client Client Client
D1 DC2 D(3
RPC RPC RPC
¥ Replicat . Replicati ¥
Server PR Server PN 5 Server
Follower —» Leader - Follower
Forwarding Forwarding

Figure 4-5. Nomad architecture

Jobs in Nomad are defined in a HashiCorp-proprietary format called HCL or in
JSON, and Nomad offers a command-line interface as well as an HTTP API to
interact with the server process. Nomad models infrastructure as regions and
datacenters. Regions may contain multiple datacenters, depending on what scale
you are operating at. You can think of a datacenter like a zone in AWS, Azure, or
Google Cloud (say, us-centrall-b), and a region might be something like Iowa
(us-centrall).

I'm assuming youre familiar with Nomad and its terminology. If not, I suggest
you watch “Nomad: A Distributed, Optimistically Concurrent Schedule: Armon
Dadgar, HashiCorp”, a nice introduction to Nomad, and also read the well-done
docs.

To try out Nomad, use the UI Demo HashiCorp provides or try it out online for
free using the Katacoda “Introduction to Nomad” scenario.

Nomad comes with a couple of so-called task drivers, from general-purpose exec
to java to qemu and docker. For the docker driver Nomad requires, at the time of
this writing, Docker version 1.10 or greater and uses port binding to expose serv-
ices running in containers using the port space on the host’s interface. It provides
automatic and manual mapping schemes for Docker, binding both TCP and
UDP protocols to ports used for Docker containers.

For more details on networking options, such as mapping ports and using labels,
see the documentation.

With v0.2, Nomad introduced a Consul-based (see “Consul” on page 30) service
discovery mechanism. It includes health checks and assumes that tasks running
inside Nomad also need to be able to connect to the Consul agent, which can, in
the context of containers using bridge mode networking, pose a challenge.

24 | Chapter 4: Orchestration

http://bit.ly/1ONmjoO
https://github.com/hashicorp/hcl
https://www.youtube.com/watch?v=YTmtBi3uNVU
https://www.youtube.com/watch?v=YTmtBi3uNVU
https://www.nomadproject.io/docs/
https://demo.nomadproject.io
http://bit.ly/2HdNY3R
http://bit.ly/1n4ENEW
http://bit.ly/1RaMIgx
http://bit.ly/1JXVVB5
http://bit.ly/2vb3Lvq
http://bit.ly/2vb3Lvq

Community Matters

An important aspect you'll want to consider when selecting an orchestration sys-
tem is the community behind and around it.> Here are a few indicators and met-
rics you can use:

o Is the governance backed by a formal entity or process, such as the Apache
Software Foundation (ASF) or the Linux Foundation (LF)?

« How active are the mailing list, the IRC channel, the bug/issue tracker, the
Git repo (number of patches or pull requests), and other community initia-
tives?

Take a holistic view, but make sure that you actually pay attention to the
activity there. Healthy and hopefully growing communities will tend to have
high participation in at least one of these areas.

« Is the orchestration tool (implicitly) controlled by a single entity? For exam-
ple, in the case of Nomad HashiCorp is in control, for Apache Mesos it’s
mainly Mesosphere (and to some extent Twitter), etc.

 Are multiple independent providers and support channels available? For
example, you can run Kubernetes in many different environments and get
help from many (commercial) organizations as well as individuals on Slack,
mailing lists, or forums.

Wrapping It Up

As of early 2018, Kubernetes (discussed in Chapter 7) can be considered the de
facto container orchestration standard. All major providers, including Docker
and DC/OS (Mesos), support Kubernetes.

Next, we'll move on to service discovery, a vital part of container orchestration.

2 Now, you might argue that this is not specific to the container orchestration domain but a general OSS
issue, and youd be right. Still, I believe it is important enough to mention it, as many people are new to
this area and can benefit from these insights.

Community Matters | 25

https://red.ht/2IOJoWO

CHAPTER 5
Service Discovery

One challenge arising from adopting the cattle approach to managing infrastruc-
ture is service discovery. If you subscribe to the cattle approach, you treat all of
your machines equally and you do not manually allocate certain machines for
certain applications; instead, you leave it up to a piece of software (the scheduler)
to manage the life cycle of the containers.

The question then is, how do you determine which host your container ended up
being scheduled on so that you can connect to it? This is called service discovery,
and we touched on it already in Chapter 4.

The Challenge

Service discovery has been around for a while—essentially, as long as distributed
systems and services have existed. In the context of containers, the challenge
boils down to reliably maintaining a mapping between a running container and
its location. By location, I mean its IP address and the port on which it is reacha-
ble. This mapping has to be done in a timely manner and accurately across
relaunches of the container throughout the cluster. Two distinct operations must
be supported by a container service discovery solution:

Registration
Establishes the container -> location mapping. Because only the con-
tainer scheduler knows where containers “live,” we can consider it to be the
absolute source of truth concerning a container’s location.

Lookup
Enables other services or applications to look up the mapping we stored dur-
ing registration. Interesting properties include the freshness of the informa-
tion and the latency of a query (average, p50, p90, etc.).

27

Let’s examine a few slightly orthogonal considerations for the selection process:

« Rather than simply sending a requestor in a certain direction, how about
excluding unhealthy hosts or hanging containers from the lookup path?
You've guessed it, this is the strongly related topic of load balancing, and
because it is of such importance well discuss options in the last section of
this chapter.

 Some argue it’s an implementation detail, others say the position in the CAP
triangle matters: the choice of strong consistency versus high availability in
the context of the service discovery tool might influence your decision. Be at
least aware of it.

« Your choice might also be impacted by scalability considerations. Sure, if you
only have a handful of nodes under management then all of the solutions
discussed here will be a fit. If your cluster, however, has several hundred or
even thousands of nodes, then you will want to make sure you do some
proper load testing before you commit to one particular technology.

In this chapter you’'ll learn about service discovery options and how and where to

use them.

If you want to learn more about the requirements and fundamental challenges in
this space, read Jeff Lindsay’s “Understanding Modern Service Discovery with
Docker” and check out what Simon Eskildsen of Shopify shared on this topic at a

recent DockerCon.

Technologies

This section briefly introduces a variety of service discovery technologies, listing
pros and cons and pointing to further discussions on the web. For a more in-
depth treatment, check out Adrian Mouat’s excellent book Using Docker
(OReilly).

ZooKeeper

Apache ZooKeeper is an ASF top-level project and a JVM-based, centralized tool
for configuration management,' providing comparable functionality to what
Google’s Chubby brings to the table. ZooKeeper (ZK) organizes its payload data
somewhat like a filesystem, in a hierarchy of so-called znodes. In a cluster, a
leader is elected and clients can connect to any of the servers to retrieve data. You
want 2n+1 nodes in a ZK cluster. The most often found configurations in the

1 ZooKeeper was originally developed at Yahoo! in order to get its ever-growing zoo of software tools,
including Hadoop, under control.

28 | Chapter 5: Service Discovery

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
http://bit.ly/1n4E4nm
http://bit.ly/1n4E4nm
http://bit.ly/1IR9uYl
http://bit.ly/using-docker
http://zookeeper.apache.org
http://research.google.com/archive/chubby.html
http://bit.ly/1ZO6m3z

wild are three, five, or seven nodes. Beyond that, you’ll experience diminishing
returns concerning the fault tolerance/throughput trade-off.

ZooKeeper is a battle-proven, mature, and scalable solution, but it has some
operational downsides. Some people consider the installation and management
of a ZK cluster a not-so-enjoyable experience. Most ZK issues I've seen come
from the fact that certain services (Apache Storm comes to mind) misuse it. They
either put too much data into the znodes or, worse, have an unhealthy read/write
ratio, essentially writing too fast. If you plan to use ZK, at least consider using
higher-level interfaces such as Apache Curator, which is a wrapper library
around ZK implementing a number of recipes, and Netflix’s Exhibitor for man-
aging and monitoring ZK clusters.

Looking at Figure 5-1, you see two components: R/W (which stands for registra-
tion watcher, a piece of software you need to provide yourself), and HAProxy,
which is controlled by the R/W. Whenever a container is scheduled on a node it
registers with ZK, using a znode with a path like /$nodeID/$containerID and the
IP address as its payload. The R/W watches changes on those znodes and config-
ures HAProxy accordingly.

AQ
Q2
/(3
Register 1 /4
R aiiainiaaieieatiee /B/C5
1 /(6
! - 1
' e 1 acs
- - I
i /7 Watch I Lookup (1
i / :
[l]
config
A 4
| NGINX | D NGINX NGINX
Docker host A Docker host B Docker host C

Figure 5-1. Example service discovery setup with ZooKeeper

etcd

Written in the Go language, etcd is a product of the CoreOS team.? It is a light-
weight, distributed key-value store that uses the Raft algorithm for consensus (a
leader—follower model, with leader election) and employs a replicated log across

2 Did you know that etcd comes from /etc distributed? What a name!

Technologies | 29

http://bit.ly/1O5sTU5
http://bit.ly/1O5sTU5
http://curator.apache.org
https://github.com/Netflix/exhibitor
https://github.com/coreos/etcd
https://raft.github.io/

the cluster to distribute the writes a leader receives to its followers. In a sense,
etcd is conceptually quite similar to ZK. While the payload can be arbitrary, etcd’s
HTTP API is JSON-based,’ and as with ZK, you can watch for changes in the val-
ues etcd makes available to the cluster. A very useful feature of etcd is that of
TTLs on keys, which is a great building block for service discovery. In the same
manner as ZK, you want 2n+1 nodes in an etcd cluster, for the same reasons.

The security model etcd provides allows on-the-wire encryption through
TLS/SSL as well as client certificate authentication, both between clients and the
cluster and between the etcd nodes.

In Figure 5-2, you can see that the etcd service discovery setup is quite similar to
the ZK setup. The main difference is the usage of confd, which configures
HAProxy, rather than having you write your own script.

Key , Value
(1, 1.23.4:80
Register (1 etcd 2, 123488
(4, 1235388
(5, 1.23.6:80
6, 1.23.6:88
Watch
Look up C1
I__I_I | confd | | confd | (&) | confd |
config config config
v b A h
| NGINX | | NGINX | | NGINX |
Docker host A Docker host B Docker host C
1234 1.2.3.5 1.2.3.6

Figure 5-2. Example service discovery setup with etcd

Consul

Consul, a HashiCorp product also written in the Go language, exposes function-
ality for service registration, discovery, and health checking in an opinionated
way. Services can be queried using the HT'TP API or through DNS. Consul sup-
ports multi-datacenter deployments.

One of Consul’s features is a distributed key-value store, akin to etcd. It also uses
the Raft consensus algorithm (and again the same observations concerning 2n+1
nodes as with ZK and etcd apply), but the deployment is different. Consul has the

3 That is, in contrast to ZK, all you need to interact with etcd is curl or the like.

30 | Chapter5:Service Discovery

https://github.com/kelseyhightower/confd
https://www.consul.io

concept of agents, which can be run in either of the two available modes—as a
server (provides a key-value store and DNS) or as a client (registers services and
runs health checks)—and with the membership and node discovery imple-
mented by Serf.

With Consul, you have essentially four options to implement service discovery
(ordered from most desirable to least desirable):

« Use a service definition config file, interpreted by the Consul agent.
« Use a tool like traefik that has a Consul backend.

» Write your own sidekick process that registers the service through the HTTP
APL

o Bake the registration into the service itself by leveraging the HTTP API.

Want to learn more about using Consul for service discovery? Check out these
two great blog posts: “Consul Service Discovery with Docker” by Jeff Lindsay and
“Docker DNS & Service Discovery with Consul and Registrator” by Joseph
Miller.

Pure-Play DNS-Based Solutions

DNS has been a robust and battle-proven workhorse on the internet for many
decades. The eventual consistency of the DNS system, the fact that certain clients
aggressively cache DNS lookups,* and also the reliance on SRV records make this
option something you will want to use when you know that it is the right one.

DPve titled this section “Pure-Play DNS-Based Solutions” because Consul techni-
cally also has a DNS server, but that’s only one option for how you can use it to
do service discovery. Here are some popular and widely used pure-play DNS-
based service discovery solutions:

Mesos-DNS
This solution is specific for service discovery in Apache Mesos. Written in
Go, Mesos-DNS polls the active Mesos master process for any running tasks
and exposes the <ip>:<port> info via DNS as well as through an HTTP APIL
For DNS requests for other hostnames or services, Mesos-DNS can either
use an external nameserver or leverage your existing DNS server to forward
only the requests for Mesos tasks to Mesos-DNS.

SkyDNS
Using etcd, you can announce your services to SkyDNS, which stores service
definitions into etcd and updates its DNS records. Your client application

4 Java, 'm looking at you.

Technologies | 31

http://bit.ly/1UwRbrK
https://www.serfdom.io
http://bit.ly/1UwR4MN
http://bit.ly/1Z64QHH
http://bit.ly/1PO1loE
http://bit.ly/1PO1loE
http://bit.ly/1IR9BTB
http://bit.ly/1PO1poB
http://mesosphere.github.io/mesos-dns/
http://bit.ly/1O5sX6n

issues DNS queries to discover the services. Thus, functionality-wise it is
quite similar to Consul, without the health checks.

WeaveDNS

WeaveDNS was introduced in Weave 0.9 as a simple solution for service dis-
covery on the Weave network, allowing containers to find other containers’
IP addresses by their hostnames. In Weave 1.1, a so-called Gossip DNS pro-
tocol was introduced, making lookups faster through a cache as well as
including timeout functionality. In the new implementation, registrations are
broadcast to all participating instances, which subsequently hold all entries
in memory and handle lookups locally.

Airbnb’s SmartStack and Netflix’s Eureka

In this section, we'll take a look at two bespoke systems that were developed to
address specific requirements. This doesn’t mean you can’t or shouldn’t use them,
just that you should be aware of this heritage.

Airbnb’s SmartStack is an automated service discovery and registration frame-
work, transparently handling creation, deletion, failure, and maintenance work.
SmartStack uses two separate services that run on the same host as your con-
tainer: Nerve (writing into ZK) for service registration, and Synapse (dynamically
configuring HAProxy) for lookup. It is a well-established solution for non-
containerized environments, and time will tell if it will also be as useful with
Docker.

Netflix’s Eureka is different, mainly because it was born in the AWS environment
(where all of Netflix runs). Eureka is a REST-based service used for locating serv-
ices for the purpose of load balancing and failover of middle-tier servers, and it
also comes with a Java-based client component, which makes interactions with
the service straightforward. This client has a built-in load balancer that does
basic round-robin load balancing. At Netflix, Eureka is used for red/black
deployments, for Cassandra and memcached deployments, and for carrying
application-specific metadata about services.

Participating nodes in a Eureka cluster replicate their service registries between
each other asynchronously. In contrast to ZK, etcd, or Consul, Eureka favors ser-
vice availability over strong consistency; it leaves it up to the client to deal with
stale reads, but has the upside of being more resilient in case of networking parti-
tions. And, you know, the network is reliable. Not.

Load Balancing

An orthogonal but related topic to that of service discovery is load balancing.
Load balancing enables you to spread the load—that is, the inbound service

32 | Chapter5:Service Discovery

http://bit.ly/2v8BrtI
http://bit.ly/1RizleI
https://github.com/airbnb/smartstack-cookbook
https://github.com/Netflix/eureka
http://queue.acm.org/detail.cfm?id=2655736

requests—across a number of containers. In the context of containers and micro-
services, load balancing achieves a couple of things at the same time:

o It allows throughput to be maximized and response time to be minimized.

o It can avoid hot-spotting—that is, overwhelming a single container with
work.

o It can help with overly aggressive DNS caching, such as that found with Java.

The following list outlines some popular load balancing options for container-
ized setups, in alphabetical order:

Bamboo
A daemon that automatically configures HAProxy instances, deployed on
Apache Mesos and Marathon. See the p24e guide “Service Discovery with
Marathon, Bamboo and HAProxy” for a concrete recipe.

Envoy
A high-performance distributed proxy written in C++, originally built at
Lyft. Envoy was designed to be used for single services and applications, and
to provide a communication bus and data plane for service meshes. It’s the
default data plane in Istio.

HAProxy
A stable, mature, and battle-proven (if not very feature-rich) workhorse.
Often used in conjunction with NGINX, HAProxy is reliable and integra-
tions with pretty much everything under the sun exist.

kube-proxy
Runs on each node of a Kubernetes cluster and updates services IPs. It sup-
ports simple TCP/UDP forwarding and round-robin load balancing. Note
that it's only for cluster-internal load balancing and also serves as a service
discovery support component.

MetalLB
A load-balancer implementation for bare-metal Kubernetes clusters,
addressing the fact that Kubernetes does not offer a default implementation
for such clusters. In other words, you need to be in a public cloud environ-
ment to benefit from this functionality. Note that you may need one or more
routers capable of speaking BGP in order for MetalLB to work.

NGINX
The leading solution in this space. With NGINX you get support for round-
robin, least-connected, and ip-hash strategies, as well as on-the-fly con-
figuration, monitoring, and many other vital features.

Load Balancing | 33

http://bit.ly/1ZO6xvw
https://github.com/QubitProducts/bamboo
http://bit.ly/1UwRlPZ
http://bit.ly/1UwRlPZ
https://www.envoyproxy.io
https://istio.io
http://www.haproxy.org
http://bit.ly/2IMEaee
https://metallb.universe.tf
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://www.nginx.com/resources/admin-guide/load-balancer/

servicerouter.py
A simple script that gets app configurations from Marathon and updates
HAProxy; see also the p24e guide “Service Discovery with Marathon, Bam-
boo and HAProxy”.

traefik
The rising star in this category. Emile Vauge (traefik’s lead developer) must
be doing something right. I like it a lot, because it’s like HAProxy but comes
with a bunch of backends, such as Marathon and Consul, out of the box.

Vamp-router
Inspired by Bamboo and Consul-HAProxy, Magnetic.io wrote Vamp-router,
which supports updates of the config through a REST API or ZooKeeper,
routes and filters for canary releasing and A/B testing, and ACLs, as well as
providing statistics.

Vulcand
A reverse proxy for HTTP API management and microservices, inspired by
Hystrix.

If you want to learn more about load balancing, check out Kevin Reedy’s talk
from nginx.conf 2014 on load balancing with NGINX and Consul.

Wrapping It Up

To close out this chapter, I've put together a table that provides an overview of
the service discovery solutions we've discussed. I explicitly do not aim at declar-
ing a winner, because I believe the best choice depends on your use case and
requirements. So, take the following table as a quick orientation and summary
but not as a shootout (also, note that in the context of Kubernetes you don’t need
to choose one—it’s built into the system):

Name Consistency Language Registration Lookup

ZooKeeper Strong Java Client Bespoke clients

etcd Strong Go Sidekick + client HTTP API

Consul Strong Go Automatic and through traefik (Consul ~ DNS + HTTP/JSON API
backend)

Mesos-DNS Strong Go Automatic and through traefik DNS + HTTP/JSON API
(Marathon backend)

SkyDNS Strong Go Client registration DNS

WeaveDNS Eventual Go Auto DNS

SmartStack Strong Java Client registration Automatic through HAProxy config

Eureka Eventual Java Client registration Bespoke clients

34 | Chapter5:Service Discovery

https://github.com/mesosphere/marathon-lb
http://bit.ly/1mCBZPx
http://bit.ly/1mCBZPx
https://traefik.io
https://github.com/magneticio/vamp-router
http://vulcand.readthedocs.io
https://github.com/Netflix/Hystrix
http://bit.ly/1S4zfqG

advised to reevaluate your initial choices on an ongoing basis, at least

m Because container service discovery is a moving target, you are well
until some consolidation has taken place.

In this chapter you learned about service discovery and how to tackle it, as well
as about load balancing options. We will now switch gears and move on to
Kubernetes, the de facto container orchestration standard that comes with built-
in service discovery (so you don’t need to worry about the topics discussed in this
chapter) and has its own very interesting approach to container networking
across machines.

WrappingltUp | 35

CHAPTER 6
The Container Network Interface

The Container Network Interface (CNI), as depicted in Figure 6-1, provides a
plug-in-oriented networking solution for containers and container orchestrators.
It consists of a specification and libraries for writing plug-ins to configure net-
work interfaces in Linux containers.

Built-in Third-party
/W_\ /"_N_/_‘\

|Ioopback“ bridge || ipvlan || dhep ll flannel | | Calico “ Cilium “ Weave l

Plug-ins

| Container Network Interface (CNI) |

hJ
| Container Runtime |

Figure 6-1. 100,000 ft view on CNI

The CNI specification is lightweight; it only deals with the network connectivity
of containers, as well as the garbage collection of resources once containers are

deleted.

We will focus on CNI in this book since it’s the de facto standard for container
orchestrators, adopted by all major systems such as Kubernetes, Mesos, and
Cloud Foundry. If youre exclusively using Docker Swarm you’ll need to use

37

https://github.com/containernetworking/cni

Docker’s libnetwork and might want to read the helpful article by Lee Calcote
titled “The Container Networking Landscape: CNI from CoreOS and CNM from
Docker”, which contrasts CNI with the Docker model and provides you with
some guidance.

History

CNI was pioneered by CoreOS in the context of the container runtime rkt, to
define a common interface between the network plug-ins and container runtimes
and orchestrators. Docker initially planned to support it but then came up with
the Docker-proprietary libnetwork approach to container networking.

CNI and the libnetwork plug-in interface were developed in parallel from April
to June 2015, and after some discussion the Kubernetes community decided not
to adopt libnetwork but rather to use CNI. Nowadays pretty much every con-
tainer orchestrator with the exception of Docker Swarm uses CNI; all runtimes
support it and there’s a long list of supported plug-ins, as discussed in “Container
Runtimes and Plug-ins” on page 40.

In May 2017, the Cloud Native Computing Foundation (CNCF) made CNI a full-
blown top-level project.

Specification and Usage

In addition to the CNI specification, at time of writing in version 0.3.1-dev, the
repository contains the Go source code of a library for integrating CNI into
applications as well as an example command-line tool for executing CNI plug-
ins. The plug-ins repository contains reference plug-ins and a template for creat-
ing new plug-ins.

Before we dive into the usage, let’s look at two central definitions in the context of
CNI:

Container
Synonymous with a Linux network namespace. What unit this corresponds
to depends on the container runtime implementation (single container or
pod).

Network
A uniquely addressable group of entities that can communicate with one
another. These entities might be an individual container, a machine, or some
other network device such as a router.

Let's now have a look at how CNI—on a high level—works, as depicted in
Figure 6-2. First, the container runtime takes some configuration and issues a
command to a plug-in. The plug-in then goes off and configures the network.

38 | Chapter 6: The Container Network Interface

http://bit.ly/2IOWJhY
http://bit.ly/2IOWJhY
https://github.com/containerd/containerd/issues/362
https://github.com/docker/libnetwork
http://bit.ly/2HexvMR
http://bit.ly/2HexvMR
http://bit.ly/2qq59W1
http://bit.ly/2qq59W1
http://bit.ly/2HbJkU3
https://github.com/containernetworking/cni
https://github.com/containernetworking/plugins
https://lwn.net/Articles/219794/

config

v
Container Runtime network

Figure 6-2. CNI high-level architecture

So, what CNI conceptually enables you to do is to add containers to a network as
well as remove them. The current version of CNI defines the following opera-
tions:

o Add container to one or more networks
o Delete container from network

o Report CNI version

In order for CNI to add a container to a network, the container runtime must
first create a new network namespace for the container and then invoke one or
more of the defined plug-ins. The network configuration is in JSON format and
includes mandatory fields such as name and type as well as plug-in type-specific
fields. The actual command (for example, ADD) is passed in as an environment
variable aptly named CNI_COMMAND.

IP Allocation with CNI

A CNI plug-in is expected to assign an IP address to the interface and set up net-
work routes relevant for it. This gives the CNI plug-in great flexibility but also
places a large burden on it. To accommodate this, CNI defines a dedicated IP
Address Management (IPAM) plug-in that takes care of the IP range manage-
ment independently.

Let’s have a look at a concrete CNI command in action:

$ CNI_COMMAND=ADD \
CNI_CONTAINERID=87541034c38d7 \
CNI_NETNS=/proc/1234/ns/net \
CNI_IFNAME=etho \
CNI_PATH=/opt/cni/bin \
someplugin < /etc/cni/net.d/someplugin.conf

This example shows how a certain plug-in (someplugin) is applied to a given
container (875410a4c38d7) using a specific configuration (someplugin.conf). Note
that while initially all configuration parameters were passed in as environment

Specification and Usage | 39

variables, the people behind the spec are moving more and more toward using
the (JSON) configuration file.

You can learn more about using CNI in the excellent blog post “Understanding
CNI” by Jon Langemak.

Container Runtimes and Plug-ins

In addition to pretty much any container orchestrator and container runtime
(Kubernetes, Mesos, Cloud Foundry) supporting CNI, it ships with a number of
built-in plug-ins, such as loopback and vlan. There’s also a long list of third-
party CNI plug-ins available. Here is a selection of the most important ones, in
alphabetical order:

Amazon ECS CNI Plugins
A collection of CNI plug-ins used by the Amazon ECS Agent to configure
the network namespace of containers with Elastic Network Interfaces (ENIs).

Bonding
A CNI plug-in for failover and high availability of networking in cloud-
native environments, by Intel.

Calico
Project Calico’s network plug-in for CNI. Project Calico manages a flat layer
3 network, assigning each workload a fully routable IP address. For environ-
ments requiring an overlay network Calico uses IP-in-IP tunneling or can
work with other overlay networks, such as flannel.

Cilium
A BPF-based solution providing connectivity between containers, operating
at layer 3/4 to provide networking and security services as well as layer 7 to
protect modern protocols such as HTTP and gRPC.

CNI-Genie
A generic CNI network plug-in by Huawei.

Infoblox
An IPAM driver for CNI that interfaces with Infoblox to provide IP Address
Management services.

Linen
A CNI plug-in designed for overlay networks with Open vSwitch.

Multus
A powerful multi-plug-in environment by Intel.

Nuage CNI
A Nuage Networks SDN plug-in supporting network policies for Kubernetes.

40 | Chapter 6: The Container Network Interface

http://bit.ly/2v8AWQf
http://bit.ly/2v8AWQf
https://github.com/containernetworking/plugins
https://github.com/aws/amazon-ecs-cni-plugins
https://github.com/Intel-Corp/bond-cni
https://github.com/projectcalico/calico-cni
https://github.com/coreos/flannel
https://github.com/cilium/cilium
https://github.com/Huawei-PaaS/CNI-Genie
https://github.com/infobloxopen/cni-infoblox
https://github.com/John-Lin/linen-cni
https://github.com/Intel-Corp/multus-cni
https://github.com/nuagenetworks/nuage-cni

Romana
A layer 3 CNI plug-in supporting network policy for Kubernetes.

Silk
A network fabric for containers, inspired by flannel, designed for Cloud
Foundry.

Vhostuser
A plug-in to run with Open vSwitch and OpenStack VPP along with the
Multus CNI plug-in in Kubernetes for bare-metal container deployment
models.

Weave Net
A multi-host Docker network by Weaveworks.

Wrapping It Up

With this we conclude the CNI chapter and move on to Kubernetes and its net-
working approach. CNI plays a central role in Kubernetes (networking), and you
might want to check the docs there as well.

WrappingltUp | 41

https://github.com/romana/kube
https://github.com/cloudfoundry/silk
https://github.com/intel/vhost-user-net-plugin
https://github.com/openstack/networking-vpp
https://github.com/weaveworks/weave#weave-net
http://bit.ly/2qr5OXk

CHAPTER7
Kubernetes Networking

This chapter will first quickly bring you up to speed concerning Kubernetes, then
introduce you to the networking concepts on a high level. Then we'll jump into
the deep end, looking at how container networking is realized in Kubernetes,
what traffic types exist and how you can make services talk to each other within
the cluster, as well as how you can get traffic into your cluster and to a specific
service.

A Gentle Kubernetes Introduction

Kubernetes is an open source container orchestration system. It captures Google’s
lessons learned from running containerized workloads on Borg for more than a
decade. As of early 2018 Kubernetes is considered the de facto industry standard
for container orchestration, akin to the Linux kernel for the case of a single
machine.

the birth of Kubernetes. The first was on June 7, 2014, with Joe Beda’s
initial commit on GitHub that marked the beginning of the open sourc-
ing of the project. The second was almost a year later, on July 20, 2015,
when Google launched Kubernetes 1.0 and announced the formation of
a dedicated entity to host and govern Kubernetes, the Cloud Native
Computing Foundation (CNCF). As someone who was at the launch
event (and party), I can tell you, that’s certainly one way to celebrate the
birth of a project.

m I'd argue that there are at least two significant points in time concerning

Kubernetes’s architecture (Figure 7-1) provides support for a number of work-
loads, allowing you to run stateless as well as stateful containerized applications.
You can launch long-running processes, such as low-latency app servers, as well
as batch jobs.

43

https://kubernetes.io
http://bit.ly/2IQcrth
https://www.cncf.io
https://www.cncf.io
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/

kubect|

Admin
HTTP

Control plane

Scheduler |

h 4
| kubelet '
R + -----]
¥ v ¥
cﬁ:gtﬂpr;r » pod pod Intemet
_ Y. / User

Figure 7-1. An overview of the Kubernetes architecture

The unit of scheduling in Kubernetes is a pod. Essentially, this is a tightly coupled
set of one or more containers that are always collocated (that is, scheduled onto a
node as a unit); they cannot be spread over nodes. The number of running
instances of a pod—called replicas—can be declaratively stated and enforced
through controllers. The logical organization of all resources, such as pods,
deployments, or services, happens through labels.

With Kubernetes you almost always have the option to swap out the default
implementations with some open source or closed source alternative, be it DNS
or monitoring. Kubernetes is highly extensible, from defining new workloads and
resource types in general to customizing its user-facing parts, such as the CLI
tool kubectl (pronounced cube cuddle).

This chapter assumes youre somewhat familiar with Kubernetes and its termi-
nology. Should you need to brush up your knowledge of how Kubernetes works,
I suggest checking out the Concepts section in the official docs or the book
Kubernetes Up and Running (O’Reilly) by Brendan Burns, Kelsey Hightower, and
Joe Beda.

44 | Chapter7: Kubernetes Networking

http://bit.ly/2IPyuQN
https://kubernetes.io/docs/concepts/
http://oreil.ly/1VJAlqO

Kubernetes Networking Overview

Rather than prescribing a certain networking solution, Kubernetes only states
three fundamental requirements:

o Containers can communicate with all other containers without NAT.
« Nodes can communicate with all containers (and vice versa) without NAT.

o The IP a container sees itself is the same IP as others see it.

How you meet these requirements is up to you. This means you have a lot of free-
dom to realize networking with and for Kubernetes. It also means, however, that
Kubernetes on its own will only provide so much; for example, it supports CNI
(Chapter 6) but it doesn’t come with a default SDN solution. In the networking
area, Kubernetes is at the same time strangely opinionated (see the preceding
requirements) and not at all (no batteries included).

From a network traffic perspective we differentiate between three types in Kuber-
netes, as depicted in Figure 7-2:

Intra-pod networking
All containers within a pod share a network namespace and see each other
on localhost. Read “Intra-Pod Networking” on page 46 for details.

Inter-pod networking
Two types of east-west traffic are supported: pods can directly communicate
with other pods or, preferably, pods can leverage services to communicate
with other pods. Read “Inter-Pod Networking” on page 47 for details.

Ingress and egress
Ingress refers to routing traffic from external users or apps to pods, and
egress refers to calling external APIs from pods. Read “Ingress and Egress”
on page 53 for details.

Kubernetes Networking Overview | 45

http://bit.ly/2vgpu5l

User

Cluster Ingress &

Egress

intra-pod
networking

o ———————y

inter-pod networking

Figure 7-2. Kubernetes network traffic types

space with full connectivity to other nodes and pods across the network.
This IP-per-pod model yields a backward-compatible way for you to
treat a pod almost identically to a VM or a physical host, in the context
of naming, service discovery, or port allocations. The model allows for a
smoother transition from non-cloud native apps and environments.

m Kubernetes requires each pod to have an IP in a flat networking name-

Intra-Pod Networking

Within a pod there exists a so-called infrastructure container. This is the first con-
tainer that the kubelet launches, and it acquires the pod’s IP and sets up the net-
work namespace. All the other containers in the pod then join the infra
container’s network and IPC namespace. The infra container has network bridge
mode enabled (see “Bridge Mode Networking” on page 7) and all the other con-
tainers in the pod join this namespace via container mode (covered in “Container
Mode Networking” on page 9). The initial process that runs in the infra container
does effectively nothing,' as its sole purpose is to act as the home for the name-

1 See pause.go for details; basically it blocks until it receives a SIGTERM.

46 | Chapter7: Kubernetes Networking

http://bit.ly/2qwFvPF

spaces. If the infra container dies, the kubelet kills all the containers in the pod
and then starts the process over.

As a result of above, all containers within a pod can communicate amongst each
other using localhost (or 127.0.0.1 in IPv4). You are responsible yourself to
make sure containers within a pod do not conflict with each other in terms of
ports used. Note also that the Kubernetes approach here also means reduced iso-
lation between containers within a pod; however, this is by design and since we
consider the tight coupling here a good thing, it is probably not something you
need to worry about, though it’s good to be aware of it.

If you want to learn more about the infra container, read The Almighty Pause
Container by Ian Lewis.

Inter-Pod Networking

In Kubernetes, each pod has a routable IP, allowing pods to communicate across
cluster nodes without NAT and no need to manage port allocations. Because
every pod gets a real (that is, not machine-local) IP address, pods can communi-
cate without proxies or translations (such as NAT). The pod can use well-known
ports and can avoid the use of higher-level service discovery mechanisms such as
those we discussed in Chapter 5.

We distinguish between two types of inter-pod communication, sometimes also
called East-West traffic:

+ Pods can directly communicate with other pods; in this case the caller pod
needs to find out the IP address of the callee and risks repeating this opera-
tion since pods come and go (cattle behaviour).

o Preferably, pods use services to communicate with other pods. In this case,
the service provides a stable (virtual) IP address that can be discovered, for
example, via DNS.

Difference to Docker Model

Note that the Kubernetes flat address space model is different from the default
Docker model. There, each container gets an IP address in the 172.x.x.x space
and only sees this 172. address. If this container connects to another container
the peer would see the connection coming from a different IP than the container
itself sees. This means you can never self-register anything from a container
because a container cannot be reached on its private IP.

Inter-Pod Networking | 47

https://www.ianlewis.org/en/almighty-pause-container
https://www.ianlewis.org/en/almighty-pause-container

When a container tries to obtain the address of network interface it sees the same
IP that any peer container would see them coming from; each pod has its own IP
address that other pods can find and use. By making IP addresses and ports the
same both inside and outside the pods, Kubernetes creates a flat address space
across the cluster. For more details on this topic see also the article “Understand-
ing Kubernetes Networking: Pods” by Mark Betz.

Let’s now focus on the service, as depicted in Figure 7-3.

‘ API Server I

' iptables ‘ I kube-proxy |

:8080 03:8080

= [abel A =} label A
= = label B
172.17.0.3 172.17.0.4

Figure 7-3. The Kubernetes service concept

A service provides a stable virtual IP (VIP) address for a set of pods. While pods
may come and go, services allow clients to reliably discover and connect to the
containers running in the pods by using the VIP. The “virtual” in VIP means it’s
not an actual IP address connected to a network interface; its purpose is purely to
act as the stable front to forward traffic to one or more pods, with IP addresses
that may come and go.

48 | Chapter7: Kubernetes Networking

http://bit.ly/2v89LoE
http://bit.ly/2v89LoE
http://bit.ly/2q7AbUD

What VIPs Really Are
It’s essential to realize that VIPs do not exist as such in the networking

stack. For example, you can't ping them. They are only Kubernetes-
internal administrative entities. Also note that the format is IP:PORT, so
the IP address along with the port make up the VIP. Just think of a VIP
as a kind of index into a data structure mapping to actual IP addresses.

As you can see in Figure 7-3, the service with the VIP 10.104.58.143 routes the
traffic to one of the pods 172.17.0.3 or 172.17.0.4. Note here the different sub-
nets for the service and pods, see Network Ranges for further details on the rea-
son behind that. Now, you might be wondering how this actually works? Let’s
have a look at it.

You specify the set of pods you want a service to target via a label selector, for
example, for spec.selector.app=someapp Kubernetes would create a service
that targets all pods with a label app=someapp. Note that if such a selector exists,
then for each of the targeted pods a sub-resource of type Endpoint will be cre-
ated, and if no selector exists then no endpoints are created. For example, see in
the following code example the output of the kubectl describe command. Such
endpoints are also not created in the case of so-called headless services, which
allow you to exercise great control over how the IP management and service dis-
covery takes place.

Keeping the mapping between the VIP and the pods up-to-date is the job of
kube-proxy (see also the docs on kube-proxy), a process that runs on every node
on the cluster.

This kube-proxy process queries the API server to learn about new services in
the cluster and updates the node’s iptables rules accordingly, to provide the nec-
essary routing information. To learn more how exactly services work, check out
Kubernetes Services By Example.

Let’s see how this works in practice: assuming there’s an existing deployment
called nginx (for example, execute kubectl run webserver --image nginx)
you can automatically create a service like so:

$ kubectl expose deployment/webserver --port 80
service "webserver" exposed

$ kubectl describe service/webserver

Name: webserver
Namespace: default
Labels: run=webserver
Annotations: <none>
Selector: run=webserver
Type: ClusterIP

IP: 10.104.58.143

Inter-Pod Networking | 49

http://bit.ly/2v7Z19P
http://bit.ly/2IMEaee
https://red.ht/2vbeaY0

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 172.17.0.3:8080,172.17.0.4:8080
Session Affinity: None

Events: <none>

After executing the above kubectl expose command, you will see the service
appear:

$ kubectl get service -1 run=webserver
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
webserver ClusterIP 10.104.58.143 <none> 80/TCP im

Above, note two things: the service has got itself a cluster-internal IP (CLUSTER-
IP column) and the EXTERNAL-IP column tells you that this service is only avail-
able from within the cluster, that is, no traffic from outside of the cluster can
reach this service (yet)—see “Ingress and Egress” on page 53 to learn how to
change this situation.

£ kubernetes Q, Seach + tnEaTE

load balancing # et DELETE

Detalls

[rp— Carnaction
e Hamespace default Cluster IP- T0.104.55.703

dedwll = Labals: mun: websemer Internal endpeits:

Creation Tim: 201302 18T0744 UTC
Oversiow

[——
Warkloads Type: ClustenlF
Sassion Afintty: Haee

Cran Joos

Daarman Sims

F— Endpoints

s e [e — . [

Fuds TN sunsats, B0, TCF inkuz e

Replca Sets

Replleation Cormrales Pods

Sratul Sats

Dy ind Lead Bdlaneing

Ingpessas:

Condi wed Stomge

Figure 7-4. Kubernetes service in the dashboard

In Figure 7-4 you can see the representation of the service in the Kubernetes
dashboard.

Service Discovery in Kubernetes

Let us now talk about how service discovery works in Kubernetes.

Conceptually, you can use one of the two built-in discovery mechanisms:

 Through environment variables (limited)

50 | Chapter7: Kubernetes Networking

http://bit.ly/2IKDB4o

 Using DNS, which is available cluster-wide if a respective DNS cluster add-
on has been installed

Environment Variables—Based Service Discovery

For the environment variables-based discovery method, a simple example might
look like the example code to follow: using a jump pod to get us into the cluster
and then running from there the env built-in shell command (note that the out-
put has been edited to be easier to digest).

$ kubectl run -it --rm jump --restart=Never \
--image=quay.io/mhausenblas/jump:v0.1 -- sh
If you don't see a command prompt, try pressing enter.
|/ # env
HOSTNAME=jump
WEBSERVER_SERVICE_HOST=10.104.58.143
WEBSERVER_PORT=tcp://10.104.58.143:80
WEBSERVER_SERVICE_PORT=80
WEBSERVER_PORT_80_TCP_ADDR=10.104.58.143
WEBSERVER_PORT_80_TCP_PORT=80
WEBSERVER_PORT_80_TCP_PROTO=tcp
WEBSERVER_PORT_80_TCP=tcp://10.104.58.143:80

Above, you can see the service discovery in action: the environment variables WEB
SERVER_XXX give you the IP address and port you can use to connect to the ser-
vice. For example, while still in the jump pod, you could execute curl
10.104.58.143 and you should see the NGINX welcome page.

While convenient, note that discovery via environment variables has a funda-
mental drawback: any service that you want to discover must be created before
the pod from which you want to discover it as otherwise the environment vari-
ables will not be populated by Kubernetes. Luckily there exists a better way: DNS.

DNS-Based Service Discovery

Mapping a fully qualified domain name (FQDN) like example.com to an IP
address such as 123.4.5.66 is what DNS was designed for and has been doing
for us on a daily basis on the internet for more than 30 years.

Choosing a DNS Solution
m When rolling your own Kubernetes distro, that is, putting together all

the required components such as SDN or the DNS add-on yourself
rather than using an offering from the more than 30 certified Kuber-
netes offerings, it’s worth considering the CNCF project CoreDNS over
the older and less feature-rich kube-dns DNS cluster add-on (which is
part of Kubernetes proper).

Service Discovery in Kubernetes | 51

http://bit.ly/2IKDS7q
http://bit.ly/2IO881u
https://github.com/cncf/k8s-conformance
https://github.com/cncf/k8s-conformance
https://coredns.io/plugins/kubernetes/
http://bit.ly/1n4EF8B

So how can we use DNS to do service discovery in Kubernetes? It’s easy, if you
have the DNS cluster add-on installed and enabled. This DNS server watches on
the Kubernetes API for services being created or removed. It creates a set of DNS
records for each service it observes.

In the next example, let’s use our webserver service from above and assume we
have it running in the default namespace. For this service, a DNS record web
server.default (with a FQDN of webserver.default.cluster.local) should
be present.

$ kubectl run -it --rm jump --restart=Never \
--image=quay.io/mhausenblas/jump:v0.1 -- sh
If you don't see a command prompt, try pressing enter.
|/ # curl webserver.default
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1l>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>
Pods in the same namespace can reach the service by its shortname webserver,
whereas pods in other namespaces must qualify the name as webserver.default.
Note that the result of these FQDN lookups is the pod’s cluster IP. Further,
Kubernetes supports DNS service (SRV) records for named ports. So if our web
server service had a port named, say, http with the protocol type TCP, you
could issue a DNS SRV query for _http._tcp.webserver from the same name-
space to discover the port number for http. Note also that the virtual IP for a
service is stable, so the DNS result does not have to be requeried.

52 | Chapter 7: Kubernetes Networking

Network Ranges

° From an administrative perspective, you are conceptually dealing with
three networks: the pod network, the service network, and the host net-
work (the machines hosting Kubernetes components such as the kube
let). You will need a strategy regarding how to partition the network
ranges; one often found strategy is to use networks from the private
range as defined in RFC 1918, that is, 10.0.0.0/8, 172.16.0.0/12, and
192.168.0.0/16.

Ingress and Egress

In the following we'll have a look at how traffic flows in and out of a Kubernetes
cluster, also called North-South traffic.

Ingress

Up to now we have discussed how to access a pod or service from within the
cluster. Accessing a pod from outside the cluster is a bit more challenging. Kuber-
netes aims to provide highly available, high-performance load balancing for serv-
ices.

Initially, the only available options for North-South traffic in Kubernetes were
NodePort, LoadBalancer, and ExternalName, which are still available to you. For
layer 7 traffic (i.e., HTTP) a more portable option is available, however: intro-
duced in Kubernetes 1.2 as a beta feature, you can use Ingress to route traffic
from the external world to a service in our cluster.

Ingress in Kubernetes works as shown in Figure 7-5: conceptually, it is split up
into two main pieces, an Ingress resource, which defines the routing to the back-
ing services, and the Ingress controller, which listens to the /ingresses endpoint
of the API server, learning about services being created or removed. On service
status changes, the Ingress controller configures the routes so that external traffic
lands at a specific (cluster-internal) service.

Ingressand Egress | 53

https://tools.ietf.org/html/rfc1918
http://bit.ly/2vbvZWS
http://bit.ly/2vgpMsX

http://myservice.example.com/somepath

APl Server

lihgress

Cluster

Ingress
controller

Figure 7-5. Ingress concept

The following example presents a concrete example of an Ingress resource, to
route requests for myservice.example.com/somepath to a Kubernetes service

named servicel on port 9876.

apiVersion: extensions/vibetal
kind: Ingress
metadata:
name: example-ingress
spec:
rules:
- host: myservice.example.com
http:
paths:
- path: /somepath
backend:
serviceName: servicel
servicePort: 9876

Now, the Ingress resource definition is nice, but without a controller, nothing
happens. So let’s deploy an ingress controller, in this case using Minikube.

$ minikube addons enable ingress

Once you've enabled Ingress on Minikube, you should see it appear as enabled in
the list of Minikube add-ons. After a minute or so, two new pods will start in the
kube-system namespace, the backend and the controller. So now you can use it,
using the manifest in the following example, which configures a path to an
NGINX webserver.

$ cat nginx-ingress.yaml
kind: Ingress
apiVersion: extensions/vibetal
metadata:
name: nginx-public

54 | Chapter7: Kubernetes Networking

annotations:
ingress.kubernetes.io/rewrite-target: /
spec:
rules:
- host:
http:
paths:
- path: /web
backend:
serviceName: nginx
servicePort: 80

$ kubectl create -f nginx-ingress.yaml

Now NGINX is available via the IP address 192.168.99.100 (in this case my
Minikube IP) and the manifest file defines that it should be exposed via the
path /web.

Note that Ingress controllers can technically be any system capable of reverse
proxying, but NGINX is most commonly used. Further, Ingress can also be
implemented by a cloud-provided load balancer, such as Amazon’s ALB.

For more details on Ingress, read the excellent article “Understanding Kubernetes
Networking: Ingress” by Mark Betz and make sure to check out the results of the
survey the Kubernetes SIG Network carried out on this topic.

Egress

While in the case of Ingress were interested in routing traffic from outside the
cluster to a service, in the case of Egress we are dealing with the opposite: how
does an app in a pod call out to (cluster-)external APIs?

One may want to control which pods are allowed to have a communication path
to outside services and on top of that impose other policies. Note that by default
all containers in a pod can perform Egress. These policies can be enforced using
network policies as described in “Network Policies” on page 55 or by deploying a
service mesh as in “Service Meshes” on page 56.

Advanced Kubernetes Networking Topics

In the following I'll cover two advanced and somewhat related Kubernetes net-
working topics: network policies and service meshes.

Network Policies

Network policies in Kubernetes are a feature that allow you to specify how
groups of pods are allowed to communicate with each other. From Kubernetes

Advanced Kubernetes Networking Topics | 55

https://github.com/kubernetes/ingress-nginx
https://amzn.to/2IOQqL4
http://bit.ly/2IO8iG8
http://bit.ly/2IO8iG8
https://github.com/bowei/k8s-ingress-survey-2018
http://bit.ly/2vgq96P

version 1.7 and above network policies are considered stable and hence you can
use them in production.

Let’s take a look at a concrete example of how this works in practice. For example,
say you want to suppress all traffic to pods in the namespace superprivate.
Youd create a default Egress policy for that namespace as in the following exam-

ple:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: bydefaultnoegress
namespace: superprivate
spec:
podSelector: {}
policyTypes:
- Egress
Note that different Kubernetes distros support network policies to different
degrees: for example, in OpenShift they are supported as first-class citizens and a

range of examples is available via the redhat-cop/openshift-toolkit GitHub repo.

If you want to learn more about how to use network policies, check out Ahmet
Alp Balkan’s brilliant and detailed hands-on blog post, “Securing Kubernetes
Cluster Networking”.

Service Meshes

Going forward, you can make use of service meshes such as the two discussed in
the following. The idea of a service mesh is that rather than putting the burden of
networking communication and control onto you, the developer, you outsource
these nonfunctional things to the mesh. So you benefit from traffic control,
observability, security, etc. without any changes to your source code. Sound fan-
tastic? It is, believe you me.

Istio

Istio is a modern and popular service mesh, available for Kubernetes but not
exclusively so. It's using Envoy as the default data plane and mainly focusing
on the control-plane aspects. It supports monitoring (Prometheus), tracing
(Zipkin/Jaeger), circuit breakers, routing, load balancing, fault injection,
retries, timeouts, mirroring, access control, and rate limiting out of the box,
to name a few features. Istio takes the battle-tested Envoy proxy (cf. “Load
Balancing” on page 32) and packages it up as a sidecar container in your pod.
Learn more about Istio via Christian Posta’s wonderful resource: Deep Dive
Envoy and Istio Workshop.

56 | Chapter7: Kubernetes Networking

http://bit.ly/2vgqiHp
http://bit.ly/2vgr8Uz
https://ahmet.im/blog/kubernetes-network-policy/
https://ahmet.im/blog/kubernetes-network-policy/
https://istio.io
http://bit.ly/2vaDIV2
http://bit.ly/2vaDIV2

Buoyant’s Conduit

This service mesh is deployed on a Kubernetes cluster as a data plane (writ-
ten in Rust) made up of proxies deployed as sidecar containers alongside
your app and a control plane (written in Go) of processes that manages these
proxies, akin to what you've seen in Istio above. After the CNCF project
Linkerd this is Buoyant’s second iteration on the service mesh idea; they are
the pioneers in this space, establishing the service mesh idea in 2016. Learn
more via Abhishek Tiwari’s excellent blog post, “Getting started with Con-
duit - lightweight service mesh for Kubernetes”.

One note before we wrap up this chapter and also the book: service meshes are
still pretty new, so you might want to think twice before deploying them in prod
—unless you're Lyft or Google or the like ;)

Wrapping It Up

In this chapter we've covered the Kubernetes approach to container networking
and showed how to use it in various setups. With this we conclude the book;
thanks for reading and if you have feedback, please do reach out via Twitter.

WrappingltUp | 57

https://conduit.io
https://linkerd.io
http://bit.ly/2v7ZUPH
http://bit.ly/2v7ZUPH
https://twitter.com/mhausenblas

APPENDIX A
References

Reading stuff is fine, and here I've put together a collection of links that contain
either background information on topics covered in this book or advanced mate-
rial, such as deep dives or teardowns. However, for a more practical approach I
suggest you check out Katacoda, a free online learning environment that contains
100+ scenarios from Docker to Kubernetes (see for example the screenshot in
Figure A-1).

Katagoda Sohtonz= Sewwh Logh Sknlp

Learn Kubernetes using Interactive Browser-Based Scenarios

v Ben Hall

Get Started!
Scenarios Complted Frogress Paints Launch A Single Launch a multi-
. [] of 16 U% 0 Node Cluster node cluster using
. = Kubeadm

Figure A-1. Katacoda Kubernetes scenarios

You can use Katacoda in any browser; sessions are typically terminated after one
hour.

59

https://katacoda.com/

Container Networking References
Networking 101

o “Network Protocols” from the Programmer’s Compendium
o “Demystifying Container Networking” by Michele Bertasi
o “An Empirical Study of Load Balancing Algorithms” by Khalid Lafi

Linux Kernel and Low-Level Components

+ “The History of Containers” by thildred
« “A History of Low-Level Linux Container Runtimes” by Daniel J. Walsh

o “Networking in Containers and Container Clusters” by Victor Marmol,
Rohit Jnagal, and Tim Hockin

» “Anatomy of a Container: Namespaces, cgroups & Some Filesystem Magic”
by Jérome Petazzoni

+ “Network Namespaces” by corbet
o Network classifier cgroup documentation
+ “Exploring LXC Networking” by Milos Gajdos

Docker

o Docker networking overview

+ “Concerning Containers’ Connections: On Docker Networking” by Federico
Kereki

o “Unifying Docker Container and VM Networking” by Filip Verloy

o “The Tale of Two Container Networking Standards: CNM v. CNI” by Har-
meet Sahni

Kubernetes Networking References

Kubernetes Proper and Docs

+ Kubernetes networking design
« Services

 Ingress

60 | Appendix A: References

https://www.destroyallsoftware.com/compendium/network-protocols?share_key=97d3ba4c24d21147
http://blog.mbrt.it/2017-10-01-demystifying-container-networking/
http://liblb.com/learn.html
http://red.ht/1mCDpJU
https://opensource.com/article/18/1/history-low-level-container-runtimes
http://wiki.iptables.org/pablo/netdev0.1/papers/Networking-in-Containers-and-Container-Clusters.pdf
http://bit.ly/1SAn4RU
https://lwn.net/Articles/219794/
https://www.kernel.org/doc/Documentation/cgroup-v1/net_cls.txt
http://bit.ly/1kMA2hE
http://bit.ly/1JXWf2R
http://bit.ly/1JXWfjl
http://bit.ly/1JuCDs5
http://www.nuagenetworks.net/blog/container-networking-standards/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/network/networking.md
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/

o Cluster Networking

o Provide Load-Balanced Access to an Application in a Cluster
o Create an External Load Balancer

o Kubernetes DNS example

o Kubernetes issue 44063: Implement IPVS-based in-cluster service load bal-
ancing

o “Data and analysis of the Kubernetes Ingress survey 2018” by the Kubernetes
SIG Network

General Kubernetes Networking

+ “Kubernetes Networking 101” by Bryan Boreham of Weaveworks
o “An Illustrated Guide to Kubernetes Networking” by Tim Hockin of Google

+ “The Easy—Don’t Drive Yourself Crazy—Way to Kubernetes Networking” by
Gerard Hickey (KubeCon 2017, Austin)

o+ “Understanding Kubernetes Networking: Pods”, “Understanding Kubernetes
Networking: Services”, and “Understanding Kubernetes Networking:
Ingress” by Mark Betz

o “Understanding CNI (Container Networking Interface)” by Jon Langemak
» “Operating a Kubernetes Network” by Julia Evans
 “nginxinc/kubernetes-ingress” Git repo

o “The Service Mesh: Past, Present, and Future” by William Morgan (KubeCon
2017, Austin)

» “Meet Bandaid, the Dropbox Service Proxy” by Dmitry Kopytkov and Pat-
rick Lee

o “Kubernetes NodePort vs LoadBalancer vs Ingress? When Should I Use
What?” by Sandeep Dinesh

References | 61

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/tasks/access-application-cluster/load-balance-access-application-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
https://github.com/kubernetes/examples/blob/master/staging/cluster-dns/README.md
https://github.com/kubernetes/kubernetes/issues/44063
https://github.com/bowei/k8s-ingress-survey-2018
https://www.slideshare.net/weaveworks/kubernetes-networking-78049891
https://speakerdeck.com/thockin/illustrated-guide-to-kubernetes-networking
https://www.youtube.com/watch?v=H5Zl_kDOwBU
https://medium.com/google-cloud/understanding-kubernetes-networking-pods-7117dd28727
https://medium.com/google-cloud/understanding-kubernetes-networking-services-f0cb48e4cc82
https://medium.com/google-cloud/understanding-kubernetes-networking-services-f0cb48e4cc82
https://medium.com/google-cloud/understanding-kubernetes-networking-ingress-1bc341c84078
https://medium.com/google-cloud/understanding-kubernetes-networking-ingress-1bc341c84078
http://www.dasblinkenlichten.com/understanding-cni-container-networking-interface/
https://jvns.ca/blog/2017/10/10/operating-a-kubernetes-network/
https://github.com/nginxinc/kubernetes-ingress
https://www.youtube.com/watch?v=2trOvMUuLkk
https://blogs.dropbox.com/tech/2018/03/meet-bandaid-the-dropbox-service-proxy/
https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0
https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0

About the Author

Michael Hausenblas is a developer advocate for Go, Kubernetes, and OpenShift
at Red Hat, where he helps appops to build and operate distributed services. His
background is in large-scale data processing and container orchestration and he’s
experienced in advocacy and standardization at the W3C and IETF. Before Red
Hat, Michael worked at Mesosphere and MapR and in two research institutions
in Ireland and Austria. He contributes to open source software (mainly using
Go), speaks at conferences and user groups, blogs, and hangs out on Twitter too
much.

	Cover
	NGINX
	Copyright
	Table of Contents
	Preface
	Why I Wrote This Book
	Who Is This Book For?
	About Me
	Acknowledgments

	Chapter 1. Motivation
	Introducing Pets Versus Cattle
	Go Cattle!
	The Container Networking Stack
	Do I Need to Go “All In”?

	Chapter 2. Introduction to Container Networking
	Single-Host Container Networking 101
	Modes for Docker Networking
	Bridge Mode Networking
	Host Mode Networking
	Container Mode Networking
	No Networking

	Administrative Considerations
	Wrapping It Up

	Chapter 3. Multi-Host Networking
	Multi-Host Container Networking 101
	Options for Multi-Host Container Networking
	flannel
	Weave Net
	Project Calico
	Open vSwitch
	OpenVPN

	Docker Networking
	Administrative Considerations
	Wrapping It Up

	Chapter 4. Orchestration
	What Does a Scheduler Actually Do?
	Docker
	Swarm Mode
	Docker Swarm

	Apache Mesos
	Hashicorp Nomad
	Community Matters
	Wrapping It Up

	Chapter 5. Service Discovery
	The Challenge
	Technologies
	ZooKeeper
	etcd
	Consul
	Pure-Play DNS-Based Solutions
	Airbnb’s SmartStack and Netflix’s Eureka

	Load Balancing
	Wrapping It Up

	Chapter 6. The Container Network Interface
	History
	Specification and Usage
	Container Runtimes and Plug-ins
	Wrapping It Up

	Chapter 7. Kubernetes Networking
	A Gentle Kubernetes Introduction
	Kubernetes Networking Overview
	Intra-Pod Networking
	Inter-Pod Networking
	Service Discovery in Kubernetes
	Environment Variables–Based Service Discovery
	DNS-Based Service Discovery

	Ingress and Egress
	Ingress
	Egress

	Advanced Kubernetes Networking Topics
	Network Policies
	Service Meshes

	Wrapping It Up

	Appendix A. References
	Container Networking References
	Networking 101
	Linux Kernel and Low-Level Components
	Docker

	Kubernetes Networking References
	Kubernetes Proper and Docs
	General Kubernetes Networking

	About the Author

