O'REILLY"

Chapters

compliments of

Continuous API
Management

MAKING THE RIGHT DECISIONS IN AN EVOLVING LANDSCAPE

Mehdi Medjaoui, Erik Wilde,

Ronnie Mitra & Mike Amundsen
Foreword by Kin Lane

Why Trust Your APIs
to Anyone Else?

Traditional APl management tools are complex
and slow. As the most-trusted APl gateway, we
knew we could do better. NGINX has modernized
full API lifecycle management.

7 @ [

API Definition Rate Authenticationand Real-Time Monitoring
and Publication Limiting Authorization and Alerting

A

Dashboards

Define APIs using Protection against Applying fine-grained Get critical insights Monitor and
an intuitive interface. malicious API clients. access control for into application troubleshoot API
better security. performance. Gateways quickly.

Learn more at

http://www.nginx.com/apim

Continuous APl Management
Making the Right Decisions
in an Evolving Landscape

This excerpt contains Chapters 1-3 of the book Continuous
API Management. The complete book is available on
oreilly.com and through other retailers.

Mehdi Medjaoui, Erik Wilde,
Ronnie Mitra, and Mike Amundsen

Bejing - Boston « Farham - Sebastopol - Tokyo [@YRIIMY

Continuous APl Management
by Mehdi Medjaoui, Erik Wilde, Ronnie Mitra, and Mike Amundsen

Copyright © 2019 Mehdi Medjaoui, Erik Wilde, Ronnie Mitra, and Mike Amundsen. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Alicia Young Indexer: WordCo Indexing Services, Inc.
Production Editor: Justin Billing Interior Designer: David Futato

Copyeditor: Rachel Head Cover Designer: Karen Montgomery

Proofreader: James Fraleigh lllustrators: Rebecca Demarest and Ronnie Mitra

November 2018: First Edition

Revision History for the First Edition
2018-11-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492043553 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Continuous API Management, the
cover image, and related trade dress are trademarks of O’'Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial inde-
pendence.

978-1-492-04355-3
[LSI]

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492043553
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Foreword.ooviiiiiiii v
1. The Challenge of API Management.coeuieeinerinerenneenneennerennens 1
What Is API Management? 2
What Is an API? 3
More Than Just the API 4

API Maturity Stages 5
More Than a Single API 5

The Business of APIs 6
Why Is API Management Difficult? 7
Scope 8
Scale 9
Standards 9
Managing the API Landscape 10
Technology 11
Teams 11
Governance 12
Summary 14

2. APIGOVEIMANCE. .. vttt eteiiiiiiee et ettiiiie et eeniiiieeeeeranannaes 15
Understanding API Governance 16
Decisions 16
Governing Decisions 17
Governing Complex Systems 18
Governing Decisions 20
Centralization and Decentralization 22

The Elements of a Decision 27

Decision Mapping 32

Designing Your Governance System
Governance Pattern #1: Interface Supervision
Governance Pattern #2: Machine-Driven Governance
Governance Pattern #3: Collaborative Governance
Summary

. The APlasaProduct.oovvvervnini it et nieneneenenennes

Design Thinking
Matching People’s Needs
Viable Business Strategy
The Bezos Mandate
Applying Design Thinking to APIs
Customer Onboarding
Time to Wow!
Onboarding for Your APIs
Developer Experience
Knowing Your Audience
Making It Safe and Easy
Summary

33
35
36
37
38

39
40
41
41
42
43
44
45
46
48
49
53
55

iv

| Table of Contents

Foreword

APIs have grown tremendously in recent years. There are now more than 20,000
APIs for building mobile and web applications available in the repository at Pro-
grammableWeb, a leading source of news and information about APIs, with about
170 new APIs being added every month. And these are just the external APIs that
enterprises expose to third-party developers; the number of internal APIs is poised
for huge growth over the next few years, fueled by the adoption of microservices that
use APIs for service-to-service communication.

As you expand your organization’s API footprint, how do you scale your technology,
people, processes, and governance? What kind of guidelines should you provide for
designing, implementing, and deploying APIs in your organization? This excerpt of
the first three chapters of Continuous API Management provides answers to these
critical questions. This is a must-have book for technical practitioners as well as pro-
fessionals responsible for an enterprise’s API business strategy. It sheds light on the
critical business elements of delivering APIs—from establishing drivers for building
them to deploying, operationalizing, refining, and evolving them continually at scale.

Together, authors Mehdi Medjaoui, Erik Wilde, Ronnie Mitra, and Mike Amundsen
from the API Academy bring a wealth of experience to guide your development of an
API program in a holistic fashion from ideation to realization, taking both technical
and business aspects into account. In addition to sharing their own expertise on API
management, they provide critical insights into common approaches adopted by doz-
ens of enterprises across multiple industries.

NGINX powers many traditional API management solutions, including Axway, IBM
DataPower, Kong, MuleSoft, Red Hat 3Scale, and Torry Harris. According to our
2018 user survey, more than 40% of our users have deployed NGINX as an API gate-
way. NGINX Controller’s API Management Module is a full API lifecycle manage-
ment solution that is lightweight and delivers high performance. NGINX’s unique
architecture for API management is well suited to the needs of both monolithic
applications and modern distributed applications based on microservices.

Foreword | v

https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23
https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23

Whether you are just starting to build APIs for your enterprise or needing to enhance

your current API landscape, we sincerely hope you enjoy this excerpt as you develop
a stable and successful API program.

— Karthik Krishnaswamy
Director, Product Marketing
NGINX, Inc.

vi | Foreword

CHAPTER 1
The Challenge of APl Management

Management is, above all, a practice where art, science, and craft meet

—Henry Mintzberg

A survey from Coleman Parkes released in 2017 shows that almost 9 in 10 global
enterprises have some form of API program. This same survey shows that these com-
panies are seeing a wide variety of benefits from their API programs, including an
average increase in speed-to-market of around 18%. However, only about 50% of
these same companies say they have an advanced API management program. This
points to a key gap in many enterprise-level API programs: the distance between the
operational APIs that represent key contributions to revenue and the management
skills and infrastructure needed to support these revenue-producing APIs. It is this
gap that this book hopes to address.

The good news is there are many companies out there successfully managing their
API programs. The not-so-good news is that their experience and expertise is not
easily shared or commonly available. There are several reasons for this. Most of the
time, organizations that are doing well in their API management programs are sim-
ply too busy to share their experiences with others. In a few cases, we’ve talked to
companies that are very careful about how much of their API management expertise
they share with the outside world; they are convinced API skills are a competitive
advantage and are slow to make their findings public. Finally, even when companies
share their experience at public conferences and through articles and blog posts, the
information they share is usually company-specific and difficult to translate to a wide
range of organizations’ API programs.

This book is an attempt to tackle that last problem—translating company-specific
examples into shared experience all organizations can use. To that end, we have vis-
ited with dozens of companies, interviewed many API technologists, and tried to find
the common threads between the examples companies have shared with us and with

http://bit.ly/CP_APIs_survey

the public. There are a small handful of themes that run through this book that we’ll
share here in this introductory chapter.

A key challenge to identify right up front is sorting out just what people mean when
they talk about APIs. First, the term “API” can be applied to just the interface (e.g., an
HTTP request URL and JSON response). It can also refer to the code and deployment
elements needed to place an accessible service into production (e.g., the customerOn
Boarding API). Finally, we sometimes use “API” to refer to a single instance of a run-
ning API (e.g., the customerOnBoarding API running in the AWS cloud vs. the
customerOnBoarding API running on the Azure cloud).

Another important challenge in managing APIs is the difference between the work of
designing, building, and releasing a single API and supporting and managing many
APIs—what we call an API landscape. We will spend a good deal of time in this book
on both ends of this spectrum. Concepts like API-as-a-Product (AaaP) and the skills
needed to create and maintain APIs (what we call API pillars) are examples of dealing
with the challenges of a single API. We will also talk about the role of API maturity
models and the work of dealing with change over time as important aspects of man-
aging an APL

The other end of that spectrum is the work of managing the API landscape. Your
landscape is the collection of APIs from all business domains, running on all plat-
forms, managed by all the API teams in your company. There are several aspects to
this landscape challenges, including how scale and scope change the way APIs are
designed and implemented as well as how large ecosystems can introduce added vol-
atility and vulnerability just because of their size.

Finally, we touch on the process of decision making when managing your API eco-
system. In our experience this is the key to creating a successful governance plan for
your API programs. It turns out the way you make decisions needs to change along
with your landscape; holding on to old governance models can limit your API pro-
gram’s success and even introduce more risk into your existing APIs.

Before we dive into the details on how you can learn to deal with both challenges—
your individual APIs and your API landscape—Ilet’s take a look at two important
questions: what is API management, and why is it so hard?

What Is APl Management?

As mentioned, API management involves more than just governing the design,
implementation, and release of APIs. It also includes the management of an API eco-
system, the distribution of decisions within your organization, and even the process
of migrating existing APIs into your growing API landscape. In this section, we’ll
spend time on each of these concepts—but first, a short explanation of what we mean
by “APL”

2 | Chapter 1: The Challenge of APl Management

What Is an API?

Sometimes when people use the term “API” they are talking about not only the inter-
face, but also the functionality—the code behind the interface. For example, someone
might say, “We need to release the updated Customer API soon so that other teams
can start using the new search functionality we implemented.” Other times, people
may use the term to refer only to the details of the interface itself. For example, some-
one on your team might say, “What I'd like to do is design a new JSON API for the
existing SOAP services that support our customer onboarding workflow.” Both are
correct, of course—and it seems pretty clear what is meant in both cases—but it can
be confusing at times.

To try to clear up the distinction and make it easier for us to talk about both the
interface and the functionality, we are going to introduce some additional terms:
interface, implementation, and instance.

Interface, implementation, and instance

The acronym API stands for application programming interface. We use interfaces to
gain access to something running “behind” the API. For example, you may have an
API that exposes tasks for managing user accounts. This interface might allow devel-
opers to:

o Onboard a new account.
« Edit an existing account profile.

« Change the status of (suspend or activate) an account.

This interface is usually expressed using shared protocols such as HTTP, Thrift,
TCP/IP, etc. and relies on standardized formats like JSON, XML, or HTML.

But that’s just the interface. Something else actually needs to perform the requested
tasks. That something else is what we’ll be referring to as the Implementation. The
implementation is the part that provides the actual functionality. Often this imple-
mentation is written in a programming language such as Java, C#, Ruby, or Python.
Continuing with the example of the user account, a UserManagement implementation
could contain the ability to create, add, edit, and remove users. This functionality
could then be exposed using the interface mentioned previously.

What Is API Management? | 3

Decoupling the Interface from the Implementation

Note that the functionality of the implementation described is a
simple set of actions using the Create, Read, Update, Delete
(CRUD) pattern, but the interface we described has three actions
(onboardAccount, EditAccount, and ChangeAccountStatus). This
seeming “mismatch” between the implementation and the interface
is common and can be powerful; it decouples the exact implemen-
tation of each service from the interface used to access that service,
making it easier to change over time without disruption.

The third term in our list is instance. An API instance is a combination of the inter-
face and the implementation. This is a handy way to talk about the actual running
API that has been released into production. We manage instances using metrics to
make sure they are healthy. We register and document instances in order to make it
easy for developers to find and use the API to solve real-world problems. And we
secure the instance to make sure that only authorized users are able to execute the
actions and read/write the data needed to make those actions possible.

Figure 1-1 clarifies the relationship between the three elements. Often in this book,
when we write “API” we're talking about the instance of the API: a fully operational
combination of interface and implementation. In cases where we want to highlight
just the interface or only the implementation, we’ll call that out in the text.

| Interface Implementation Instance

Figure 1-1. Three API elements

More Than Just the API

The API itself—the technical details of interface and implementation—is just part of
the story, too. The traditional elements of design-build-deploy are, of course, critical
to the life of your APIs. But actually managing APIs also means testing them, docu-
menting them, and publishing them to a portal so that the right audience (internal

4 | Chapter 1:The Challenge of API Management

developers, partners, third-party anonymous app developers, etc.) can find and learn
how to use them properly. You also need to secure your APIs, monitor them at run-
time, and maintain them (including handling changes) over their lifetime. All these
additional elements of an API are what we call API pillars: elements that all APIs
need and all API program managers need to deal with. We’ll dig into pillars when we
walk through the list of ten key practices vital to creating and maintaining healthy
APIs.

The good news about these practice areas is that they transcend any single API. For
example, the skill of documenting APIs well is transferable from one API team to the
next. The same goes for learning proper testing skills, security patterns, and so forth.
That also means that even when you have separate teams for each API domain (sales
team, product team, backoffice team, etc.), you also have “cross-cutting” interests
that bind people within teams to other people in other teams.! And this is another
important aspect of managing APIs—enabling and engineering the teams that build
them. We talk more about how this works in different organizations later in this
book.

API Maturity Stages

Knowing and understanding the API pillars is not the entire picture, either. Each API
in your program goes through its own “lifecycle”—a series of predictable and useful
stages. Knowing where you are in the API journey can help you determine how much
time and resources to invest in the API at the moment. Understanding how APIs
mature allows you to recognize the same stages for a wide range of APIs and helps
you prepare for and respond to the varying requirements of time and energy at each
stage.

On the surface, it makes sense to consider that all of the API pillars need to be dealt
with when designing, building, and releasing your APIs. But reality is different.
Often, for early-stage APIs it is most important to focus on the design and build
aspects and reduce efforts on documentation, for example. At other stages (e.g., once
a prototype is in the hands of beta testers), spending more time on monitoring the
use of the API and securing it against misuse is more important. Understanding
maturity stages will help you determine how to allocate limited resources for maxi-
mum effect. We’ll walk you through this process later in this book.

More Than a Single API

As many readers may already know, things change when you start managing a lot of
APIs. We have customers with thousands of APIs that they need to build, monitor,

1 At music streaming service, Spotify, they call these cross-cutting groups “guilds.”

What Is API Management? | 5

and manage over time. In this situation, you focus less on the details of how a single
API is implemented and more on the details of how these APIs coexist in an ever-
growing, dynamic ecosystem. As mentioned earlier, we call this ecosystem the API
landscape, and we devote several chapters to this concept in the second half of the
book.

Much of the challenge here is how to assure some level of consistency without caus-
ing bottlenecks and slowdowns due to centralized management and review of all the
API details. This is usually accomplished by extending responsibility for those details
to the individual API teams and focusing central management/governance efforts on
normalizing the way APIs interact with each other, ensuring that there is a core set of
shared services or infrastructure (security, monitoring, etc.) in place and available for
all API teams, and generally providing guidance and coaching to more autonomous
teams. That is, i’s often necessary to move away from the usual centralized
command-and-control model.

One of the challenges when working toward distributing decision making and
autonomy deeper in the organization is that it can be easy for those higher up in the
organization to lose visibility into important activities happening at the team level.
Whereas in the past a team might have had to ask permission to take an action, com-
panies that extend additional autonomy to the individual teams will encourage them
to act without waiting for upper-level review and permission.

Most of the challenges of managing a landscape of APIs have to do with scale and
scope. It turns out that as your API program grows, it doesn’t just get bigger; it also
changes in shape. We'll discuss this in more detail later in this chapter (see “Why Is
API Management Difficult?” on page 7).

The Business of APls

Beyond the details of creating APIs and managing them in a landscape, it is impor-
tant to keep in mind that all this work is meant to support business goals and objec-
tives. APIs are more than the technical details of JSON or XML, synchronous or
asynchronous, etc. They are a way to connect business units together, to expose
important functionality and knowledge in a way that helps the company be effective.
APIs are often a way to unlock value that is already there in the organization, for
example through creating new applications, enabling new revenue streams, and ini-
tiating new business.

This kind of thinking focuses more on the needs of API consumers instead of those
producing and publishing the APIs. This consumer-centric approach is commonly
referred to as “Jobs to Be Done,” or JTBD. It was introduced by Harvard Business
School’s Clayton Christensen, whose books The Innovator’s Dilemma and The Inno-
vator’s Solution (Harvard Business Review Press) explore the power of this approach
in depth. For the purposes of launching and managing a successful API program, it

6 | Chapter 1: The Challenge of APl Management

serves as a clear reminder that APIs exist to solve business problems. In our experi-
ence, companies that are good at applying APIs to business problems treat their APIs
as products that are meant to “get a job done” in the same sense that Christensen’s
JTBD framework solves consumer problems.

One way an API program can help the business is by creating a flexible set of “tools”
(the APIs) to build new solutions without incurring a high cost. For example, if you
have an OnlineSales API that allows key partners to manage and track their sales
activity and a MarketingPromotions API—that allows the marketing team to design
and track product promotional campaigns, you have an opportunity to create a new
partner solution: the SalesAndPromotions tracking application.

Another way APIs can contribute to the business is by making it easy to access
important customer or market data that can be correlated to emerging trends or
unique behaviors in new customer segments. By making this data safely and easily
available (properly anonymized and filtered), APIs may enable your business to dis-
cover new opportunities, realize new products/services, or even start new initiatives
at a reduced cost and faster time to market.

We cover this important aspect of AaaP in Chapter 3.

Why Is APl Management Difficult?

As we mentioned at the beginning of this chapter, while most companies have
already launched an API program, only about 50% consider themselves to be doing a
good job managing their APIs. What’s going on here? What are the challenges, and
how can you help your company overcome them?

As we visit with companies all over the world, talking about API lifecycle manage-
ment, a few basic themes emerge:

Scope
Just what is it that central software architecture teams should be focusing upon
when governing APIs over time?

Scale
Often, what works when companies are just starting out on their API journey
doesn’t scale as the program grows from a few small teams to a global initiative.

Standards
What we find is that, as programs mature, management and governance efforts
need to move from detailed advice on API design and implementation to more
general standardization of the API landscape, freeing teams to make more of
their own decisions at a detailed level.

Why Is API Management Difficult? | 7

Essentially, it is the continued balance of these three elements—scope, scale, and
standards—that powers a healthy, growing API management program. For this rea-
son, it is worth digging into these a bit more.

Scope

One of the big challenges of operating a healthy API management program is achiev-
ing the proper level of central control. And, to make it even more challenging, the
proper level changes as the program matures.

Early in the program, it makes sense to focus on the details of designing the API
directly. In cases where APIs are in their infancy, these design details might come
directly from the team creating the API—they look at existing programs “in the
wild,” adopt tooling and libraries that make sense for the style of API they plan to
create, and go ahead and implement that APL

In this “early-stage” API program everything is new; all problems are encountered
(and solved) for the first time. These initial experiences often end up being chroni-
cled as the company’s “API Best Practices” or company guidelines, etc. And they
make sense for a small team working on a few APIs for the very first time. However,
those initial guidelines may turn out to be incomplete.

As the number of teams working on APIs at the company grows, so does the variety
of styles, experiences, and points of view. It gets more difficult to maintain consis-
tency across all the teams—and not just because some teams are not adhering to the
published company guidelines. It may be that a new team is working with a different
set of off-the-shelf products that constrain their ability to follow the initial guidelines.
Maybe they don’t work in an event-streaming environment and are supporting XML-
based call-and-response-style APIs. They need guidance, of course, but it needs to fit
their domain, their customers’ needs.

There are certainly some guidelines that all teams need to share, but that guidance
needs to fit their problem domains as well as their API customers’ needs. As your
community widens, your diversity increases, and it is essential that you don’t make
the mistake of trying to eliminate that diversity. This is where your lever of control
needs to move from giving orders (e.g., “All APIs MUST use the following URL pat-
terns...”) to giving guidance (e.g., “APIs running over HTTP SHOULD use one of the
following URL templates...”).

In other words, as your program’s scope expands, your collection of guidelines needs
to expand appropriately. This is especially important for global enterprises where
local culture, language, and history play an important role in the way teams think,
create, and solve problems.

And that leads us to the next key element: scale.

8 | Chapter 1: The Challenge of APl Management

Scale

Another big challenge for creating and maintaining a healthy API management pro-
gram is dealing with changes in scale over time. As we discussed in the previous sec-
tion, growing the number of teams and the number of APIs created by those teams
can be a challenge. The processes needed to monitor and manage the APIs at runtime
will also change as the system matures. The tooling needed to keep track of a handful
of APIs all built by the same team in a single physical location is very different from
the tooling needed to keep track of hundreds or thousands of API entry points scat-
tered across multiple time zones and countries.

In this book we talk about this aspect of API management as the “landscape.” As your
program scales up, you need to be able to keep an eye on lots of processes by lots of
teams in lots of locations. You’ll rely more on monitoring runtime behavior to get a
sense of how healthy your system is at any one moment. In the second part of this
book we’ll explore how the notion of managing the API landscape can help you fig-
ure out which elements deserve your focus and what tools and processes can help you
keep a handle on your growing API platform.

API landscapes pose a new set of challenges. The processes you use to design, imple-
ment, and maintain a single API are not always the same when you need to scale your
ecosystem. This is basically a game of numbers: the more APIs you have in your sys-
tem, the more likely it is that they will interact with each other, and that increases the
likelihood that some of those interactions will result in unexpected behavior (or
“errors”). This is the way large systems work—there are more interactions and more
unexpected results. Trying to remove these unexpected results only gets you part of
the way. You can’t eliminate all the bugs.

And that leads to the third challenge most growing API programs encounter: how
can you reduce unexpected changes by applying the appropriate level of standards
within your API program?

Standards

One of the key shifts that happen when you begin managing at the landscape level
instead of the API level is in the power of standards in providing consistent guidance
for teams designing, implementing, and deploying APIs in your organization.

As groups grow larger—including the group of teams responsible for your organiza-
tion’s APIs—there is a coordination cost that is incurred (see “Decisions” on page 16).
The growing scale requires a change in scope. And a key way to deal with this chal-
lenge is to rely more on general standards instead of specific design constraints.

For example, one of the reasons the World Wide Web has been able to continue to
function well since its inception in 1990 is that its designers decided early on to rely
on general standards that apply to all types of software platforms and languages

Why Is API Management Difficult? | 9

instead of creating tightly focused implementation guidance based on any single lan-
guage or framework. This allows creative teams to invent new languages, architecture
patterns, and even runtime frameworks without breaking any existing implementa-
tions.

A common thread that runs through the long-lived standards that have helped the
web continue to be successful is the focus on standardizing the interaction between
components and systems. Instead of standardizing the way components are imple-
mented internally (e.g., use this library, this data model, etc.), web standards aim to
make it easy for parties to understand each other over the wire. Similarly, as your API
program grows to a more mature level, the guidance you provide to your API com-
munity needs to focus more on general interaction standards instead of specific
implementation details.

This can be a tough transition to make, but it is essential to moving up the ladder to a
healthy API landscape where it is possible for teams to build APIs that can easily
interact with both the existing and the future APIs in your system.

Managing the APl Landscape

As mentioned at the start of this chapter, there are two key challenges in the API
management space: managing the life of a single API and managing the landscape of
all the APIs. In our visits to many companies and our research into API management
in general, we find many versions of the “managing a single API” story. There are lots
of “lifecycles” and “maturity models” out there that provide solid advice on identify-
ing and mitigating the challenges of designing, building, and deploying an API. But
we have not found much in the way of guidance when it comes to an ecosystem (we
call it a landscape) of APIs.

Landscapes have their own challenges; their own behaviors and tendencies. What you
need to take into account when you design a single API is not the same as what you
must consider when you have to support tens, hundreds, or even thousands of APIs.
There are new challenges at scale that happen in an ecosystem—things that don’t
happen for a single instance or implementation of an API. We dive deep into the API
landscape later in the book, but we want to point out three ways in which API land-
scapes present unique challenges for API management here at the start of the book:

o Scaling technology
o Scaling teams
+ Scaling governance

Let’s take a moment to review each of these aspects of API management with regard
to landscapes.

10 | Chapter 1: The Challenge of APl Management

Technology

When you are first starting your API program, there are a series of technical deci-
sions to make that will affect all your APIs. The fact that “all” your APIs is just a small
set at this point is not important. What is important is that you have a consistent set
of tools and technologies that you can rely upon as you build out your initial API
program. As youll see when we get into the details of the API lifecycle and API
maturity, API programs are not cheap, and you need to carefully monitor your
investments of time and energy into activities that will have a high impact on your
APT’s success without risking lots of capital too early in the process. This usually
means selecting and supporting a small set of tools and providing a very clear, often
detailed set of guidance documents to help your API teams design and build APIs
that both solve your business problems and work well together. In other words, you
can gain early wins by limiting your technical scope.

This works well at the start, for all the reasons we’ve mentioned. However, as your
program scales up in volume and its scope widens (e.g., more teams building more
APIs to serve more business domains in more locations, etc.). the challenges also
change. As you grow your API program, relying on a limited set of tools and technol-
ogies can become one of the key things that slow you down. While at the beginning,
when you had a small set of teams, limiting choices made things move faster, placing
limits on a large set of teams is a costly and risky enterprise. This is especially true if
you start to add teams in geographically distant locations and/or when you embrace
new business units or acquire new companies to add to your API landscape. At this
point variety becomes a much more important success driver for your ecosystem.

So, an important part of managing technology for API landscapes is identifying when
the landscape has grown large enough to start increasing the variety of technologies
instead of restricting them. Some of this has to do with the realities of existing imple-
mentations. If your API landscape needs to support your organization’s existing
SOAP-over-TCP/IP services, you can’t require all these services to use the same URL
guidance you created for your greenfield CRUD-over-HTTP APIs. The same goes for
creating services for new event-driven Angular implementations or the legacy remote
procedure call (RPC) implementations.

A wider scope means more technological variety in your landscape.

Teams

Technology is not the only aspect of API management that surfaces a new set of chal-
lenges as the program grows. The makeup of the teams themselves needs to adjust as
the landscape changes, too. Again, at the start of your API program, you can operate
with just a few committed individuals doing—for the most part—everything. This is
when you hear names like “full-stack developer,” or “MEAN” [MongoDB, Express.js,
Angular.js, Node.js] developer or some other variation on the idea of a single devel-

Managing the APl Landscape | 11

oper that has skills for all aspects of your API program. You also may hear lots of talk
about “startup teams” or “self-contained teams.” It all boils down to having all the
skills you need in one team.

This makes sense when your APIs are few and they all are designed and implemented
using the same set of tools (see “Technology” on page 11). But as the scale and scope
of your API program grows, the number of skills required to build and maintain your
APIs gross, too. You can no longer expect each API team to consist of a set number
of people with skills in design, database, backend, frontend, testing, and deployment.
You might have a team whose job is to design and build a data-centric dashboard
interface used by a wide range of other teams. Their skills may, for example, need to
cover all the data formats used and tools needed to collect that data. Or you might
have a team whose primary job is to build mobile apps that use a single technology
like GraphQL or some other query-centric library. As technological variety grows,
your teams may need to become more specialized. We’ll have a chance to explore this
in detail later in the book.

Another way in which teams will need to change as your API landscape grows is the
way in which they participate in day-to-day decision-making processes. When you
have a small number of teams and their experience is not very deep, it can make sense
to centralize the decision making to a single, guiding group. In large organizations
this is often the Enterprise Architecture group or something with a similar name.
This works at smaller scales and scopes but becomes a big problem as your ecosystem
becomes less homogeneous and more wide-ranging. As tech gets more involved, a
single team is unlikely to be able to keep up with the details of each tool and frame-
work. And as you add more and more teams, decision making itself needs to be dis-
tributed; a central committee rarely understands the realities of the day-to-day
operations in a global enterprise.

The solution is to break down the decision-making process into what we call decision
elements (see “The Elements of a Decision” on page 27) and distribute those elements
to the proper levels within your company. A growing ecosystem means teams need to
become more specialized on a technical level and more responsible at the decision-
making level.

Governance

The last area that we want to touch on in regards to the challenge of API landscapes
is the general approach to governance of your API program. Again, as in other cases
mentioned here, it is our observation that the role and levers of governance will
change as your ecosystem grows. New challenges appear, and old methods are not as
effective as they were in the past. In fact, especially at the enterprise level, sticking to
old governance models can slow or even stall the success of your APIs.

12 | Chapter 1: The Challenge of APl Management

Just as in any area of leadership, when the scope and scale are limited, an approach
based on providing direct guidance can be the most effective. This is often true not
just for small teams, but also for new teams. When there is not a lot of operating
experience, the quickest way to success is to provide that experience in the form of
detailed guidance and/or process documents. For example, we find early API pro-
gram governance often takes the form of multipage process documents that explain
specific tasks: how to design the URLs for an API, or which names are valid for URLs,
or where the version number must appear in an HTTP header. Providing clear guide-
lines with few options makes it hard for developers to stray from the approved way of
implementing your APIs.

But again, as your program grows, as you add more teams and support more business
domains, the sheer size and scope of the community begin to make it very difficult to
maintain a single guidance document that applies to all teams. And while it is possi-
ble to “farm out” the job of writing and maintaining detailed process documents for
the entire enterprise, it is usually not a good idea anyway—as we mentioned in
“Technology” on page 11, technology variety becomes a strength in a large ecosys-
tem, and attempting to rein it in at the enterprise governance level can slow your pro-
gram’s progress.

That’s why as your API landscape expands, your governance documents need to
change in tone from offering direct process instructions toward providing general
principles. For example, instead of writing up details on what constitutes a valid URL
for your company, it is better to point developers to the Internet Engineering Task
Force’s guidelines on URI design and ownership (RFC 7320) and provide general
guidance on how to apply this public standard within your organization. Another
great example of this kind of principled guidance can be found in most UI/UX guide-
lines, such as the “10 Usability Heuristics for User Interface Design” from the Nielsen
Norman Group. These kinds of documents provide lots of options and rationales for
using one UI pattern over another. They offer developers and designers guidance on
why and when to use something instead of simply setting requirements for them to
follow.

Finally, for very large organizations, and especially companies that operate in multi-
ple locations and time zones, governance needs to move from distributing principles
to collecting advice. This essentially reverses the typical central governance model.
Instead of telling teams what to do, the primary role of the central governance com-
mittee becomes to collect experience information from the field, find correlations,
and echo back guidance that reflects “best practice” within the wider organization.

So, as your API landscape grows, your API governance model needs to move from
providing direct advice to presenting general principles to collecting and sharing
practices from experienced teams within your company. As we’ll see in Chapter 2,

Managing the APl Landscape | 13

https://www.nngroup.com/articles/ten-usability-heuristics/

there are a handful of principles and practices you can leverage in order to create the
kind of governance model that works for your company.

Summary

In this opening chapter, we touched on a number of important aspects of API man-
agement that appear within this book. We acknowledged that while APIs continue to
be a driving force, barely 50% of companies surveyed are confident of their ability to
properly manage these APIs. We also clarified the many uses of the term “API” and
how these different uses may make it harder to provide a consistent governance
model for your program.

And, most importantly, we introduced the notion that managing “an API” is very dif-
ferent from managing your “API landscape.” In the first case, you can rely on API-as-
a-Product, API lifecycle, and API maturity models. Change management for APIs is
also very much focused on this “an API” way of thinking. But this is just part of the

story.

Next, we discussed managing your API landscape—the entire API ecosystem within
your organization. Managing a growing landscape of APIs takes a different set of
skills and metrics; skills in dealing with variety, volume, volatility, vulnerability, and
several other aspects. In fact, these landscape aspects all affect the API lifecycle, and
we’ll review them in detail later in this book.

Finally, we pointed out that even the way you make your decisions about your API
program will need to change over time. As your system grows, you need to distribute
decision making just as you distribute IT elements like data storage, computational
power, security, and other parts of your company’s infrastructure.

With this introduction as a background, let’s start by focusing on the notion of gover-
nance and how you can use decision-making and the distribution of decisions as a
primary element in your overall API management approach.

14 | Chapter 1: The Challenge of APl Management

CHAPTER 2
APl Governance

Hey, a rule is a rule, and let’s face it, without rules there’s chaos.

—Cosmo Kramer

Governance isn’t the kind of thing people get excited about. It’s also a topic that car-
ries a bit of emotional baggage. After all, few people want to be governed and most
people have had bad experiences with poorly designed governance policies and non-
sensical rules. Bad governance (like bad design) makes life harder. But in our experi-
ence, it’s difficult to talk about API management without addressing it.

In fact, we'll go as far as saying that it’s impossible to manage your APIs without gov-
erning them.

Sometimes, API governance happens in a company, but the term “governance” is
never used. That’s perfectly fine. Names matter, and in some organizations gover-
nance implies a desire to be highly centralized and authoritative. That can run
counter to a culture that embraces decentralization and worker empowerment, so it
makes sense that governance is a bad word in those kinds of places. No matter what
it’s called, even in this type of decentralized work culture, some form of decision gov-
ernance is taking place—but it will probably look radically different from the gover-
nance system at a more traditional, top-down organization.

The question “Should you govern your APIs?” isn’t very interesting, because in our
opinion, the answer is always yes. Instead, ask yourself: “Which decisions need to be
governed?” and “Where should that governance happen?” Deciding on the answers
to these types of questions is the work of designing a governance system. Different
styles of governance can produce vastly different working cultures, productivity rates,
product quality, and strategic value. You’ll need to design a system that works for
you. Our goal in this chapter is to give you the building blocks to do that.

15

We'll start by exploring the three foundational elements of good API governance:
decisions, governance, and complexity. Armed with this understanding, we’ll take a
closer look at how decisions can actually be distributed in your company and how
that impacts the work you do. That means taking a closer look at centralization,
decentralization, and the elements of what makes a decision. Finally, we’ll take a look
at what it means to build a governance system and take a tour of three governance

styles.

Governance is a core part of API management, and the concepts we introduce in this
chapter will be built upon throughout the rest of this book. So, it’s worthwhile to
spend some time understanding what API governance really means and how it can
help you build a better API management system.

Understanding APl Governance

Technology work is the work of making decisions—lots of decisions, in fact. Some of
those decisions are vitally important, while others are trivial. All this decision making
is the reason that we can say a technology team’s work is knowledge work. The key
skill for a knowledge worker is to make many high-quality decisions, over and over
again. That’s a fairly obvious concept, but also one that’s easy to forget when you're
managing APIs.

No matter which technologies you introduce, how you design your architecture, or
which companies you choose to partner with, it’s the decision-making abilities of
everyone involved that dictate the fate of your business. That’s why governance mat-
ters. You need to shape all of those decisions in a way that helps you achieve your
organizational goals.

That’s harder to do than it sounds. To give yourself a better chance of success you’ll
need a better understanding of the foundational concepts of governance and how
they relate to each other. Let’s start by taking a quick look at API decisions.

Decisions

Your work and the work that many people in your organization perform is primarily
the work of making decisions. That’s why governance is so important. If you can
make better decisions as a group you can produce better results. But don’t forget that
those decisions aren’t just choices about technology—you’ll need to make a broad
range of decisions in the API domain. Consider the following list of choices an API
team might need to make:

1. Should our API’s URI be /payments or /PaymentCollection?
2. Which cloud provider should we host our API in?

3. We have two customer information APIs—which one do we retire?

16 | Chapter2: APl Governance

4. Who’s going to be on the development team?
5. What should I name this Java variable?

From this short list of decisions we can make a few observations. First, API manage-
ment choices span a wide spectrum of concerns and people—making those choices
will require a lot of coordination between people and teams. Second, the individual
choices people make have different levels of impact—the choice of a cloud provider is
likely to affect your API management strategy much more than the name of a Java
variable. Third, small choices can have a big impact at scale—if 10,000 Java variables
are named poorly, the maintainability of your API implementations will suffer
greatly.

All of these choices, spanning multiple domains, being made in coordination and at
scale, need to come together to produce the best result. That’s a big and messy job.
Later in this chapter we’ll pick this problem apart and give you some guidance for
shaping your decision system. But first, let’s take a closer look at what it means to
govern these decisions and why governance is so important.

Governing Decisions

If you’ve ever worked on a small project by yourself, you know that the success or
failure of that work relies solely on you. If you make good decisions consistently, you
can make something good happen. A single, highly skilled programmer can produce
some amazing things. But this way of working doesn’t scale very well. When the thing
you produce starts getting used, the demand for more changes and more features
grows. That means you need to make many more decisions in a shorter space of time
—which means you’ll need more decision makers. Scaling decision making like this
requires care. You can’t afford for the quality of your decisions to drop just because
there are more people making them.

That’s where governance comes in. Governance is the process of managing decision
making and decision implementation. Notice that we aren’t saying that governance is
about control or authority. Governance isn’t about power. It’s about improving the
decision-making quality of your people. In the API domain, high-quality governance
means producing APIs that help your organization succeed. You may need some
level of control and authority to achieve that, but it’s not the goal.

You can apply governance to your API work in lots of different ways. For example,
you could introduce a policy that all API teams in your company must use the same
standardized technology stack. Or you could introduce a policy that all APIs need to
pass a set of standardized quality measures before they can be launched. One policy is
more heavy-handed than the other, but both policies might achieve similar results. In
practice, you'll be managing lots of different types of decisions at the same time and

Understanding APl Governance | 17

your governance system is going to be a mix of many different constraints, rewards,
policies, and processes.

Keep in mind that governance always has a cost. Constraints need to be communica-
ted, enforced, and maintained. Rewards that shape decision-making behavior need to
be kept valuable and attractive to your audience. Standards, policies, and processes
need to be documented, taught, and kept up to date. On top of that, constant infor-
mation gathering is needed to observe the impact of all of this on the system. You
may even need to hire more people just to support your governance efforts.

Beyond those general costs of maintaining the machinery of governance, there are
also the hidden costs of applying governance to your system. These are the impact
costs that come up when you actually start governing the system. For example, if you
mandate the technology stack that all developers must use, what is the organizational
cost in terms of technological innovation? Also, what will be the cost to employee
happiness? Will it become more difficult to attract good talent?

It turns out that these kinds of costs are difficult to predict. That’s because in reality
you're governing a complex system of people, processes, and technology. To govern
an API system, you’ll first need to learn what it takes to manage a complex system in
general.

Governing Complex Systems

The good news is that you don’t need to control every single decision in your organi-
zation to get great results from governance. The bad news is that you’ll need to figure
out which decisions you will need to control in order to get those good results. That’s
not an easy problem to solve, and you won’t find a definitive answer in this book.
That’s because it’s impossible to give you an answer that will fit your unique context
and goal.

If all you wanted to do was bake a sponge cake, we could give you a pretty definitive
recipe for making one. We’d tell you how much flour and how many eggs you’d need
and what temperature to set your oven at. We could even tell you exactly how to
check if the cake is done. That’s because there is very little variability in modern bak-
ing. The ingredients are reasonably consistent no matter where you purchase them
from. Ovens are designed to cook at specific, standardized temperatures. Most
importantly, the goal is the same—a specific kind of cake.

But you aren’t making a cake, and this isn’t a recipe book. You’ll need to deal with an
incredible amount of variability. For example, the people in your company will have
varying levels of decision-making talent. The regulatory constraints you operate in
wiill be unique to your industry and location. You'll also be serving your own
dynamically changing consumer market with its own consumer culture. On top of all
that, your organizational goals and strategy will be entirely unique to you.

18 | Chapter2: APl Governance

All this variability makes it tough to prescribe a single correct “recipe” for API gover-
nance. To make things even harder, there’s also the small problem of knock-on
effects. Every time you introduce a rule, or create a new standard, or apply any form
of governance, you'll have to deal with unintended consequences. That’s because all
the various parts of your organization are intertwined and connected. For example,
to improve the consistency and quality of your API code, you could introduce a stan-
dard technology stack. That new stack might result in bigger code packages as pro-
grammers start adding more libraries and frameworks. And that could result in a
change to the deployment process because the bigger deployment packages can’t be
supported with the existing system.

With the right information, maybe you could predict and prevent that outcome. But
it’s impossible to do that for every possible eventuality, especially within a reasonable
amount of time. Instead, you’ll need to accept the fact that you are working with a
complex adaptive system. As it turns out, this is a feature, not a bug. You'll just need
to figure out how to use it to your advantage.

Complex adaptive systems

When we say that your organization is a complex adaptive system, we mean:

o It has lots of parts that are interdependent (e.g., people, technologies, process,
culture).

« Those parts can change their behavior and adapt to system changes (e.g., chang-
ing deployment practices when containerization is introduced).

The universe is full of these kinds of systems, and the study of complexity has become
an established scientific discipline. Even you yourself are a complex adaptive system.
You might think of yourself as a single unit—a self—but “self” is just an abstraction.
In reality, you’re a collection of organic cells, albeit a collection of cells that is capable
of amazing feats: thinking, moving, sensing and reacting to external events as an
emergent whole “being.” At the cellular level, your individual cells are specialized;
old, dying cells are replaced and groups of cells work together to produce big impacts
in your body. The complexity of the biological system that you are composed of
makes your body highly resilient and adaptable. You’re probably not immortal, but
you’re equally likely to be able to withstand massive amounts of environmental
change and even bodily damage, thanks to your complex biological system.

Usually, when we talk about “systems” in technology we focus on software systems
and network-based architecture. Those kinds of systems can definitely grow to be
complex. For example, the web is a perfect example of system-level complexity and
emergence. A network of individual servers run independently, but through their
dependencies and interconnections produce an emergent whole that we call “the
web.” But most of that software isn’t really adaptive.

Understanding APl Governance | 19

The API software you write today is pretty dumb. That doesn’t mean that your code
is of poor quality or that it doesn’t do the job it was designed for. In fact, it’s just the
opposite; most of the APIs you implement will do exactly what they’re supposed to
do. And that’s the problem. You can make an API that’s smart enough to adapt to a
changing traffic pattern or an increasing number of errors, but it’s impractical to
make one that can add a new feature without human intervention, or correct a com-
plex bug by itself, or update its own documentation to make it easier to learn.

Now, all of that might change in the future. But as it stands today, it’s your people
that drive the behavior of your software system. The good news is that people are
very good at adapting (especially when compared to software). Your API organiza-
tion is a complex adaptive system. All of the individual people in your organization
make many local decisions, sometimes collectively and sometimes individually.
When all those decisions happen at scale and over time, a system emerges. Just like
your body, that system is capable of adapting to a lot of change.

But working with a complex system requires a special kind of approach. It’s difficult
to predict the impact of changes in a complex system—making a change to one part
of your system can lead to unintended consequences in another part. That’s because
the people in your organization are constantly adapting to the changing environ-
ment. For example, introducing a rule that deploying software in “containers” is for-
bidden would have a wide-reaching impact, affecting software design, hiring,
deployment processes, and culture.

All of this means that you can’t get the outputs you want from the system by imple-
menting large changes and waiting for results. Instead, you’ll need to “nudge” the sys-
tem by making smaller changes and assessing their impact. It requires an approach of
continuous adjustment and improvement, in the same way you might tend to a gar-
den, pruning branches, planting seeds, and watering while continuously observing
and adjusting your approach.

Governing Decisions

In the last section we introduced the concept of governing decisions inside a complex
system. Hopefully, that’s helped you to understand a fundamental rule for API gover-
nance: if you want your governance system to be effective, you'll need to get better at
managing decisions. We think one of the best ways to do that is to focus on where
decisions are happening and who is making them. It turns out that there isn’t a single
best way to map those decisions out. For example, consider how API design gover-
nance could be handled in two different fictional companies:

Company A: Pendant Software
At Pendant Software, all API teams are provided with access to the “Pendant
Guidelines for API Design” e-book. These guidelines are published quarterly by

20 | Chapter2: APl Governance

Pendant’s API Center of Excellence and Enablement—a small team of API
experts working inside the company. The guidelines contain highly prescriptive
and very specific rules for designing APIs. All teams are expected to adhere to the
guidelines and APIs are automatically tested for conformance before they can be

published.

As a result of these policies, Pendant has been able to publish a set of industry-
leading, highly consistent APIs that developers rate very favorably. These APIs
have helped Pendant differentiate itself from competitors in the marketplace.

Company B: Vandelay Insurance

At Vandelay, API teams are given the company’s business goals and expected
results for their API products. These goals and results are defined by the execu-
tive teams and are updated regularly. Each API team has the freedom to address
an overall business goal in the manner they choose and multiple teams can pur-
sue the same goal. API teams can design and implement APIs however they like,
but every product must adhere to Vandelay’s enterprise measurement and moni-
toring standards. The standards are defined by Vandelay’s System Commune, a
group made up of individuals from each of the API teams who join voluntarily
and define the set of standards that everyone needs to follow.

As a result of these policies, Vandelay has been able to build a highly innovative,
adaptive API architecture. This API system has enabled Vandelay to out-
maneuver its competition with innovative business practices that can be deliv-
ered very quickly in its technology platform.

In our fictional case studies, both Pendant and Vandelay were wildly successful in
their management of decision making. But the way they governed their work was
incredibly different. Pendant found success with a highly centralized, authoritative
approach, while Vandelay preferred a results-oriented method. Neither approach is
“correct,” and both styles of governance have merit.

To govern decisions effectively, you'll need to address three key questions:

1. Which decisions should be managed?
2. Where should those decisions be made (and by whom)?

3. How will the system be impacted by your decision management strategy?

Later in the book we’ll dig into the questions of which decisions should be managed
and how those decisions will impact your system. For now, we’ll focus on the second
question of where in the system the most important decisions should be made. To
help you address decision distribution, we are going to dig deeper into the subject of
governing a decision. We’'ll tackle the trade-off between centralized and de-
centralized decision making and we’ll take a closer look at what it means to distribute
a decision.

Governing Decisions | 21

Centralization and Decentralization

Earlier in this chapter, we introduced the concept of a complex adaptive system and
we used the human body as an example. These kinds of systems abound in nature,
and you are surrounded by them. For example, the ecosystem of a small pond can be
thought of as a complex adaptive system. It continues to survive thanks to the activi-
ties and interdependence of the animals and vegetation that live in it. The ecosystem
adapts to changing conditions thanks to the localized decision making of each of
these living things.

But the pond doesn’t have a manager, and there is no evidence that the frogs, snakes,
and fish hold quarterly management meetings. Instead, each agent in the system
makes individual decisions and exhibits individual behaviors. Taken together these
individual decisions and actions form a collective, emergent whole that can survive
even as individual parts of the system change or appear and disappear over time. Like
most of the natural world, the pond system succeeds because system-level decisions
are decentralized and distributed.

As we established earlier, your organization is also a complex adaptive system. It’s a
product of all the collective individual decisions made by your employees. Just like in
a human body or a pond ecosystem, if you were to allow individual workers to have
complete freedom and autonomy, the organization as a whole would become more
resilient and adaptive. You’d have a bossless, decentralized organization that could
find its way thanks to the individual decisions of its employees (see Figure 2-1).

Figure 2-1. A decentralized organization

You could do this, but you might run into some problems, primarily because it’s dif-
ficult to succeed with a free-market organization in exactly the same way that com-
plex systems succeed in nature. The biosystem of a pond is directed by the hand of

22 | Chapter2: APl Governance

natural selection. Every agent in the system has become optimized for the survival of
its species. There’s no system-level goal beyond survival. On top of that, in nature it’s
normal for systems to fail. For example, if an invasive species is introduced the entire
pond system might die. In the natural world, that can be OK because something else
might take its place—the system as a whole remains resilient.

However, businesses leaders don’t respond well to this level of uncertainty and lack of
control. Chances are you’ll need to steer your system toward specific goals that go
beyond survival. Also, it’s likely that you aren’t willing to risk letting your company
die for the sake of a better company taking its place. You’ll almost certainly want to
reduce the risk that any individual agent can destroy the whole company because of a
bad decision. That means you’ll need to reduce decision-making freedom for individ-
uals and introduce some accountability. One way of doing that is to introduce deci-
sion centralization (Figure 2-2).

Figure 2-2. A centralized organization

By this, we mean that decision making is constrained to a particular person or team
in your organization. That centralized team makes a decision that the rest of the com-
pany will need to adhere to. Decentralization is the opposite case: individual teams
can make decisions that only they need to adhere to.

The truth is that there is no perfectly centralized or perfectly decentralized organiza-
tion. Instead, different types of decisions are distributed within the organization in
different ways—some are more centralized while others are more decentralized.
You’'ll need to decide how to distribute the decisions that impact your system the
most. So, which ones should be more centralized and which ones should be more
decentralized?

Governing Decisions | 23

Remember, a primary goal of governing decisions is to help your organization suc-
ceed and survive. What that means is entirely dependent on your business context,
but generally speaking it means that decisions need to be timely enough to enable
business agility and of sufficient quality to improve the business (or at the very least
avoid damaging it). There are three factors that impact the ability to make decisions:

Availability and accuracy of information

It’s really difficult to make a good decision if you base it on information that is
incorrect or missing. That could mean being misled about the goal or context of
the decision, but it could also mean not knowing what the decision’s impact will
be on the system. Most of the time, we assume the responsibility for gathering
decision-making information rests at the feet of the decision makers. But for the
purposes of distributing decisions, we also need to think about how centralizing
or decentralizing a decision affects the information that’s available.

Decision-making talent
Generally speaking, decision quality improves if the decision maker is good at
making high-quality decisions. Or, in simpler language—highly talented people
with lots of experience will make better decisions than less-talented people with
no experience. When it comes to distributing decision making, the challenge is to
also distribute your talent in a way that helps you the most.

Coordination costs
Complex decisions can’t be made in a timely manner unless the decision making
is shared. But whenever you share decision-making work you’ll incur a coordina-
tion cost. If that coordination cost grows too high, you won’t be able to make
decisions quickly enough. Centralization and decentralization of decisions can
have a big impact on coordination costs.

Thinking about decisions in terms of these factors will help you decide when a deci-
sion should be centralized or decentralized. To help you understand how to do that,
we’ll take a look at it from two perspectives: scope of optimization and scale of opera-
tion. Let’s start by digging into scope and its relationship with decision-making infor-
mation.

Scope of optimization

The big difference between a centralized decision and a decentralized decision has to
do with their scope. When you make a centralized decision, you are making it for the
entire organization. So, your scope for the decision includes the whole system and
your goal is to make a decision that improves that system. Another way of saying this
is that the decision you are making is meant to optimize the system scope. For
example, a centralized team might decide on a development methodology for the
entire company to follow. The same team might also make decisions about which

24 | Chapter2: APl Governance

APIs in the system should be retired. Both of these decisions would be made with the
goal of doing what’s best for the entire system.

Conversely, the primary characteristic of a decentralized decision is that it is opti-
mized for a local scope. When you are optimizing for the local scope, you are making
a decision that will improve your local context—the set of information that pertains
only to your local situation. While your decision might have an impact on the wider
system, your goal is to improve your local results. For example, an API team can
make a local decision to use a waterfall development process because they’re sharing
the work with an external company that insists on it.

The great thing about decentralized decision making is that it can help you make big
gains in efficiency, innovation, and agility for your business overall. That’s because
decentralized decision makers are able to limit their scope of information to a local
context that they understand. This means they can form a decision based on accurate
information about their own problem space, which helps them produce better deci-
sions. For any modern business that is trying to succeed with a strategy of agility and
innovation, the decentralized decision pattern should be the default approach.

However, making decisions that focus only on optimizing the local scope can cause
problems, particularly if those decisions have the potential to impact the system neg-
atively and in irreversible ways. When Amazon CEO Jeff Bezos talks about the
impact of decisions, he splits them into two types: “type 1” decisions that can be
easily reversed if they are wrong and “type 2” decisions that are near impossible to
recover from. For example, a lot of big companies choose to centralize decisions
about API security configuration to prevent a local optimization from creating a sys-
tem vulnerability.

Beyond dangers to the system, there are times when system-level consistency is more
valuable than local optimization. For example, an individual API team might choose
an API style that makes the most sense for their problem domain. But if every API
team chooses a different API style, the job of learning to use each API becomes more
difficult due to a lack of consistency, especially when many APIs need to be used to
accomplish a single task. In this case, optimizing the API style decision for the system
scope might be better.

You’'ll need to think about the scope of optimization carefully when you plan where a
decision should happen. If a decision has the potential to impact your system in an
irreversible way, start by centralizing it so that it can be optimized for system scope. If
decision quality could benefit from the local context of information, start by decen-
tralizing it. If decentralizing a decision could result in unacceptable inconsistency at
the system level, consider centralizing it.

Governing Decisions | 25

http://bit.ly/2NxRswZ

Scale of operation

If you had unlimited resources for making good decisions, you’d only need to think
about scope for decision making. But you don’t. So, in addition to scope, you’ll need
to think about the scale of decisions being made. That’s because if there is a bigger
decision demand, there will be more pressure on your decision-making talent supply
and an upward pressure on your coordination costs. If you want your API work to
scale as your organization grows, you’ll need to plan your decision distribution pat-
tern carefully.

Decentralizing a decision creates a big talent demand when you are operating at scale.
When you decentralize a decision you are distributing it to more than one team. If
you want all of those decisions to be high quality, you'll need to fill each of those
teams with talented decision makers. If you can’t afford to do that, you'll end up gen-
erating lots of bad decisions. So, it’s worthwhile to hire the best decision-makers you
can for every decision making position in your company.

Unfortunately, hiring good people isn’t an industry secret. There are a limited num-
ber of talented and experienced people available and a lot of companies competing to
hire them. Some companies are willing to spend whatever it takes to make sure that
they get the best talent in the world. If you are lucky enough to be in that situation,
you can decentralize more of your decisions because you have the talent to make
them. Otherwise, you’ll need to be more pragmatic with your distribution decisions.

If your supply of top-level, “grade A” decision-making talent is limited, you may
choose to pool that talent together and centralize the most important decisions to
that group of people. That way, you have a greater chance of producing better deci-
sions, faster. But an increasing scale of decision demand wreaks havoc on this model
too, because as the demand for decision making grows, the centralized team will need
to grow along with it. As the team grows, so too will the cost of coordinated decision
making. No matter how talented the people are, the cost of coordinating a decision
grows as you add more people. Eventually you'll reach a number that makes it impos-
sible to reach decisions affordably.

All of this means that decision distribution will involve a lot of trade-offs. If the deci-
sion is highly impactful, like the “type 1” decisions that Jeff Bezos describes, you’ll
need to centralize it and pay the price of lower decision-making throughput. Con-
versely, if speed and local optimization are most important, you can decentralize the
decision and either pay for better people or accept the net reduction in quality of
decisions.

That said, there is a way to manage this trade-off in a more nuanced and flexible way.
It involves distributing the parts of the decision instead of the entre decision itself,
and it’s what we are going to focus on in the next section.

26 | Chapter2: APl Governance

The Elements of a Decision

It’s difficult to distribute a decision in the way we’ve described so far because it’s a bit
of an all-or-nothing affair. Do you let your teams decide which development method
they want to use, or do you choose one and make every team use it? Do you let the
teams decide when their API should retire, or do you take the choice away from them
completely? In reality, governance requires more nuance. In this section, we’ll
explore a way of distributing decisions with more flexibility by breaking them up into
pieces.

Instead of distributing the entire decision, you can distribute parts of the decision.
That way you can get the benefits of system-level optimization along with highly con-
textual local optimization at the same time. Some parts of a decision can be central-
ized while other parts are decentralized. To help you accomplish distribution with
this kind of precision, we’ve broken down API decisions into the six decision elements

you’ll need to distribute (see Figure 2-3):
Q Selection

@ Inception
o Implementation o Challenge

@ Authorization

Figure 2-3. Decision elements

This isn’t meant to be an authoritative, universal model for decision making. Instead,
it’s a model that we’ve developed to distinguish the parts of a decision that have the
biggest impact on a system when they are either centralized or decentralized. These
parts are based on the various five-, six-, and seven-step models of decision-making
that abound in the business management domain. Although the steps we’ll describe
could be applied to a decision made by a single person, they’re most useful when we
are talking about decisions made in coordination between a group of people.

Choice Generation

Let’s start by taking a look at how distributing the inception of a decision impacts
your system.

Inception

Every decision happens because someone thinks that decision needed to be made. It
means that someone has identified that a problem or opportunity exists with more
than one possible solution. Sometimes this is obvious, but in many cases spotting a
decision-making opportunity requires talent and expertise. You'll need to think

Governing Decisions | 27

about which decisions will naturally ignite on their own and which ones will need
special handling to make sure that they happen.

Kicking off decisions about API work happens naturally in the course of day-to-day
problem solving. For example, choosing which database to use for storing persistent
data would be a difficult decision for a typical implementer to ignore. The decision
happens because the work can’t continue without it. But there will also be situations
where you’ll need to force inception to happen. This is usually for one of two reasons:

Habitualized decision making
Over time, if a team makes the same decision over and over, the decision may
disappear. That is, the possibilities are no longer considered and instead an
assumption is made that work will continue in the same way it always has. For
example, if every API implementation is written in the Java programming lan-
guage, it may not occur to anyone to consider a different choice of language.

Decision blindness
Sometimes, teams will miss opportunities to make impactful decisions. This can
happen because of habit, but also because of limited information, experience, or
talent. For example, a team may focus on the choice of which database to use for
storage, but fail to identify that the API could be designed in a way that doesn’t
require persistent storage.

Not every decision needs to happen, and it’s perfectly fine for decisions to be missed
or for a cultural habit to make them implicit. It’s only a problem if not making a deci-
sion negatively impacts the results you are getting from your APIs. Arbitrarily
demanding that more decisions happen could have a nightmarish impact on produc-
tivity. Instead, the role of API governance is to generate more of the decisions that
will lead to optimal results and less of the decisions that will provide little value.

Choice generation

It’s hard to choose if you don’t know your options, and that’s what this element is all
about. Choice generation is the work of identifying the choices to choose from.

If you’re making a decision in a domain you have a lot of experience in, generating
choices can be pretty easy. But if there are lots of unknowns, you’ll need to spend
more time identifying the possibilities. For example, an experienced C programmer
already has a good idea of their options when they are deciding on a loop structure,
but a beginner will probably need to do some investigation to learn that they can use
a for loop or a while loop and the differences between the two.

Even if you know a domain fairly well, you’ll probably spend more time on choice
generation if the cost and impact of the decision are very high. For example, you may
have intimate knowledge of the different cloud hosting environments, but will still
perform your due diligence of research when it comes time to sign a contract with

28 | Chapter2: APl Governance

one of them. Are there new vendors available that you didn’t know about? Are the
prices and terms still the same as you remember?

From a governance perspective, choice generation is important because it’s where the
boundaries of decision making are set. This is especially useful when the people com-
ing up with the list of choices are not the same as the people making the selection.
For example, you could standardize a list of possible API description formats, but let
individual teams decide which format they like best. If you take this approach you’ll
need to be careful about the quality of the “menu” you are providing. If the choices
are overly restrictive or of poor quality, you’ll run into problems.

Selection

Selection is the act of choosing from the list of possible options. Selection is the heart
of decision making and it’s the step most people focus on, but the importance of the
selection element depends a lot on the scope of choices that have been made avail-
able. If that scope is very wide, then the selection process is integral to the quality of
the decision. But if that scope has been constrained to safe choices with little differen-
tiating them, the selection step can be quick and less impactful.

Let’s walk through an example of this in action. Suppose you’re responsible for con-
figuring Transport Layer Security (TLS) for your HTTP API Part of that work
includes a decision on which cipher suites (sets of cryptography algorithms) the
server should support. It’s an important decision because some cipher suites have
become vulnerable with age, so picking the wrong ones can make your API less
secure. Also, if you choose cipher suites that your users’ client software doesn’t
understand, nobody will be able to use your API

In one scenario, you might be given a list of all the known cipher suites and asked to
select the ones that the server should support. In this case, selection would need spe-
cial care. You'd probably do a lot of research and only feel comfortable making a
selection once you'd gathered as much information as possible. In fact, if you didn’t
have a good amount of experience securing servers, you'd probably look for someone
who did and ask them to make a selection for you.

But what if instead of being given the set of all possible cipher suites, you were given a
curated list of them? The list of options might also include relevant information
about how well supported each cipher suite is and what the known vulnerabilities are.
Armed with this information you could probably make a faster choice. Equally,
you're choice is likely to be safer because your decision scope is limited to choices
that have been deemed safe enough to use. In this case, you’d make a decision based
on what you know about the clients using the API and the sensitivity and business
importance of the APL

Finally, you might be given only one choice: a single cipher suite that you must use. A
single-choice decision makes selection a trivial affair—the decision has been made for

Governing Decisions | 29

you. In this case, the quality of the decision is entirely dependent on the people who
generated that choice. Hopefully it’s a good fit for the specific requirements you have.

So, the importance of selection depends a lot on the scope of the choices offered.
There’s a bit of a trade-off at work here. If you push more of the decision-making
investment into choice generation you’ll spend less time on selection, and vice-versa.
That has implications for how you distribute decision elements and who should be
responsible for them. Whichever decision element becomes more important will
require a suitably talented decision maker to make it.

It also means you can combine system scope and local scope by distributing choice
generation and choice selection. For example, you can centralize the generation of
development method choices based on the system context while still allowing indi-
vidual teams to choose their preferred method using their local context. This happens
to be a particularly useful pattern for governing large API landscapes at scale and pre-
serving both safety and speed of change.

Authorization

Just because a choice has been selected doesn’t mean the decision is done. The selec-
tion needs to be authorized before it can be realized. Authorization is the work of
deciding on the validity of the selected choice. Was the right selection made? Is it
implementable? Is it safe? Does it make sense in the context of other decisions that
have been made?

Authorization can be implicit or explicit. When authorization is explicit it means that
someone or some team must expressly authorize the decision before it can go for-
ward. It becomes an approval step in the decision-making process. We’re sure you’ve
been involved in many decisions that required some kind of approval. For example,
in many companies, workers can select their holiday time from a list of work dates,
but it’s up to their manager to make the final approval decision on the schedule.

Implicit authorization means that authorization happens automatically when some
set of criteria has been met. Examples of this are the role of the person making the
selection, the cost of the selection that was made, or adherence to a specific policy. In
particular, authorization can become implicit when the person making the selection
is also the person authorizing the selection. In effect, they become their own
approver.

Explicit authorization is useful because it can further improve the safety of the deci-
sion. But if there are lots of decisions being made and all of them are being centrally
authorized, then there is likely to be a reduction in decision speed. Lots of people will
end up waiting for their approvals. Implicit authorization greatly increases the speed
of decision making by empowering selection, but comes with greater risk.

30 | Chapter2: APl Governance

How authorization should be distributed will be an important decision for you to
make in your governance design. You’'ll need to consider the quality of decision mak-
ers, the business impact of bad decisions, and the amount of risk built into the
choices offered. For highly sensitive decisions, you’ll probably want more explicit
authorization. For time-sensitive, large-scale decisions you’ll need to figure out how
to introduce an implicit authorization system.

Implementation

The decision process doesn’t end when the choice is authorized. A decision isn’t real-
ized until someone does the work of executing or implementing the choice that has
been made. Implementation is an important part of API management work. If the
implementation of decisions is too slow or of poor quality, then all of your decision
making is for naught.

Oftentimes a decision isn’t implemented by the people who made the selection. In
these cases it’s important to understand what that means for the availability of accu-
rate information gathering. For example, you might choose to introduce the hyper-
media style of APIs into your landscape, but if the implementation of hypermedia
APISs turns out to be too difficult for the designers and developers you’ll need to re-
evaluate your decision. A good governance design will have to take these practicali-
ties into account. It’s no good managing decisions in a way that makes them only
theoretically better. When you are determining the quality of decision making you’ll
need to include the implementability of the decision you are managing.

Challenge

Decisions aren’t immutable, and each decision you make for your API management
system should be open to being challenged. Oftentimes we don’t consider how the
decisions we make may need to be revisited, altered, even reversed in the future.
Defining a challenge element allows us to plan for continuous change at the decision-
making level.

For example, if you've defined a “menu” of choices for API teams to choose from, it’s
wise to also define a process to go “off-menu.” That way you can sustain a decent
level of innovation and prevent bad decisions from being made. But if everyone can
challenge the decision to constrain these choices, then there aren’t really any con-
straints. So, you’ll need to identify who can challenge the decision and in what cir-
cumstances.

It’s also important to allow decisions to be challenged over time. As business strate-
gies and context change, so too should the decisions of your system. To plan for that
kind of adaptability you’ll need to build the challenge function into your system. That
means you'll need to think about whom in your organization will have the ability to
“pull the cord” and challenge an existing decision.

Governing Decisions | 31

Decision Mapping

We now know that decisions are composed of a number of elements. Understanding
that decisions have atomic elements allow us to distribute the pieces of a decision
rather than the entire decision process. This turns out to be a powerful feature of
organizational design and will allow you to exert greater influence over the balance of
efficiency and thoroughness.

For example, a decision about the style a new API should have is an important one.
In the clumsy, binary centralization versus decentralization discussion, the API man-
agement designer might consider whether the members of the API team should own
the API style decision (decentralized) or a central body should maintain control of it
(centralized). The advantage of distributing the decision-making power to the API
teams is that each team can make the decision within a local context. The advantage
of centralizing the decision within a single strategic team is that the variation in API
styles is reduced and control over the quality of the style choice is maintained and
controlled.

This is a difficult trade-off to make. But, if instead you distribute the elements of the
decision, it’s possible to design an API management system that lives somewhere in
between these two binary options. For example, you might decide that for an API
style decision, the elements of research and choice generation should be owned by a
centralized, strategic API management team, while the elements of choice selection,
authorization, and implementation are owned by the API teams themselves. In this
way, you choose to sacrifice some of the innovation that comes from distributing
choice generation in order to gain the benefits of a known set of API styles within the
company. At the same time, distribution of the API style selection and authorization
elements allows the API teams to continue to operate at speed (i.e., they do not need
to ask permission in order to choose a suitable style).

To get the most out of decision mapping, you'll need to distribute decisions based on
your context and goals. Let’s take a look at two fairly common decision scenarios to
see how decision mapping can be a useful tool.

Decision mapping example: Choosing a programming language

You've identified that the decision of which programming language to choose for
API implementation is highly impactful, and you’d like to govern it. Your organiza-
tion has adopted a microservices style of architecture, and freedom to choose the pro-
gramming language for implementation has been raised as a requirement. But after
running a few experiments, you've noticed that variation in programming languages
makes it harder for developers to move between teams and harder for security and
operations teams to support applications.

32 | Chapter2: APl Governance

As a result, you've decided to try out the decision distribution in Table 2-1 for decid-
ing on a programming language.

Table 2-1. Programming language decision map

Inception Choice generation Choice selection Authorization Implementation Challenge

Centralized Centralized Decentralized Decentralized Decentralized Decentralized

This way you constrain the programming languages to a set of choices that are opti-
mized for the system as a whole, but allow the individual teams to optimize for their
local contexts within those constraints. You've also allowed API teams to challenge
the decision so that you can accommodate new language choices and changing situa-
tions.

Decision mapping example: Tool selection

Your CTO is trying to improve the level of agility and innovation of your software
platform. As part of this initiative they have decided to allow API teams to choose
their own software stacks for implementations, including the use of open source soft-
ware. However, your procurement and legal teams have raised concerns based on
legal risks and risks to supplier relationships. To get started with this cultural transi-
tion, you've decided to implement the decision map in Table 2-2 for the software
stack decision on a trial basis.

Table 2-2. Tool selection decision map

Inception Choice generation Choice selection Authorization Implementation Challenge

Decentralized Decentralized Decentralized Centralized Decentralized Centralized

Local optimization is one of the keys to your CTO’s strategy, so you chose to com-
pletely decentralize inception, choice generation, and selection. However, to reduce
the system-level risk of a choice, you've mapped the authorization element to the
centralized procurement and legal teams. This should work for now, but you are also
aware that over time and at scale this has the potential to be a big bottleneck in your
system, so you make a note to keep measuring the process and tune it accordingly.

Designing Your Governance System

We've spent a lot of time going into the details of decision distribution because we
think it’s a foundational concept for a governance system. But it’s not the only thing
you’ll need to pay attention to if you want to introduce effective API governance. A
good API governance system should have the following features:

o Decision distribution based on impact, scope, and scale

Designing Your Governance System | 33

« Enforcement of system constraints and validation of implementation (from cen-
tralized decisions)

o Incentivization to shape decision making (for decentralized decisions)

 Adaptiveness through impact measurement and continuous improvement

It’s difficult to get the advantages of decision centralization if the rest of the organiza-
tion doesn’t conform to the decision. That’s why enforcement and validation needs to
be a feature of an API governance system. We’ve purposefully steered away from the
authoritative parts of governance so far, but ultimately you’ll need to build at least
some constraints into your system. Even the most decentralized organizations have
rules that need to be followed. Of course, validation and enforcement will require
some level of obedience. If the centralized decision-making team has no authority,
the decisions will carry no weight.

If you don’t have authority, you can use incentivization instead of enforcement. This
is especially useful when you’ve decided to decentralize decisions but still want to
shape the selections that are being made. For example, an architecture team could
alter a deployment process so that deployment of immutable containers is made
much cheaper and easier than any other type of deployment. The goal here would be
to incentivize API teams who have authority over their own implementation deci-
sions to choose containerization more often.

In truth, neither the “carrot” of incentivization nor the “stick” of enforcement is
enough to steer your system on its own—you’ll need to use both. Generally speaking,
if a decision’s authorization element has been decentralized, you’ll have to use incen-
tivization if you want to shape it. If selection and authorization have been centralized
and implementation is decentralized, you’ll need to make sure you’ve instituted some
level of enforcement or validation. Table 2-3 highlights when you should enforce or
incentivize a decision based on your decision mapping design.

Table 2-3. When to enforce and when to incentivize

Enforce or Inception Choice Choice selection Authorization Implementation Challenge
incentivize? generation
Enforce Centralized Centralized or (entralized or
decentralized decentralized
Incentivize Decentralized Decentralized Decentralized

No matter how you distribute your decisions or change decision-making behavior,
it’s crucial that you measure the impact you are having on the system itself. Ideally,
your organization should have some existing process indicators and measurements
that you can use to assess the impact of your changes. If there isn’t anything like that,
instituting organizational measurements should be one of your first priorities. Later,
we’ll talk about product measurement patterns for APIs. Although we’ll be focusing

34 | Chapter2: APl Governance

on API product measurement specifically, you can still use that section as an intro-
ductory guide for designing governance measurements for your system.

To help tie all this together, let’s take a look at three API governance patterns. These
patterns capture different approaches to API governance, but all of them use the core
principles of decision distribution, enforcement, incentivization, and measurement.
Keep in mind, we aren’t offering you a menu—you aren’t supposed to choose one of
these to be your governance system. We are offering you these patterns as a way of
illustrating how an API governance system can be implemented at a conceptual level.

For each governance pattern described, we’ll identify a few key decisions and how
they are mapped, how desired behaviors are enforced and incentivized, how talent is
distributed, and the costs, benefits, and measures for the approach.

Governance Pattern #1: Interface Supervision

This pattern emphasizes the importance of the interface model for an API. Interface
supervision centralizes all decisions related to the design of the interface in order to
ensure that all interfaces are consistent, secure, and highly usable (see Table 2-4).

Table 2-4. Decision map

Decision space Inception Choice Choice Authorization Implementation Challenge
generation selection

API design Centralized Centralized Decentralized Centralized Decentralized Decentralized

API Decentralized Decentralized ~ Decentralized ~ Decentralized Decentralized Centralized

implementation

API deployment Decentralized Decentralized ~ Decentralized ~ Decentralized Decentralized Centralized

Enforcement and incentivization
API implementation and deployments are reviewed by the centralized interface
design team. Although teams have the freedom to make their own implementa-
tion and deployment decisions, the central team can flag and remove an API if it
doesn’t conform to the interface model.

Talent distribution
Interface design talent is pooled in the central team, while programming and
operations talent can be decentralized.

Costs and benefits
The segregation of design and implementation teams means that there is a risk of
making designs that are difficult or costly to implement. But this separation also
benefits from a “pure design” perspective for the interface design team, which
can produce more user-centric designs. At scale, there is a very high risk of a bot-
tleneck due to the resource constraints of a centralized interface design team.

Designing Your Governance System | 35

This may especially be a problem when small changes to many interfaces are
required.

Impact measurements
o API usability measurements
 Product and project schedule metrics
« Implementation and operational issues

Governance Pattern #2: Machine-Driven Governance

Machine-driven governance uses the machinery of standardization and automation
to constrain decision making. In this pattern, the centralized team tries to maximize
control of the system with machinery, but limit the impact on decision-making
throughput. This is done by only centralizing the decision space of API work (i.e., the
choice generation element). Teams have the freedom to make decisions as long as
they conform to the choices that have been codified into the standards (see
Table 2-5).

Table 2-5. Decision map

Decision space Inception Choice Choice Authorization Implementation Challenge

generation selection

API design Decentralized Centralized Decentralized Decentralized Decentralized Decentralized
APl implementation Decentralized Centralized Decentralized Decentralized Decentralized Decentralized
API deployment Decentralized Centralized Decentralized Decentralized ~ Decentralized Decentralized

Enforcement and incentivization
Because the choices have been implemented in a standardized way, all aspects of
design, implementation, and deployment can be validated automatically with
tooling. For example, API teams must document interface designs in a machine-
readable language, which is validated using a “lint” tool.

Talent distribution
The central team needs to be populated with highly experienced designers,
implementers, and architects to ensure that the centralized choices are the best
ones. If the centralized choices have been made holistically and are of good qual-
ity, there is less of a talent requirement for designers and implementers in the
decentralized teams.

Costs and benefits
Machinery is always expensive to design, create, maintain, and tune. There will
be a large initial investment to create the best set of standards for this type of sys-
tem and a consistent challenge in keeping the choices and tools up to date as
contexts change. But the payoff comes in the form of a reduced need for

36 | Chapter2: APl Governance

distributed decisions and an improvement in decision-making throughput
thanks to automation. One possible system impact of this pattern is unhappiness
within API teams due to a loss of freedom—if the choices are too constrained, it
may be difficult to attract good people.

Impact measurements
o Product and project schedule metrics
« Choice popularity (tracking when and how standardized choices are used)
o API team metrics

Governance Pattern #3: Collaborative Governance

In the collaborative governance pattern, API decisions are made individually, but a
shared understanding of system impacts is developed collaboratively. The goal is to
create a “shared brain” in terms of the system-level view, but maintain the speed and
local optimization scope of a decentralized system (see Table 2-6).

Table 2-6. Decision map

Decision space Inception Choice Choice Authorization Implementation Challenge
generation selection

API design Centralized Decentralized ~ Decentralized ~ Decentralized Decentralized Decentralized

API Decentralized Decentralized ~ Decentralized ~ Decentralized Decentralized Decentralized

implementation

API deployment Decentralized Decentralized ~ Decentralized ~ Decentralized Decentralized Centralized

APl measurement Centralized Centralized Centralized Centralized Decentralized Decentralized

Enforcement and incentivization

In collaborative governance most of the decisions are completely decentralized,
with the exception of an APT’s inception and its measurement. This creates a
“results-oriented” view of APIs in the system. It follows that enforcement is
entirely results-oriented—if the API doesn’t achieve the expected result it is
retired and the team may be disbanded. Although design, implementation, and
deployment decisions are decentralized, those decisions are typically influenced
through incentivization. For example, if a team’s decisions produce favorable
results and those decisions are shared with the organization, they can be finan-
cially rewarded. The combination of a reward and transparency can influence the
decisions of other teams in the organization.

Because most of the work is decentralized, collaboration between teams will need
to be encouraged. That means that collaboration should be incentivized (or
enforced) at the system level.

Designing Your Governance System | 37

Talent distribution
A collaborative governance pattern is talent-intensive. This level of decentraliza-
tion requires a suitable level of talent distributed amongst the teams. It doesn’t
mean that every single worker has to be a star employee, but it does mean that
each team needs enough talent to produce safe, high-quality decisions consis-
tently.

Costs and benefits
Highly skilled decentralized teams can produce innovative APIs of high quality.
The main costs to achieving this are in talent and support for collaboration. As
the scale of work increases, so too will these costs.

Impact measurements
 API product metrics
» API team metrics
o Usability metrics

Summary

In this chapter we gave you our definition of governance: managing decision making
and decision implementation. From that definition, we took a closer look at what it
means to make a decision and what it means to govern a decision. You learned that
API decisions can be small (“What should my next line of code be?”) or big (“Which
supplier should we partner with?”) and can range massively in scope. Most impor-
tantly, you learned that the system you are trying to govern is a complex adaptive sys-
tem, which means it’s difficult to predict the results of any decision management

strategy you apply.

Next, we took a closer look at decision distribution and compared centralization and
decentralization. To help you understand the differences, we compared them in
terms of the scope of optimization and scale of operation. Then we discussed how you
can break decisions down into their essential elements of inception, choice genera-
tion, selection, authorization, implementation, and challenge. By putting all of these
concepts together, along with some enforcement and incentivization, you can build
an effective API governance system.

Governance is at the heart of API management, so it’s not a big surprise that it’s a
core concept for this book. Our goal in this chapter was to introduce the major con-
cepts and levers of governance. In the rest of the book we’ll dive deeper into the
domain of API governance by tackling the specific challenges of which decisions mat-
ter the most, how to manage the people involved, and what to do as APIs mature and
the scale of the APIs grows. In the next chapter, we’ll start that journey by investigat-
ing how product thinking can help you identify the API work decisions that matter
the most.

38 | Chapter2: APl Governance

CHAPTER 3
The API as a Product

If you build a great experience, customers tell each other about that. Word of mouth is
really powerful.

—]Jeff Bezos, founder and CEO of Amazon

The phrase “API-as-a-Product” (AaaP) is something we hear often when talking to
companies who have built and maintained sucessful API programs. It’s a play on the
<Something>-as-a-Service monikers that are often used in technical circles (Software-
as-a-Service, Platform-as-a-Service, etc.) and is usually meant to indicate an impor-
tant point of view when designing, implementing, and releasing APIs: that the API is
a product fully deserving of proper design thinking, prototyping, customer research,
and testing, as well as long-term monitoring and maintenance. “We treat our APIs
just like any other product we offer” is the common meaning of the phrase.

In this chapter, we’ll explore the AaaP approach and how you can use it to better
design, deploy, and manage your APIs. As you may have gathered from Chapter 2,
the AaaP approach involves understanding which decisions are critical for the suc-
cess of your APIs and where within your organization those decisions should be
made. It can help you think about what work needs to be centralized and what you
can successfully decentralize, where enforcement and incentives are best applied, and
how you can measure the impact of these decisions in order to quickly adapt your
products (your APIs) when needed.

There are lots of decisions to make when creating new products for your customers.
That is true whether you are creating a portable music player, a laptop computer, or a
message queuing API. In all three cases, you need to know your audience, understand
and solve their most pressing problems, and pay attention to customers when they
give you feedback on how you can improve your product. These three things can be
encapsulated in three lessons we will focus on in this chapter:

39

o Design thinking in order to make sure you know your audience and understand
their problems

 Customer onboarding as a way to quickly show customers how they can succeed
with your product

« Developer experience for managing the post-release lifecycle of your product and
to gain insights for future modifications.

Along the way we’ll learn from companies like Apple about the power of design
thinking and customer onboarding. We will also see how Jeff Bezos helped the Ama-
zon Web Services (AWS) division create an implementation mandate that establishes
a clear, predictable developer experience. Most companies we talk to understand the
notion of AaaP, but not all of them are able to turn this understanding into tangible
action. However, the organizations that have a good track record for designing and
releasing successful API products all have figured out how to meet the three big chal-
lenges we’ve just mentioned—the first of which has to do with how your teams think
about the API products they are creating.

Design Thinking

One of the things that Apple is known for in product design circles is its ability to
engage in design thinking. For example, when describing the work that went into
Apple’s Mac OS X, one of the key software architects, Cordell Ratzlaff, said: “We
focused on what we thought people would need and want, and how they would inter-
act with their computer.” And this focus played out in real and tangible ways. “There
were three evaluations required at the inception of a product idea: a marketing
requirement document, an engineering requirement document, and a user-
experience document,” explained onetime Apple vice president (and one of the peo-
ple credited with founding the field of human-computer interaction design) Donald
Norman.

This attention to meeting people’s needs definitely resulted in creating viable busi-
ness for Apple. A continuing string of products over multiple decades contributed to
Apple’s reputation for defining new trends in technology and helped it capture the
greater market share more than once.

Tim Brown, CEO of the California-based design and consulting firm, IDEO, defines
the term “design thinking” as:

A design discipline that uses the designer’s sensibility and methods to match people’s
needs with what is technologically feasible and what a viable business strategy can con-
vert into customer value and market opportunity.

There is a lot to unpack in that definition. For our purposes we’ll focus on the ideas
of “matching people’s needs” and a “viable business strategy.”

40 | Chapter3:The APlasa Product

http://bit.ly/2IPvqVQ
http://bit.ly/2Pk0LFI
http://bit.ly/2OEP6St

Matching People’s Needs

One of the key reasons to build an API at all is to “match people’s needs”—to solve a
problem. Discovering problems to solve and deciding which problems have priority
is just part of the challenge of the AaaP approach—that is the what of APIs. An even
more fundamental element is knowing the who. Who are the people you are serving
with this API? Correctly identifying the audience and their problem can go a long
way toward ensuring you build the right product: one that works well and is used
often by your target audience.

Harvard Business School’s Clayton Christensen calls this work of understanding the
needs of your audience the theory of Jobs to Be Done. He says, “People don’t simply
buy products or services, they ‘hire’ them to make progress in specific circumstan-
ces.” People (your customers) want to make progress (solve problems), and they will
use (or hire) whatever products or services they find will help them do that.

Should You Apply AaaP to Both Internal and External APIs?

Yes. Maybe not with the same level of investement of time and resources—we will
cover that the next section—but this is one of the lessons Jeff Bezos taught us in “The
Bezos Mandate” on page 42 that led Amazon to open the initially internal AWS plat-
form for use as a revenue-generating external API. Because Amazon adopted AaaP
from the start, not only was it possible (e.g., safe) to start to offer the same internal
API to external users, but it was also profitable.

In most companies, the IT department is in the business of helping others (custom-
ers) solve problems. Most of the time, these customers are fellow employees within
the same company (private internal developers). Sometimes the customers are
important business partners or even anonymous public developers of third-party
applications (external developers). Each of these developer audiences (private, part-
ner, and public) has its own set of problems to solve and its own way of thinking
about (and resolving) those problems. Design thinking encourages teams to get to
know their audience before starting the process of creating APIs as a solution. We’ll
explore this topic in “Knowing Your Audience” on page 49.

Viable Business Strategy

Another important part of design thinking is determining a viable business strategy
for your API product. It doesn’t make sense to invest a lot of time and money in an
API product that has little to no return value. Even when you do a good job of
designing the right product for the right audience, you need to make sure you spend
an appropriate amount of time and money and that you have a clear idea of what the
payback will be when the API is up and running.

Design Thinking | 41

http://bit.ly/2EFxUaV

For most companies, there is only a finite amount of time, money, and energy that
can be devoted to creating APIs to solve problems. That means deciding which prob-
lems get solved is of critical importance. Sometimes we encounter companies where
the APIs that were built don’t solve important business problems. Instead, they solve
known problems in the IT department: things like exposing database tables or auto-
mating internal department processes. These are usually important problems to
solve, but they might not be solutions that have a big impact on the day-to-day busi-
ness operations or “move the needle” when it comes to meeting the company’s
annual sales or product goals.

Figuring out which problems matter for the business can be tricky. It might be diffi-
cult for leadership to communicate company goals in ways that the IT department
can easily understand. And even when the IT team has a grasp of what problems
could make a difference to the company, the department may not have good meas-
ures and metrics to confirm their assumptions and track their progress. For these rea-
sons, it is important to have a standardized way to communicate key business
objectives and relevant performance indicators. We’ll talk more about this aspect of
assessing your APT’s success later in the book.

The Bezos Mandate

No matter how old or new your company is, launching a successful API program—
one that will transform your company—is not a simple task. One of the most well-
respected companies who worked through this process (and which continues to
transform itself more than a decade later) is Amazon, with its AWS platform. First
created in the early 2000s, the platform is widely regarded as a brilliant master-stroke
executed cleanly by a savvy team of IT and business executives. Although the AWS
platform has become a huge success, it was born out of an internal need: a deep frus-
tration with the amount of time needed for Amazon’s IT programs to act upon and
deliver the business team’s requests. The AWS team was too slow to act, and what
they eventually created was less than adequate at both the technical (scaling) and
business (product quality) level.

As current AWS CEO Andy Jassy tells it, the AWS team (along with Amazon CEO
Jeft Bezos and others) spent time identifying just what it was they were good at and
what it would take to design and build out a core set of shared services on an
interoperative platform. Their plan took more than three years to develop, but in the
end formed the basis for Amazon’s ability to offer its now famous Infrastructure-as-
a-Service (IaaS) platform. This now $17bn business only happened because of careful
attention to detail and relentless iterations to improve upon the original idea. Much
the same way as Apple has transformed the way consumers thought of handheld
devices, AWS has tranformed the way that businesses think of servers and other
infrastructure.

42 | Chapter3:The APl asa Product

https://tcrn.ch/2R5dh9n

One of the important ways in which AWS was able to change the point of view inter-
nally was through what is now known as the Bezos Mandate. Steve Yegge, former
senior manager of software development at Amazon, describes the mandate in his
“Google Platforms Rant” from 2005. One of the key points in the blog post is that
Bezos issued a mandate that all teams must expose their functionality through APIs
and that the only way to consume other teams’ functionality must be through APIs.
In other words, APIs are the only way to get things done. He also required that all
APIs be designed and built as if they would be exposed outside the company bound-
aries. This idea that “APIs must be externalizable” was another key constraint that
affected the way the APIs were designed, built, and managed.

So, design thinking is about matching the needs of your audience and committing to
supporting viable business strategies when deciding which APIs are worthy of your
limited resources and attention. What does that look like in real terms? How can you
apply these product lessons to your API management efforts in order to express the
API-as-a-Product approach?

Applying Design Thinking to APIs

You can elevate your APIs from utilities to products by applying the principles of
design thinking to your design and creation process. Several companies we've talked
to in the last few years are doing just that. They have made the decision that their
APIs, even the APIs that are just used within the organization, deserve the same level
of care, study, and design sense as any product or service that company already pro-
vides. For many companies, this means teaching their API developers and others in
the IT department the principles of design thinking directly. For others, it means cre-
ating a “bridge” between the product design teams and the API teams within the
same organization. In a few organizations we’ve worked with, we’ve seen both activi-
ties at the same time: teaching design thinking to the developers and strengthening
the bridge between the product teams and the developer teams.

The actual content of a design-thinking curriculum is out of scope for this book.
However, most design-thinking courses provide a mix of topics like the ones we’ve
already mentioned in this chapter, such as:

o Design thinking skills

o+ Understanding the customer
« Service/workflow design

« Prototyping and testing

« Business considerations

o Measurement and assessment

Design Thinking | 43

http://bit.ly/2OI2c1c

If your company already has staff dedicated to product design, they can be a great
resource for teaching your developer teams how to start thinking and acting like
product designers. Even if your company doesn’t have dedicated design staft, you can
usually find product design classes on offer at a local college or university. Many of
these institutions will offer to customize a course for delivery on site. Finally, even if
you're a small company or just a single individual interested in the topic, youll be
able to find online courses in design thinking.

One company we talked to (a large consumer bank) decided to create its own internal
design thinking course, with the product design staff delivering the sessions to API
teams at various company locations. These trainers then became important resources
that the API teams could call upon when they needed advice on how to improve their
API designs. The goal was not to turn all their developers and software architects into
skilled designers. What they were aiming to do was simply improve the API teams’
understanding of the design process and teach them how to apply these skills to their
own work.

It is important to remember that the results of design thinking are more than just
improved usability or aesthetic appeal of your APIs. It can result in better under-
standing of the target audience (customers), a focus on creating APIs that meet viable
business strategies, and a more reliable process for measuring the relative success of
the APIs your team releases into the ecosystem.

As important as design is in the overall AaaP approach, it is just the start. It is also
important to pay attention to the initial customer experience once the API is released
and available for use. And that’s what we’ll cover in the next section.

Customer Onboarding

Anyone who’s purchased anything from Apple in recent years knows how unboxing
their products can be a memorable experience. And that is not by coincidence. For
years, Apple has had a dedicated team whose only job is to focus on delivering the
best “unpacking experience.”

According to Adam Lashinsky, author of the book Inside Apple (Business Plus), “For
months, a packaging designer was holed up in this room performing the most mun-
dane of tasks—opening boxes.” He continues, “Apple always wants to use the box
that elicits the perfect emotional response on opening...One after another, the
designer created and tested an endless series of arrows, colors, and tapes for a tiny tab
designed to show the consumer where to pull back the invisible, full-bleed sticker
adhered to the top of the clear iPod box. Getting it just right was this particular
designer’s obsession.”

And this attention to detail went well beyond just opening the box and taking out the
device. Apple made sure the battery was fully charged, that customers could be “up

44 | Chapter3:The APl asa Product

http://bit.ly/2CBm2Vt

and running” within seconds, and that the overall experience was pleasant and seam-
less. Apple’s product teams wanted customers to love their product from the very
start: as Stefan Thomke and Barbara Feinberg wrote in “Design Thinking and Inno-
vation at Apple,” “Helping people ‘love’ their equipment and the experience of using
it animated—and continues to motivate—how Apple products were and are designed
today.”

When the API Is Your Only Product

Stripe is a successful payment service delivered via a great API that developers really
love. The startup’s recent valuation was about $10 bn with less than 700 employees.
The founders’ entire business strategy was to deliver their payment services via APIs.
For this reason, they decided to invest in design thinking and the API-as-a-Product
approach from the very beginning. For Stripe, the API was their only product. Treat-
ing their API as a product helped them meet both their technical and business goals.

This same attention to the initial experience of product customers applies to APIs.
Making it possible for developers to love them may seem a far-fetched notion, but it
has long-reaching implications. If your API is difficult to understand in the begin-
ning, developers will struggle with it, and if it takes “too long” to get started, they will
just walk away in frustration. In the API world, the time it takes to “get things work-
ing” is often referred to as TTFHW, or “Time to first Hello, World.” In the online
application space this is sometimes called “Time to Wow!” (TTW).

Time to Wow!

In his article “Growth Hacking: Creating a Wow Moment,” David Skok, part of the
equity investment firm Matrix Partners, describes the importance of a customer’s
“Wow!” moment as a key hurdle to cross in any customer relationship: “Wow! is the
moment...where your buyer suddenly sees the benefit they get from using your prod-
uct, and says to themselves ‘Wow! This is great!” And while Skok is talking directly
to people designing and selling apps and online services to consumers, the same prin-
ciples apply to people designing and deploying APIs.

A key element to the TTW approach is understanding not just the problem to solve
(see “Design Thinking” on page 40) but also the time and work required to get to
Wow! The effort it takes to reach a point where the API consumer understands how
to use the API and learns that it will solve their important problems is the hurdle
each and every API must cross in order to win over the consumer. Skok’s approach is
to map out the steps needed to experience the Wow! moment and work to reduce
friction and effort along the way.

Customer Onboarding | 45

http://bit.ly/2q6xeRC
http://bit.ly/2q6xeRC
https://bloom.bg/2ydEsrz
http://bit.ly/2CXl1r7

For example, consider the process of using an API that returns a list of hot leads for
your company’s key product, WidgetA. A typical process flow might look like this:

1. Send a login request to get an access_token.

2. Retrieve the access_token and store it.

3. Compose and send a request for the product_list using the access_token.
4.

From the returned list, find the item where name="WidgetA" and get that record’s
sales_lead_url.

5. Use that sales_lead_url to send a request for all the sales leads where
status="hot" (using the access_token).

6. You now have a list of hot sales leads for the WidgetA product.

That’s a lot of steps, but we’ve seen workflows with many more than this. And each
step along the way is an opportunity for the API consumer to make a mistake (e.g.,
send a malformed request) and for the API provider to return an error (e.g., a time-
out for a data request). There are three possible request/response failures here (login,
product_list, and sales_leads). The TTW will be limited to how long it takes a
brand new developer to figure the API out and get it working. The longer it takes, the
less likely they are to ever get their “Wow!” moment, and to keep using the API.

There are a number of ways to improve the TTW for this example. First, we could
adjust the design by offering a direct call to get the list of hot leads (e.g., GET /hot-
leads-by-product-name?name=WidgetA). We might also spend time writing “sce-
nario” documentation that shows new users exactly how to solve this particular
problem. We could even offer a sandbox environment for testing examples like this
one that allows users to skip the authentication work while they learn the API.

API Pillars

Design, documentation, and testing are what we call API pillars.
Those and others are covered in detail later in this book.

Anything you can do to reduce the time it takes to get to “Wow!” will improve the
API consumer’s opinion of your API and increase the chances that the API will be
used by more developers both inside and outside your organization.

Onboarding for Your APIs

Just as Apple spends time on its “unboxing” experience, companies that are good at
adopting the AaaP approach spend time making sure the “onboarding” experience
for their APIs is as smooth and rewarding as possible. And just as Apple makes sure

46 | Chapter3:The APlasa Product

the battery is already charged up when you open your new mobile phone, media
player, tablet, etc., APIs can be “fully charged” at first use, making it easy for develop-
ers to get started and make an impact within minutes of trying out a new API

Early in our work on APIs and API management we used to tell our customers they
needed to get a brand new user from the initial view of their APT’s landing page to a
live working example in about 30 minutes. Anything more than that risked losing a
potential user and wasting all the time and money put into designing and deploying
the API. However, after one of us completed a presentation on API onboarding, a
representative of Twilio, the SMS API company, came up to us and told us they aim
for an initial onboarding experience of 15 minutes or less.

Twilio’s field (SMS APIs) is notoriously fiddly and confusing. Imagine trying to
design a single API that works with dozens of different SMS gateways and companies
and is easy to use and understand. Not an easy task. One of the keys to achieving
their 15-minute onboarding goal is the copious use of measurements and metrics in
their tutorials to identify bottlenecks—points where API users “drop out”—and
determine just how long it takes for them to complete the tasks. “We are obsessed
about metrics, we constantly monitor growth at different [stages] of the customer
adoption funnel and collect NPS associated to the different activities we run,” said
Elisa Bellagamba when she was in charge of adoption for Twilio’s voice products.

Twilio’s Neo Moment

In 2011, Twilio’s API evangelist Rob Spectre wrote a blog post relating his experien-
ces teaching others how to use Twilio’s SMS API. He tells the story of helping a devel-
oper to use the API for the first time:

In fifteen minutes we worked through a Twilio quickstart guide for outgoing calls and
after navigating a few speedbumps, his Nokia feature handset lit up as his code exe-
cuted. He looked up at me, looked back at his screen, answered his phone and heard his
code say, “Hello world.”

“Whoa dude,” he said, stunned. “I just did that.”
And that is pure magic.
Spectre calls this the “Neo Moment” (referring to the character Neo from the Matrix

movies) and says it can be a “powerful inspiration” for developers.

Twilio has worked diligently to engineer its API and onboarding experience to maxi-
mize these inspirational moments.

So, a great onboarding experience is more than just the result of a good design pro-
cess. It includes well-crafted “getting started” and other initial tutorials, and diligent
tracking of API consumers’ use of these tutorials. Gathering data helps provide you
with the information you need to improve the experience. Just as you design the API,

Customer Onboarding | 47

http://bit.ly/2CzFKA7
http://bit.ly/2yvNK2x

you need to design the onboarding experience, too. And improving the onboarding
experience means acting on the feedback (both personal and automated) you get
from API users.

But the AaaP approach doesn’t stop with onboarding. Hopefully, you've gained a
community of avid API consumers that will stick with you well past the initial intro-
duction. And that means you need to focus on the overall developer experience for
your APIs.

Developer Experience

Customer interactions with a product typically last well beyond the initial unboxing.
Even though it is important to make sure the product “works right out of the box,” it
is also important to keep in mind that the customer will (hopefully) continue to use
the product for quite a while. And, over time, customers’ expectations change. They
want to try new things. They get bored with some things they loved at the beginning.
They start to explore options and even come up with unique ways to use the product
and its features to solve new problems not initially covered by the product release.
This continuing relationship between consumer and product is typically called the
user experience (UX).

Apple pays attention to this ongoing relationship, too. Tai Tran, CEO and founder of
social app Blue and former Apple employee, put it this way: “Whenever there’s a
question about whether we should do something or not we always come back to the
question of, ‘How would this impact the customer experience?”” Like any good prod-
uct company, Apple tells its employees that the customer is king and to pay close
attention to the way they interact with Apple products. And theyre not worried
about making lots of changes if that means making meaningful improvements along
the way. For instance, between 1992 and 1997, Apple created more than 70 models of
its Performa desktop computer (some of which were never even released to the pub-
lic), each an attempt to take advantage of what it had learned from customer experi-
ence feedback on previous releases.

But probably the best example of managing the UX of its products is Apple’s
approach to customer service: the Genius Bar. As Van Baker of Gartner Research
says, “The Genius Bar is a real differentiator for the stores and the fact that it is free
really sets the stores apart from the other offerings in the industry.” By offering cus-
tomers a place to go with all their questions and problems, Apple illustrates the
importance of the continuing relationship between customer and product.

All these UX elements—acknowledging an ongoing relationship, dedication to mak-
ing small improvements, and offering easy access to support—are key to creating suc-
cessful API products and experiences.

48 | Chapter3:The APl asa Product

https://read.bi/2JbmgDb
http://tryblueapp.com/home
https://tek.io/2ykZrJl

Knowing Your Audience

A big part of creating a successful API as a product is to make sure you target the
right audience. That means knowing who is using your API and what problems they
are trying to solve. We covered this in “Design Thinking” on page 40, and it is also an
important part of the ongoing developer relationship. By focusing on the who and
what of your AP, you not only gain insight into what is important, but you can also
think more creatively about the how of your APIL: what it is your API has to do in
order to help your audience solve their problems.

We talked earlier in this chapter about the concept of matching people’s needs when
working through the design process. This same work needs to continue after your
API is released. Gathering feedback, confirming your user stories, and generally pay-
ing close attention to how the APIs are used (or not used) is all part of the ongoing
developer experience. Three important elements are:

o API discovery
 Error reporting

o API usage tracking

These three (and others) will be covered in depth later in this book, so we’ll just high-
light some aspects of them that are important to the overall developer experience
(DX) of your AaaP strategy.

AP discovery

API discovery is the work of “being where your developers are”—of making your API
“findable” at the right time. One of the challenges of API programs at large organiza-
tions is that, even when an appropriate API is available, developers end up creating
their own APIs—sometimes many times over throughout the organization. While
sometimes seen as a kind of rebellion inside the company (“They won’t use the APIs
we give them!”), this explosion of duplicate functionality is more often evidence that
developers cannot find the API they need when they need it.

Having a central registry for your APIs can help solve this problem. Establishing an
API search hub or a portal where documentation, examples, and other important
information can be accessed is another good way to improve the discoverability of
your existing APIs.

Searching for APIs

As of the release of this book, there is no single, commonly used public search engine
for APIs. One reason for this is that it is hard to index services on the web since most
of them don’t expose crawlable links and they rarely include links to other dependent

Developer Experience | 49

services. Another problem is that most of the APIs in use today are behind private
firewalls and gateways, which makes them “invisible” to any publicly operated API
search crawlers.

There are some open source projects and formats working to make API crawlers pos-
sible, including {API}Search, the API description format, and the Application-Level
Profile Semantics (ALPS) service description format. These and others offer the pos-
sibility of a future API search engine available to all. In the meantime, invidivual
organizations can use these standards internally to start the process of creating a
searchable API landscape.

At least one company we talked to made publishing to a central discovery registry a
required step in the build pipeline. That meant the developers building an API could
not actually release it into production until they’d added it to the company’s API reg-
istry and ensured all important APIs within the organization would be findable in
one location—a big step toward improving the discovery quotient of their API pro-
gram.

Error reporting

Errors happen all the time. They’re part of the “landscape” of APIs. While you can
use good design to try to reduce user errors and testing to try to eliminate develop-
ment bugs in your own code, you will never get rid of all the errors. Instead of trying
to do the impossible (eliminate all errors), a better tactic is to monitor your APIs
closely so you can record and report the errors that do occur. This act of recording
and reporting will give you important insight into the way your target audience is
using your APIs—and that can lead to improving the developer experience.

One of the challenges encountered when creating and releasing a physical product
(e.g., clothing, furniture, office supplies, etc.) is that it can be difficult to see errors
when they occur during use. Unless you are standing right next to the person while
they use your product, you’re likely to miss details and lose out on valuable feedback.
For this reason, most product companies engage in extensive prototyping and in-
person monitored testing. The good news is, in the age of electronics and virtual
products (e.g., mobile applications), you can build in error reporting and collect
important feedback even after the product has left your control and is in the hands of
users.

You can implement error reporting at a number of key touchpoints along the way for
your APIs. For example:

End user error reporting
You can add an error-reporting feature to your application. This prompts the
user for permission to send detailed information if and when an error occurs. In

50 | Chapter3:The APlasa Product

https://apis.io
http://apisjson.org
http://alps.io/
http://alps.io/

this way you can capture unexpected conditions on the user’s end of the transac-
tion.

Gateway error reporting
You can add error reporting at the API router or gateway. This allows you to col-
lect the state of the request when it first arrives “on your doorstep” and can help
you discover malformed API requests or other network-related problems.

Service error reporting
You can add error reporting within the service being called by your API. This
helps you discover errors in coding the service and some component-level prob-
lems, such as issues with dependencies or internal issues due to changes within
your organization’s ecosystem.

Error reporting is a great way to get important feedback on how your API is being
used and where problems occur. But it is only half of the tracking story. It is also
important to track successful API usage.

APl usage tracking

API usage tracking covers more than errors. It means tracking all requests and, even-
tually, analyzing the tracking information to find helpful patterns. As we mentioned
in “Viable Business Strategy” on page 41, a big reason for creating and deploying
APIs is to support your business strategies. As the well-known API evangelist Kin
Lane puts it: “Understanding [how] APIs will (or won’t) assist [the] organization to
better reach their audience is what the API(s) are all about.”

The data needed to determine whether your API is helping your organization to bet-
ter reach your target audience is usually expressed as OKRs (objectives and key
results) and KPIs (key performance indicators). We’ll dig deeper into these later, but
for now it is important to recognize that in order to meet your goals, you need to
know just how your APIs are doing along these lines. That means tracking not just
the errors that occur, as described in the previous section, but also the successes.

For example, you’ll want to collect data on which applications are making which API
calls and whether those applications are effectively meeting the needs of their users.
Tracking has the added benefit of helping you to see patterns over a wide range of
users — patterns that individual users may not be able to notice. For example, you
might discover that applications continue to make the same series of API calls over
and over again, such as:

GET http://api.mycompany.org/customers/?last-order=90days
GET http://api.mycompany.org/promotions/?flyer=90daypromo
POST http://api.mycompany.org/mailing/
customerid=1&content="It has been more than 90 days since....
POST http://api.mycompany.org/mailing/
customerid=2&content="It has been more than 90 days since....

Developer Experience | 51

http://bit.ly/2PdTXK1
http://bit.ly/2PdTXK1

POST http://api.mycompany.org/mailing/
customerid=99&content="It has been more than 90 days since...."

This pattern might indicate the need for a new, more efficient way for your target
audience to send out mailings to key customer groups—a single call from the applica-
tion that will combine the target customer group with the selected promotional con-
tent. For example:

POST http://api.mycompany.org/bulk-mailing
customer-filter=last-order-90days&content-flyer=90daypromo

This call creates less client/server traffic, reduces the number of possible network fail-
ures, and is easier to use for API consumers. And it was “suggested” not by a cus-
tomer, but by paying attention to the API usage tracking information.

Drink Your Own Champagne

Three years ago, a European national railway company decided to organize some
hackathons for its developer communities; one for external developers and another
for internal developers.

The external event was coordinated by the communications and product manage-
ment leadership. They arranged to have the IT department produce some static data
available for external use and helped the IT teams design a set of simple, task-focused
APIs for accessing things like station locations, departure schedules, etc. These were
implemented quickly and viewed by the IT department as “less powerful” than its
down “full-featured” internal APIs. The event went quite well.

Six months later, the IT department arranged its own hackathon using the “official”
internal APIs. After a while the hackathon organizers realized the internal developer
teams had switched from using the “full-featured” internal APIs to the easier, more
task-focused external APIs. And the teams were more effective and productive, too.

There are a few lessons to be learned from this experience. First, the task-focused
APIs were preferred by all developers. Second, creating these “simpler” APIs did not
take much time or resources. And third, it is always best for IT departments to pay
attention to which APIs are popular and used more often. This last lesson leads to the
common phrase “Drinking your own champagne.” With APIs as with any other
product, it is often best for internal teams to be using the same product external
teams are using.

This leads us to one more important area of developer experience (DX): making it
safe and easy for developers to “do the right thing” with your API.

52

| Chapter3: The APl as a Product

Making It Safe and Easy

Along with supporting easy API discovery and accurate tracking of both errors and
general API usage, it is important to provide easy access to ongoing support and
training to your API developers. In fact, it is the experience that occurs after you've
successfully onboarded your developers that will ensure a long-term positive rela-
tionship. We saw an example of this kind of attention to the ongoing relationship
earlier in this section, with Apple’s use of the Genius Bar as a source of support for
existing customers. Your APIs need their own Genius Bar, too.

Another important aspect of support for developers is making your product safe for
use. In other words, it should be somewhat difficult to misuse the product in ways
that result in some sort of harm. For example, it might be hard to delete important
data, remove the only admin account, and so forth. Paying attention to how your API
consumers (e.g., developers) use the product can help you identify areas where some
added safety efforts can pay off.

It takes a mix of both these elements—ease and safety—to create a powerful and
ongoing connection with your API developers.

Making APIs safe to use

There are a number of elements of an API that can represent risk from the devel-
oper’s point of view. Sometimes certain API calls can do dangerous things, like delete
all customer records or change all service prices to zero. Sometimes even connecting
to an API server can represent some risk. For example, setting up a connection string
to a data API might make it too easy to expose usernames and passwords in URLs or
unencrypted message bodies. We've seen lots of these types of safety issues in our
reviews of APIs.

Often risks can be designed out of the API. That is, you can make changes in the
design that make encountering a particular risk less likely. For example, you can
design an API that deletes critical data to also support an “undo” API call. That way,
if someone mistakenly deletes important data, they can also invoke the undo call to
reverse it. Or you can require elevated access rights to execute certain operations,
such as requiring an extra data field (e.g., a passcode) to be sent with calls that update
critical information.

However, sometimes it can be difficult to mitigate the risk through API design
changes. There may be some cases where executing an API call is simply inherently
risky. Any API call that deletes data is risky, no matter how many design changes you
make to it. Some API calls might always take a long time to execute, possibly con-
suming lots of server-side resources. Other APIs might execute quickly and result in
quite a lot of data in return. For example, a filter query might potentially return hun-
dreds of thousands of records.

Developer Experience | 53

In cases where API calls represent unavoidable risk, you can reduce negative impacts
by adding warnings to the API documentation itself. In this way, you can make it eas-
ier for API consumers to recognize potential dangers ahead of time and possibly
avoid making critical mistakes. There are lots of ways you can format documentation
to help point out possible dangers. Highlighted text telling the user of the problem
(“Warning: This API call may return over a million records, depending on your filter
settings”) is one way to do it. Another way to warn API users is to adopt a kind of
labeling method using symbols. This way, there is no need to add lots of text to your
documentation: readers can just recognize the warning label instead.

Physical products use information and warning symbols quite often (see Figure 3-1).

5 OO

Figure 3-1. Examples of household product labels

You can adopt a similar approach for your APIs, too (see Figure 3-2).

Warning:
{® Read Only API [Long RunningTransactions] { ﬁ Responses > IOOka

Figure 3-2. Examples of API labels

Easy-to-read warning symbols combined with design changes to make it more
unlikely for APT users to make regrettable mistakes are good practices for increasing
the safety of your API product.

Making APIs easy to use

It is also important to make your API relatively easy to use for your API consumers.
If it takes too many steps to accomplish a task, if the names and numbers of argu-
ments API developers need to pass are confusing or complicated, or if the names of
the API calls themselves don’t make much sense to consumers, your API can run into
problems. Not only will developers be unhappy using your API, but they might make
more errors, too.

You can design in ease of use by adopting naming patterns that fit your developers’
jobs-to-be-done vocabulary. This goes back to understanding your audience
(“Matching People’s Needs” on page 41) and solving their problems (“Viable Busi-
ness Strategy” on page 41). But even when you do that, if your API is large (e.g., lots
of URLs or actions) or just plain complicated (lots of options to deal with), you can’t
always rely on design to solve your problem. Instead, you may need to make it easier

54 | Chapter3:The APlasa Product

for API consumers to ask the right questions and find appropriate answers. Your API
needs a kind of “Genius Bar” for developers.

Probably the easiest way to provide your developers an API Genius Bar is through the
documentation. By adding more than simple reference documentation (e.g., API
name, methods, arguments, and return values), you can elevate your API docs to
“genius” level. For example, you can add a Frequently Asked Questions (FAQ) sec-
tion where you provide answers (or pointers) to the most common consumer ques-
tions. You can expand your FAQ support by adding a “How Do I...?” section that
gives step-by-step short examples on how to accomplish common tasks. You can
even provide fully functional examples that developers can use as starter material for
their own projects.

The next level up from enhanced documentation is an active online support form or
chat channel. Support forums provide an ongoing conversation space where develop-
ers can ask questions to a larger group and share solutions. In the case of large API
communities, these forums can even become a source of important bug fixes and fea-
ture requests. Forums can also become a valuable repository of knowledge accumula-
ted over time, especially when you have a robust search mechanism.

Chat channels offer an even more immediate means of providing Genius Bar support
for your API consumers. Chats often happen in real time and can add an additional
level of personalization to your developer experience. This is also another great place
to leverage and grow community knowledge about your API product.

Finally, for large API communities and/or large organizations, it can make sense to
provide in-person support for your product in the form of API evangelists, trainers,
or troubleshooters. Your company can arrange meetups or hack events where API
users come together to work on projects or test new features. This works whether
your primary API community is internal (e.g., company employees) or external (e.g.,
partners or public API users). The more personal you can make your connection to
your developers, the more likely you are to be able to learn from them and improve
the ease of use of your API

Taking the time to make your APIs safer to use and easy to work with can go a long
way toward establishing a positive relationship with your API consumers and, in
turn, improving your overall developer experience.

Summary

In this chapter, we introduced the API-as-a-Product approach and how you can use
it to better design, deploy, and manage your APIs. Adopting this approach means
knowing your audience, understanding and solving their problems, and acting on
API users’ feedback.

Summary | 55

The three key concepts we explored in the AaaP space were:

« Using design thinking to make sure you know your audience and understand
their problems

o Focusing on customer onboarding as a way to quickly show customers how they
can succeed with your product

o Investing in providing a developer experience for managing the post-release life-
cycle of your product and gaining insights for future modifications

Along the way we learned how dedication to AaaP principles helped companies like
Apple, Amazon, Twilio, and others build not just successful products, but also loyal
customers. And, regardless of whether your API program is targeting only internal
users or both internal and external developers, a loyal user community is critical to its
long-term health and success.

Now that you have a grasp of the foundational principles of AaaP, we can turn to the
common set of skills that we find all successful API programs nurture and grow. We
call these the “API pillars,” and that’s what we’ll cover in the next chapter.

56 | Chapter3:The APlasa Product

About the Authors

Mehdi Medjaoui is an entrepreneur in the API industry, cofounder of OAuth.io, and
creator of APIDays Conferences, the main worldwide series of API conferences held
every year in seven countries. As lead API economist at the API Academy, Mehdi
advises API decision makers about the impact of API adoption in their digital trans-
formation strategies at the micro and macro level. He designed the API Industry
Landscape, has been a coauthor of the “Banking APIs: State of the Market” industry
report since 2015, and serves as a European Commission expert on the APIs for Digi-
tal Government (APIs4DGov) project. He also lectures on entrepreneurship in the
digital age at HEC Paris MBA and is a board advisor at several API tooling startups.

An expert in protocol design and structured data, Erik Wilde consults with organiza-
tions to help them get the most out of APIs and microservices. Erik has been involved
in the development of innovative technologies since the advent of the web and is
active in the IETF and W3C communities. He obtained his PhD from ETH Zurich
and taught at ETH Zurich and UC Berkeley before working at EMC, Siemens, and,
most recently, CA Technologies

Ronnie Mitra helps companies around the world, both large and small, improve
their organizational designs and system architectures. In his role as the lead designer
at the API Academy, he combines a focus on UX principles and system complexity to
tackle the challenges of building effective API programs and establishing practical
strategies for transformation.

An internationally known author and speaker, Mike Amundsen travels the world
consulting and talking about network architecture, web development, and the inter-
section of technology and society. As lead API architect for the API Academy, he
works with companies to provide insight on how best to capitalize on the opportuni-
ties APIs present to both consumers and the enterprise.

Colophon

The animal on the cover of Continuous API Management is the Welsh Shepherd,
(Welsh: Ci Defaid Cymreig), a breed of collie-type domestic herding dog native to
Wales. Appearing in black-and-white, red-and-white, and tri-color varieties, with a
high incidence of merle markings, they have longer limbs and a broader chest and
muzzle than the Border Collie.

Welsh Shepherds are extremely strong-willed and energetic dogs, and function
mostly independently of human direction once trained in herding duties. However,
they lack the low posture and strong eye contact of the border collie (lupine preda-
tion traits that allow a dog to manage a herd with less effort), making them less popu-
lar candidates for modern livestock supervision.

Due to a combination of breeding for behavioral characteristics rather than features,
and dilution due to cross-breeding with the Border Collie, the Welsh Sheepdog is not
recognized as a standardized breed by any major kennel organization. In recent years,
efforts have been made to preserve the breed, mostly for domestic purposes.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from J.G. Wood’s Animate Creation. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Chapter 1. The Challenge of API Management
	What Is API Management?
	What Is an API?
	More Than Just the API
	API Maturity Stages
	More Than a Single API
	The Business of APIs

	Why Is API Management Difficult?
	Scope
	Scale
	Standards

	Managing the API Landscape
	Technology
	Teams
	Governance

	Summary

	Chapter 2. API Governance
	Understanding API Governance
	Decisions
	Governing Decisions
	Governing Complex Systems

	Governing Decisions
	Centralization and Decentralization
	The Elements of a Decision
	Decision Mapping

	Designing Your Governance System
	Governance Pattern #1: Interface Supervision
	Governance Pattern #2: Machine-Driven Governance
	Governance Pattern #3: Collaborative Governance

	Summary

	Chapter 3. The API as a Product
	Design Thinking
	Matching People’s Needs
	Viable Business Strategy
	The Bezos Mandate
	Applying Design Thinking to APIs

	Customer Onboarding
	Time to Wow!
	Onboarding for Your APIs

	Developer Experience
	Knowing Your Audience
	Making It Safe and Easy

	Summary

	About the Authors
	Colophon

