
EBOOK

 Managing Kubernetes
 Traffic with F5 NGINX
 A Practical Guide
 By Amir Rawdat
Technical Marketing Manager, NGINX

https://www.nginx.com

MANAGING KUBERNETES TRAFFIC WITH NGINX – A PRACTICAL GUIDE 2

Table of Contents

Foreword . 5

1. Installing and Deploying F5 NGINX Ingress Controller and F5 NGINX Service Mesh 6

What Is an Ingress Controller and Why Is It Important? . 6

What’s Special About NGINX Ingress Resources? .7

Prerequisites .7

Installation and Deployment Instructions for NGINX Ingress Controller .7

What Is a Service Mesh and Do I Need One? .10

Why Should I Try NGINX Service Mesh? . 11

Why Integrate NGINX Ingress Controller with NGINX Service Mesh? . 11

NGINX Service Mesh Architecture .12

Installation and Deployment Instructions for NGINX Service Mesh . 13

Installation with the NGINX Service Mesh CLI .13

Install the NGINX Service Mesh CLI .13

Install NGINX Service Mesh .14

Installation with Helm .15

Prerequisites .15

Installing with Helm Repository .15

Installing with Chart Sources .16

Migrating from the Community Ingress Controller to F5 NGINX Ingress Controller 17

Option 1: Migrate Using NGINX Ingress Resources . 17

Set Up SSL Termination and HTTP Path-Based Routing .18

Set Up TCP/UDP Load Balancing and TLS Passthrough .18

Convert Community Ingress Controller Annotations to NGINX Ingress Resources 18

Canary Deployments .19

Traffic Control . 20

Header Manipulation . 22

Other Proxying and Load Balancing Annotations . 23

mTLS Authentication . 24

Session Persistence (Exclusive to NGINX Plus) . 24

Option 2: Migrate Using the Kubernetes Ingress Resource . 25

Advanced Configuration with Annotations . 25

Global Configuration with ConfigMaps . 26

Chapter Summary . 28

FP
O

MANAGING KUBERNETES TRAFFIC WITH NGINX – A PRACTICAL GUIDE 3

2. Traffic Management Use Cases . 29

Load Balancing TLS-Encrypted Traffic with TLS Passthrough . 32

Enabling Multi-Tenancy and Namespace Isolation . 34

Delegation with NGINX Ingress Controller . 34

Implementing Full Self-Service . 35

Implementing Restricted Self-Service . 37

Leveraging Kubernetes RBAC in a Restricted Self-Service Model . 39

Adding Policies . 40

Configuring Traffic Control and Traffic Splitting . 42

Why Is Traffic Management So Vital? . 42

How Do I Pick a Traffic Control or Traffic Splitting Method? . 43

When Do I Use NGINX Ingress Controller vs . NGINX Service Mesh? . 43

Deploying the Sample Application . 43

Configuring Traffic Control . 47

Configuring Rate Limiting . 47

Activating Client Rate Limiting with NGINX Ingress Controller . 48

Allowing Bursts of Requests with NGINX Ingress Controller .51

Activating Interservice Rate Limiting with NGINX Service Mesh . 52

Configuring Circuit Breaking . 54

Returning a Custom Page . 58

Configuring Traffic Splitting . 59

Generating Cluster-Internal Traffic to Split . 59

Implementing Blue-Green Deployment . 60

Blue-Green Deployment with NGINX Service Mesh . 60

Blue-Green Deployment with NGINX Ingress Controller . 62

Implementing Canary Deployment . 63

Canary Deployment with NGINX Service Mesh . 63

Canary Deployment with NGINX Ingress Controller . 64

Implementing A/B Testing . 65

A/B Testing with NGINX Service Mesh . 65

A/B Testing with NGINX Ingress Controller . 67

Implementing Debug Routing . 68

Debug Routing with NGINX Service Mesh . 68

Debug Routing with NGINX Ingress Controller . 70

Chapter Summary . 71

MANAGING KUBERNETES TRAFFIC WITH NGINX – A PRACTICAL GUIDE 4

3. Monitoring and Visibility Use Cases . 72

Monitoring with the NGINX Plus Live Activity Monitoring Dashboard . 72

Distributed Tracing, Monitoring, and Visualization with Jaeger, Prometheus, and Grafana 74

Enabling Distributed Tracing, Monitoring, and Visualization for NGINX Service Mesh 74

Enabling Distributed Tracing for NGINX Ingress Controller . 75

Enabling Monitoring and Visualization for NGINX Ingress Controller . 76

Visualizing Distributed Tracing and Monitoring Data . 77

Logging and Monitoring with the Elastic Stack . 80

Configuring the NGINX Ingress Controller Access and Error Logs . 80

Enabling Filebeat .81

Displaying NGINX Ingress Controller Log Data with Filebeat . 83

Enabling Metricbeat and Displaying NGINX Ingress Controller and
NGINX Service Mesh Metrics . 87

Displaying Logs and Metrics with Amazon CloudWatch . 89

Configuring CloudWatch . 89

Creating Graphs in CloudWatch . 92

Capturing Logs in CloudWatch with Fluent Bit . 93

Chapter Summary . 95

4. Identity and Security Use Cases . 96

Implementing SSO with Okta . 97

Prerequisites . 97

Configuring Okta as the IdP . 98

Configuring NGINX Ingress Controller as the Relaying Party with Okta . 99

Implementing SSO with Azure Active Directory . 102

Configuring Azure AD as the IdP . 102

Configuring NGINX Ingress Controller as the Relaying Party with Azure AD 105

Implementing SSO with Ping Identity . 109

Configuring Ping Identity as the IdP . 109

Configuring NGINX Ingress Controller as the Relaying Party with Ping Identity 112

Implementing SSO for Multiple Apps . 114

Deploying NGINX App Protect with NGINX Ingress Controller . 115

Why Is Integrating a WAF into NGINX Ingress Controller So Significant? . 115

Configuring NGINX App Protect in NGINX Ingress Controller . 116

Configuring NGINX App Protect WAF with NGINX Ingress Resources . 117

Configuring NGINX App Protect WAF with the Standard Ingress Resource 121

Logging . 121

Resource Thresholds . 123

Chapter Summary .124

55

 Foreword

Microservices architectures introduce several benefits to the application development and delivery process .
Microservices-based apps are easier to build, test, maintain, and scale . They also reduce downtime through
better fault isolation .

While container-based microservices apps have profoundly changed the way DevOps teams deploy applications, they have also
introduced challenges . Kubernetes – the de facto container orchestration platform – is designed to simplify management of
containerized apps, but it has its own complexities and a steep learning curve . This is because responsibility for many functions that
traditionally run inside an app (security, logging, scaling, and so on) are shifted to the Kubernetes networking fabric .

To manage this complexity, DevOps teams need a data plane that gives them control of Kubernetes networking . The data plane
is the key component that connects microservices to end users and each other, and managing it effectively is critical to achieving
stability and predictability in an environment where modern apps are evolving constantly .

Ingress controller and service mesh are the two Kubernetes-native technologies that provide the control you need over the
data plane . This hands-on guide to F5 NGINX Ingress Controller and F5 NGINX Service Mesh includes thorough explanations,
diagrams, and code samples to prepare you to deploy and manage production-grade Kubernetes environments .

Chapter 1 introduces NGINX Ingress Controller and NGINX Service Mesh and walks you through installation and deployment,
including an integrated solution for managing both north-south and east-west traffic .

Chapter 2 steps through configurations for key use cases:

• TCP/UDP and TLS Passthrough load balancing – Supporting TCP/UDP workloads

• Multi-tenancy and delegation – For safe and effective sharing of resources in a cluster

• Traffic control – Rate limiting and circuit breaking

• Traffic splitting – Blue-green and canary deployments, A/B testing, and debug routing

Chapter 3 covers monitoring, logging, and tracing, which are essential for visibility and insight into your distributed applications .
You’ll learn how to export NGINX metrics to third-party tools including AWS, Elastic Stack, and Prometheus .

And of course, we can’t forget about security . Chapter 4 addresses several mechanisms for protecting your apps, including
centralized authentication on the Ingress controller, integration with third-party SSO solutions, and F5 NGINX App Protect WAF
policies for preventing advanced attacks and data exfiltration methods .

I’d like to thank my collaborators on this eBook: Jenn Gile for project conception and management, Sandra Kennedy for the cover
design, Tony Mauro for editing, and Michael Weil for the layout and diagrams .

This is our first edition of this eBook and we welcome your input on important scenarios to include in future editions .

Amir Rawdat
Technical Marketing Engineer, F5 NGINX

FOREWORD

6CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 6

1. Installing and Deploying F5 NGINX Ingress
Controller and F5 NGINX Service Mesh

In this chapter we explain how to install and deploy NGINX Ingress Controller and
NGINX Service Mesh . We also detail how to migrate from the NGINX Ingress Controller
maintained by the Kubernetes community (kubernetes/ingress-nginx) to our version
(nginxinc/kubernetes-ingress) .

• Installing and Deploying NGINX Ingress Controller

• Installing and Deploying NGINX Service Mesh

• Migrating from the Community Ingress Controller to NGINX Ingress Controller

• Chapter Summary

I N STA L L I N G A N D D E P L OY I N G N G I N X I N G R E S S C O N T R O L L E R

As you start off using Kubernetes, your cluster typically has just a few simple applications
that serve requests from external clients and don’t exchange much data with other services
in the cluster . For this use case, NGINX Ingress Controller is usually sufficient on its own,
and we begin with instructions for a stand-alone NGINX Ingress Controller deployment .

As your cluster topology becomes more complicated, adding a service mesh often becomes
necessary . We cover installation and deployment of NGINX Service Mesh in the next section .

What Is an Ingress Controller and Why Is It Important?

In Kubernetes, the Ingress controller is a specialized load balancer that bridges between
the internal network, which connects the containerized apps running within the Kubernetes
cluster, and the external network outside the Kubernetes cluster . Ingress controllers are
used to configure and manage external interactions with Kubernetes pods that are labeled
to a specific service . Ingress controllers have many features of traditional external load
balancers, like TLS termination, handling multiple domains and namespaces, and of course,
load balancing traffic .

You configure the Ingress controller with the Kubernetes API . The Ingress controller integrates
with Kubernetes components so that it can automatically reconfigure itself appropriately
when service endpoints scale up and down . And there’s another bonus! Ingress controllers
can also enforce egress rules which permit outgoing traffic from certain pods only to specific
external services, or ensure that traffic is secured using mTLS .

AS YOUR CLUSTER TOPOLOGY
BECOMES MORE COMPLICATED,
ADDING A SERVICE MESH
OFTEN BECOMES NECESSARY

7CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 7

What’s Special About NGINX Ingress Resources?

NGINX Ingress Controller supports the standard Kubernetes Ingress resource, but also supports
NGINX Ingress resources, which provide enterprise-grade features such as more flexible
load-balancing options, circuit breaking, routing, header manipulation, mutual TLS (mTLS)
authentication, and web application firewall (WAF) . In contrast, the native Kubernetes
Ingress resource facilitates configuration of load balancing in Kubernetes but does not provide
those enterprise-grade features nor other customizations .

Prerequisites

To install and deploy NGINX Ingress Controller, you need:

• A working Kubernetes environment where you have administrative privilege . See the
Kubernetes documentation to get started .

• A subscription to the NGINX Ingress Controller based on NGINX Plus, if you also want
to deploy NGINX Service Mesh and NGINX App Protect . To explore all use cases in
later chapters of this eBook, you must have NGINX Service Mesh . If you don’t already
have a paid subscription, start a 30-day free trial before continuing .

Installation and Deployment Instructions for NGINX Ingress Controller

To install and deploy NGINX Ingress Controller, complete these steps:

1 . Complete the indicated steps in these sections of the NGINX Ingress Controller
documentation:

• Prerequisites: Step 2

• 1. Configure RBAC: Steps 1–3

• 2. Create Common Resources: Steps 1–3, plus the two steps in the Create
Custom Resources subsection and the one step in the Resources for
NGINX App Protect subsection

2 . Clone the GitHub repo for this eBook, which includes configuration files for the
NGINX Ingress Controller based on NGINX Plus and the sample bookinfo application
used in later chapters:

$ git clone https://github.com/nginxinc/ebook-managing- git clone https://github.com/nginxinc/ebook-managing-
kubernetes-nginx.gitkubernetes-nginx.git

NGINX INGRESS CONTROLLER
SUPPORTS THE STANDARD
KUBERNETES INGRESS
RESOURCE AND NGINX
INGRESS RESOURCES

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://www.nginx.com/products/nginx-ingress-controller/nginx-ingress-resources/
https://kubernetes.io/docs/setup/
https://www.nginx.com/free-trial-request-nginx-ingress-controller/
https://docs.nginx.com/nginx-ingress-controller/installation/installation-with-manifests/
https://docs.nginx.com/nginx-ingress-controller/installation/installation-with-manifests/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://www.nginx.com/products/nginx-ingress-controller/nginx-ingress-resources/
https://www.nginx.com/products/nginx-ingress-controller/nginx-ingress-resources/

8CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 8

3 . Deploy NGINX Ingress Controller .

Note (again!): You must use the NGINX Ingress Controller based on NGINX Plus if you
later want to deploy NGINX Service Mesh as well as explore all uses cases in this guide .

• If deploying the NGINX Open Source-based NGINX Ingress Controller, apply the
nginx-ingress.yaml file provided in the nginxinc/kubernetes-ingress repo on GitHub:

$ kubectl apply -f ./deployments/deployment/nginx-ingress.yaml kubectl apply -f ./deployments/deployment/nginx-ingress.yaml

• If deploying the NGINX Ingress Controller based on NGINX Plus, along with
NGINX App Protect:

a) Download the JSON Web Token (JWT) provided with your NGINX Ingress Controller
subscription from MyF5 (if your subscription covers multiple NGINX Ingress Controller
instances, there is a separate JWT for each instance) .

b) Create a Kubernetes Secret, which is required for pulling images from the NGINX
private registry . Substitute the JWT obtained in the previous step for <your_JWT><your_JWT>:

$ kubectl create secret docker-registry regcred \ kubectl create secret docker-registry regcred \
 --docker-server=private-registry.nginx.com \ --docker-server=private-registry.nginx.com \
 --docker-username= --docker-username=<your_JWT><your_JWT> \ \
 --docker-password=none -n nginx-ingress --docker-password=none -n nginx-ingress
secret/regcred created

c) On line 29 of Installation-Deployment/nginx-plus-ingress.yaml, edit the second
and third elements in the path to the NGINX Ingress Controller image to match
the latest version available for your operating system (do not change the first
element, private-registry.nginx.com) . Choose an image that also includes
NGINX App Protect WAF . The default value is appropriate for Debian and Ubuntu .

 29 -image: private-registry.nginx.com/nginx-ic-nap/nginx-plus-
ingress:2.x.y

View on GitHub

For a list of the available images, see NGINX Ingress Controller Technical
Specifications .

d) Apply nginx-plus-ingress.yaml to deploy NGINX Ingress Controller with
NGINX App Protect:

$ kubectl apply -f ./Installation-Deployment/nginx-plus- kubectl apply -f ./Installation-Deployment/nginx-plus-
ingress.yamlingress.yaml
deployment.apps/nginx-ingress created

https://github.com/nginxinc/kubernetes-ingress/blob/main/deployments/deployment/nginx-ingress.yaml
https://my.f5.com/manage/s/
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/nginx-plus-ingress.yaml
https://docs.nginx.com/nginx-ingress-controller/technical-specifications/#images-with-nginx-plus
https://docs.nginx.com/nginx-ingress-controller/technical-specifications/#images-with-nginx-plus

9CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 9

4 . Check that the NGINX Ingress Controller pod is up and running, as confirmed by the
value Running in the STATUS column:

$ kubectl get pods -n nginx-ingress kubectl get pods -n nginx-ingress
NAME READY STATUS RESTARTS AGE
nginx-ingress-7b8f6dfbcb-pd22b 1/1 Running 0 1m

5 . Deploy a network load balancer to expose NGINX Ingress Controller on an IP address
that’s external to the cluster, so that external clients can reach apps and services in
the cluster . For cloud deployments, the following instructions create a Kubernetes
LoadBalancer service for this purpose .

• For AWS, create a LoadBalancer service:

a) Apply the ConfigMap defined in Installation-Deployment/nginx-config.yaml:

$ kubectl apply -f ./Installation-Deployment/nginx-config.yaml kubectl apply -f ./Installation-Deployment/nginx-config.yaml
configmap/nginx-config created

The file includes the following keys, which enable the PROXY Protocol for proper
interaction with AWS Elastic Load Balancing (ELB) .

 6 data:
 7 proxy-protocol: "True"
 8 real-ip-header: "proxy_protocol"
 9 set-real-ip-from: "0.0.0.0/0"

View on GitHub

b) Apply the LoadBalancer configuration defined in
Installation-Deployment/loadbalancer-aws-elb.yaml:

$ kubectl apply -f ./Installation-Deployment/loadbalancerkubectl apply -f ./Installation-Deployment/loadbalancer-
aws-elb.yamlaws-elb.yaml
service/nginx-ingress created

• For Azure or Google Cloud Platform, apply the LoadBalancer configuration defined
in Installation-Deployment/loadbalancer.yaml:

$ kubectl apply -f ./Installation-Deployment/loadbalancer.yaml kubectl apply -f ./Installation-Deployment/loadbalancer.yaml
service/nginx-ingress created

• For on-premises deployments, you need to deploy your own network load balancer that
integrates with the cluster, because Kubernetes does not offer a native implementation
of a LoadBalancer service for this use case . Network operators typically deploy systems
like the following in front of an on-premises Kubernetes cluster:

• F5 BIG-IP or Citrix ADC hardware load balancer

• Software network load balancers like MetalLB

FOR ON-PREMISES
DEPLOYMENTS, YOU NEED
TO DEPLOY YOUR OWN
NETWORK LOAD BALANCER

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/nginx-config.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/loadbalancer-aws-elb.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/loadbalancer.yaml
https://clouddocs.f5.com/products/connectors/k8s-bigip-ctlr/v1.8/
https://docs.citrix.com/en-us/citrix-k8s-ingress-controller.html
https://metallb.universe.tf

10CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 10

At this point NGINX Ingress Controller is deployed . You can either:

• Continue to the next section to add NGINX Service Mesh (required to explore all of the
traffic-management use cases in Chapter 2) .

• Continue to Chapter 3 to explore observability use cases or Chapter 4 for security
use cases .

I N S TA L L I N G A N D D E P L OY I N G N G I N X S E R V I C E M E S H

As previously mentioned, NGINX Ingress Controller on its own is typically sufficient for
Kubernetes clusters with simple applications that serve requests from external clients and
don’t exchange much data with other services in the cluster . But as your cluster topology
becomes more complicated, adding a service mesh often becomes helpful, if not required,
for proper operation . In this section we install and deploy NGINX Service Mesh and integrate
it with NGINX Ingress Controller .

Also as previously mentioned, you must use the NGINX Ingress Controller based on NGINX Plus
to integrate with NGINX Service Mesh, and some use cases in Chapter 2 are possible
only with the combination . (For ease of reading, the remainder of this section uses the term
NGINX Ingress Controller for the NGINX Plus-based model of the product .)

Let’s start with a look at the capabilities provided by NGINX Service Mesh and NGINX Ingress
Controller, when they are used, and how they can be used together .

What Is a Service Mesh and Do I Need One?

A service mesh is a component of orchestration tools for containerized environments such as
Kubernetes, typically responsible for functions that include routing traffic among containerized
applications, serving as the interface for defining autonomous service-to-service mutual
TLS (mTLS) policies and then enforcing them, and providing visibility into application
availability and security . As such, a service mesh extends Layer 7 control down to the level
of service-to-service communication . Like Kubernetes as a whole, service meshes consist
of control, management, and data planes .

Service meshes typically handle traffic management and security in a way that’s transparent
to the containerized applications . By offloading functions like SSL/TLS and load balancing,
service meshes free developers from having to implement security or service availability
separately in each application . An enterprise-grade service mesh provides solutions for a
variety of “problems”:

• Securing traffic with end-to-end encryption and mTLS

• Orchestration via injection and sidecar management, and Kubernetes API integration

• Management of service traffic, including load balancing, traffic control (rate limiting and
circuit breaking), and traffic splitting (canary and blue-green deployments, A/B testing,
and debug routing)

A SERVICE MESH IS A
COMPONENT OF ORCHESTRATION
TOOLS FOR CONTAINERIZED
ENVIRONMENTS SUCH
AS KUBERNETES

https://www.nginx.com/blog/improve-kubernetes-resilience-with-advanced-traffic-management/

11CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 11

• Improved monitoring and visibility of service-to-service traffic with popular tools like
Prometheus and Grafana

• Simplified management of Kubernetes ingress and egress traffic when integrated
natively with an Ingress controller

Service meshes range in focus from small and very focused (like NGINX Service Mesh) to
very large with a comprehensive set of network and cluster management tools (like Istio), and
everywhere in between . The larger and more complex the service mesh, the more helpful
an independent management plane can be .

At NGINX, we think it’s no longer a binary question of “Do I have to use a service mesh?”
but rather “When will I be ready for a service mesh?” We believe that anyone deploying
containers in production and using Kubernetes to orchestrate them has the potential to
reach the level of app and infrastructure maturity where a service mesh adds value . But as
with any technology, implementing a service mesh before you need one just adds risk and
expense that outweigh the possible benefits to your business . For our six-point readiness
checklist, read How to Choose a Service Mesh on our blog .

Why Should I Try NGINX Service Mesh?

If you are ready for a service mesh, NGINX Service Mesh is a great option because it is
lightweight, turnkey, and developer-friendly . You don’t need a team of people to run it .
It leverages NGINX Plus as the sidecar to operate highly available and scalable containerized
environments, providing a level of enterprise traffic management, performance, and scalability
to the market that other sidecars don’t offer . NGINX Service Mesh provides the seamless and
transparent load balancing, reverse proxy, traffic routing, identity, and encryption features
needed for production-grade service mesh deployments .

If you run containers on Kubernetes in production, then you can use NGINX Service Mesh
to reliably deploy and orchestrate your services for many use cases and features such as
configuration of mTLS between app services . For especially large, distributed app topologies,
NGINX Service Mesh provides full visibility, monitoring, and security .

Why Integrate NGINX Ingress Controller with NGINX Service Mesh?

Not all Ingress controllers integrate with all service meshes, and when they do, it’s not
always pretty . NGINX Service Mesh was designed to tightly and perfectly integrate with
NGINX Ingress Controller, which provides benefits including:

• A unified data plane which can be managed in a single configuration, saving you time
and helping avoid errors resulting in improper traffic routing and security issues

• Easier implementation of zero-trust security in Kubernetes clusters; using tools that
tightly integrate with minimal effort helps you avoid potentially painful complications
and configuration hacks later on

THE LARGER AND MORE
COMPLEX THE SERVICE MESH,
THE MORE HELPFUL AN
INDEPENDENT MANAGEMENT
PLANE CAN BE

IF YOU ARE READY FOR
A SERVICE MESH, NGINX
SERVICE MESH IS A GREAT
OPTION BECAUSE IT IS
LIGHTWEIGHT, TURNKEY,
AND DEVELOPER-FRIENDLY

https://www.nginx.com/blog/how-to-improve-visibility-in-kubernetes/
https://www.nginx.com/blog/how-to-simplify-kubernetes-ingress-egress-traffic-management/
https://www.nginx.com/blog/how-to-choose-a-service-mesh/

12CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 12

Integrating NGINX Ingress Controller with NGINX Service Mesh yields a unified data plane
with production-grade security, functionality, and scale .

NGINX Service Mesh Architecture

If you are ready to integrate NGINX Ingress Controller with NGINX Service Mesh, where do
you start? Before we step through the details of the installation, it is important to understand
the architectural components of the NGINX Service Mesh .

NGINX Service Mesh consists of two key components:

• Data plane – Handles the traffic between services in the Kubernetes cluster and performs
traffic-management functions that include load balancing, reverse proxy, traffic routing,
identity, and encryption . The data plane component is implemented with sidecars, which
are proxy instances responsible for intercepting and routing all traffic for their service
and executing traffic-management rules .

• Control plane – Configures and manages the data plane, providing instant support for
optimizing apps and their updates, all of which make it possible to keep the instances
protected and integrated with other components .

The following diagram depicts the interaction of the control and data planes in
NGINX Service Mesh .

Data Plane

SVCSVC SVC SVC

External
VM Clusters

External
K8s Clusters

SPIREGrafana

CLI / API NATS

K8s API

NGINX
Ingress

Controller

Kubernetes Cluster

Control Plane

EgressIngress

OpenTelemetry

IF YOU ARE READY TO
INTEGRATE NGINX INGRESS
CONTROLLER WITH
NGINX SERVICE MESH,
WHERE DO YOU START?

13CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 13

As shown in the diagram, sidecar proxies interoperate with the following open source solutions:

• Grafana

• Kubernetes Ingress controllers like NGINX Ingress Controller

• NATS

• OpenTelemetry

• SPIRE, the SPIFFE runtime environment

Installation and Deployment Instructions for NGINX Service Mesh

There are several methods available for installing NGINX Service Mesh and integrating it
with NGINX Ingress Controller . In this section we provide instructions for two popular methods:

• Installation with the NGINX Service Mesh CLI

• Installation with Helm

Installation with the NGINX Service Mesh CLI

When installing NGINX Service Mesh with a Kubernetes manifest, there are two stages:

• Install the NGINX Service Mesh CLI

• Install NGINX Service Mesh

Install the NGINX Service Mesh CLI

The NGINX Service Mesh control plane is designed to connect to an API, a CLI, and a GUI for
managing the app . Here you install the NGINX Service Mesh CLI (nginx-meshctl) .

The following instructions apply to Linux, but you can also install the CLI on macOS and
Windows; for instructions, see the NGINX Service Mesh documentation .

1 . Login at https://downloads.f5.com/ (create an account if you don’t already have one)
and download the binary for nginx-meshctl:

• Click Find a Download .

• Select NGINX_Service_Mesh under NGINX-Public .

• Select the file for the Linux platform: nginx-meshctl_linux.gz .

2 . Open a terminal and run the following command to unzip the downloaded binary file:

$ gunzip nginx-meshctl_linux.gz gunzip nginx-meshctl_linux.gz

THERE ARE SEVERAL METHODS
AVAILABLE FOR INSTALLING
NGINX SERVICE MESH AND
INTEGRATING IT WITH
NGINX INGRESS CONTROLLER

https://grafana.com
https://www.nginx.com/products/nginx-ingress-controller/
https://nats.io
https://opentelemetry.io
https://spiffe.io
https://docs.nginx.com/nginx-service-mesh/get-started/install/#install-the-cli
https://downloads.f5.com/

14CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 14

3 . Copy the tool to the local /usr/bin/ directory and make it executable:

$ sudo cp nginx-meshctl_linux /usr/bin/nginx-meshctl sudo cp nginx-meshctl_linux /usr/bin/nginx-meshctl
$ sudo chmod +x /usr/bin/nginx-meshctl sudo chmod +x /usr/bin/nginx-meshctl

4 . Verify that the CLI is working – if it is, usage instructions and a list of available commands
and flags is displayed .

$ nginx-meshctl help nginx-meshctl help

Install NGINX Service Mesh

You configure NGINX Service Mesh in one of three mutual TLS (mTLS) modes depending on
which types of traffic need to be protected by encryption:

• off – mTLS is disabled and incoming traffic is accepted from any source

• permissive – mTLS secures communication among injected pods, which can also
communicate in clear text with external services

• strict – mTLS secures communication among injected pods and external traffic
cannot enter the Kubernetes cluster

In development environments, off mode is probably acceptable . For production we recommend
strict mode, as in the following steps .

1 . Deploy NGINX Service Mesh and enable strict mode:

$ nginx-meshctl deploy --sample-rate 1 --mtls-mode strictnginx-meshctl deploy --sample-rate 1 --mtls-mode strict
Deploying NGINX Service Mesh...
All resources created. Testing the connection to the Service
Mesh API Server
Connected to the NGINX Service Mesh API successfully.
NGINX Service Mesh is running.

15CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 15

2 . Verify that all pods are up and running in the nginx-mesh namespace . A list of pods like
the following indicates a successful deployment .

$ kubectl get pods -n nginx-mesh kubectl get pods -n nginx-mesh
NAME READY STATUS RESTARTS AGE
grafana-7c6c88b959-7q9tl 1/1 Running 0 10s
jaeger-77457fb8d4-6mfmg 1/1 Running 0 10s
nats-server-859dfb4b6d-ljm7n 2/2 Running 0 10s
nginx-mesh-api-7fbfc8df4c-g9qmj 1/1 Running 0 10s
nginx-mesh-metrics-85b55579bb-d75k8 1/1 Running 0 10s
prometheus-8d5fb5879-hvc84 1/1 Running 0 10s
spire-agent-8lczf 1/1 Running 0 10s
spire-agent-stzcq 1/1 Running 0 10s
spire-server-0 2/2 Running 0 10s

Installation with Helm

Helm is a popular and supported tool for automating creation, configuration, packaging, and
deployment of Kubernetes resources . After fulfilling the prerequisites, you can use either of
two procedures:

• Installing with Helm Repository

• Installing with Chart Sources

Prerequisites

To install NGINX Service Mesh with Helm you need:

• Access to a Kubernetes environment via the kubectl command line utility

• Helm 3 .0+

• A clone of the NGINX Service Mesh GitHub repository on your local machine

Installing with Helm Repository

1 . Add the Helm repository:

$ helm repo add nginx-stable https://helm.nginx.com/stable helm repo add nginx-stable https://helm.nginx.com/stable
$ helm repo update helm repo update

https://helm.sh/docs/intro/install/
https://github.com/nginxinc/nginx-service-mesh

16CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 16

2 . Install NGINX Service Mesh from the Helm repository, substituting a deployment name
such as my-service-mesh-releasemy-service-mesh-release for <your_deployment_name><your_deployment_name>:

$ helm install helm install <your_deployment_name><your_deployment_name> nginx-stable/nginx- nginx-stable/nginx-
service-mesh -n nginx-mesh --create-namespace --waitservice-mesh -n nginx-mesh --create-namespace --wait
NAME: <your_deployment_name>
LAST DEPLOYED: Day Mon DD HH:MM:SS YYYY
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The NGINX Service Mesh has been installed.

Installing with Chart Sources

With chart sources, you specify configuration parameters in values.yaml (not included in
the eBook repo), which are referenced when the following command installs the nginx-
service-mesh Helm chart . For <your_deployment_name><your_deployment_name> substitute a name such as
my-service-mesh-releasemy-service-mesh-release .

$ cd helm-chart cd helm-chart
$ helm install < helm install <your_deployment_nameyour_deployment_name> -f values.yaml . -n nginx-> -f values.yaml . -n nginx-
mesh --create-namespace --waitmesh --create-namespace --wait

Any configurable parameters that you do not specify in values.yaml are set to their default value .

For more details on chart sources and the full list of configurable parameters for the Helm chart,
see the NGINX Ingress Controller repository and NGINX Service Mesh documentation .

https://github.com/nginxinc/kubernetes-ingress/tree/main/deployments/helm-chart#configuration
https://docs.nginx.com/nginx-service-mesh/get-started/install-with-helm/#configuration-options

17CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 17

M I G R AT I N G F R O M T H E C O M M U N I T Y I N G R E S S C O N T R O L L E R
T O F 5 N G I N X I N G R E S S C O N T R O L L E R

Many organizations setting up Kubernetes for the first time start with the NGINX Ingress
Controller developed and maintained by the Kubernetes community (kubernetes/ingress-nginx) .
As their Kubernetes deployment matures, however, some organizations find they need
advanced features or want commercial support while keeping NGINX as the data plane .

One option is to migrate to the NGINX Ingress Controller based on NGINX Plus and maintained
by F5 NGINX (nginxinc/kubernetes-ingress), and here we provide complete instructions so
you can avoid some complications that result from differences between the two projects .
(As mentioned previously, you must use the NGINX Plus-based NGINX Ingress Controller
and NGINX Service Mesh if you want to explore all use cases in this guide .)

To distinguish between the two projects in the remainder of this guide, we refer to the
NGINX Ingress Controller maintained by the Kubernetes community (kubernetes/ingress-nginx)
as the “community Ingress controller” and the one maintained by F5 NGINX
(nginxinc/kubernetes-ingress) as “NGINX Ingress Controller” .

There are two ways to migrate from the community Ingress controller to NGINX Ingress Controller:

• Option 1: Migrate Using NGINX Ingress Resources
This is the optimal solution, because NGINX Ingress resources support the broader set
of Ingress networking capabilities required in production-grade Kubernetes environments .
For more information on NGINX Ingress resources, watch our webinar, Advanced
Kubernetes Deployments with NGINX Ingress Controller .

• Option 2: Migrate Using the Kubernetes Ingress Resource
This option is recommended if you are committed to using the standard Kubernetes
Ingress resource to define Ingress load-balancing rules .

Option 1: Migrate Using NGINX Ingress Resources

With this migration option, you use the standard Kubernetes Ingress resource to set root
capabilities and NGINX Ingress resources to enhance your configuration with increased
capabilities and ease of use .

The custom resource definitions (CRDs) for NGINX Ingress resources – VirtualServer,
VirtualServerRoute, TransportServer, GlobalConfiguration, and Policy – enable you to easily
delegate control over various parts of the configuration to different teams (such as AppDev
and security teams) as well as provide greater configuration safety and validation .

AS THEIR KUBERNETES
DEPLOYMENT MATURES, SOME
ORGANIZATIONS FIND THEY
NEED ADVANCED FEATURES
OR WANT COMMERCIAL
SUPPORT WHILE KEEPING
NGINX AS THE DATA PLANE

https://github.com/kubernetes/ingress-nginx
https://github.com/nginxinc/kubernetes-ingress
https://www.nginx.com/products/nginx-ingress-controller/nginx-ingress-resources/
https://www.devnetwork.com/online-learning/advanced-kubernetes-deployments-with-nginx-ingress-controller/
https://www.devnetwork.com/online-learning/advanced-kubernetes-deployments-with-nginx-ingress-controller/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://www.nginx.com/products/nginx-ingress-controller/nginx-ingress-resources/
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/
https://docs.nginx.com/nginx-ingress-controller/configuration/transportserver-resource/
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/globalconfiguration-resource/
https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/

18CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 18

Set Up SSL Termination and HTTP Path-Based Routing

The table maps the configuration of SSL termination and Layer 7 path-based routing in the
spec field of the standard Kubernetes Ingress resource with the spec field in the NGINX
VirtualServer resource . The syntax and indentation differ slightly in the two resources, but
they accomplish the same basic Ingress functions .

KUBERNETES INGRESS RESOURCE NGINX VIRTUALSERVER RESOURCE

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: nginx-test
spec:
 tls:
 - hosts:
 - foo.bar.com
 secretName: tls-secret
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /login
 backend:
 serviceName: login-svc
 servicePort: 80
 - path: /billing
 serviceName: billing-svc
 servicePort: 80

apiVersion: networking.k8s.io/v1
kind: VirtualServer
metadata:
 name: nginx-test
spec:
 host: foo.bar.com
 tls:
 secret: tls-secret
 upstreams:
 - name: login
 service: login-svc
 port: 80
 - name: billing
 service: billing-svc
 port: 80
 routes:
 - path: /login
 action:
 pass: login
 - path: /billing
 action:
 pass: billing

Set Up TCP/UDP Load Balancing and TLS Passthrough

With the community Ingress Controller, a Kubernetes ConfigMap API object is the only way
to expose TCP and UDP services .

With NGINX Ingress Controller, TransportServer resources define a broad range of options for
TLS Passthrough and TCP and UDP load balancing . TransportServer resources are used in
conjunction with GlobalConfiguration resources to control inbound and outbound connections .

For more information, see Load Balancing TCP and UDP Traffic and Load Balancing
TLS-Encrypted Traffic with TLS Passthrough in Chapter 2 .

Convert Community Ingress Controller Annotations to NGINX Ingress Resources

Production-grade Kubernetes deployments often need to extend basic Ingress rules to
implement advanced use cases, including canary and blue-green deployments, traffic
throttling, ingress-egress traffic manipulation, and more .

PRODUCTION-GRADE
KUBERNETES DEPLOYMENTS
OFTEN NEED TO EXTEND
BASIC INGRESS RULES
TO IMPLEMENT ADVANCED
USE CASES

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.github.io/ingress-nginx/user-guide/exposing-tcp-udp-services/
https://kubernetes.github.io/ingress-nginx/user-guide/exposing-tcp-udp-services/
https://docs.nginx.com/nginx-ingress-controller/configuration/transportserver-resource/
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/globalconfiguration-resource/

19CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 19

The community Ingress controller implements many of these use cases with Kubernetes
annotations . However, many of these annotations are built with custom Lua extensions that
pertain to very specific NGINX Ingress resource definitions and as a result are not suitable
for implementing advanced functionality in a stable and supported production environment .

In the following sections we show how to convert community Ingress controller annotations
into NGINX Ingress Controller resources .

Canary Deployments

Even as you push frequent code changes to your production container workloads, you must
continue to serve your existing users . Canary and blue-green deployments enable you to
do this, and you can perform them on the NGINX Ingress Controller data plane to achieve
stable and predictable updates in production-grade Kubernetes environments .

The table shows the fields in NGINX VirtualServer and VirtualServerRoute resources that
correspond to community Ingress Controller annotations for canary deployments .

The community Ingress controller evaluates canary annotations in this order of precedence:

1 . nginx.ingress.kubernetes.io/canary-by-header

2 . nginx.ingress.kubernetes.io/canary-by-cookie

3 . nginx.ingress.kubernetes.io/canary-by-weight

For NGINX Ingress Controller to evaluate them the same way, they must appear in that order
in the NGINX VirtualServer or VirtualServerRoute manifest .

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER

nginx.ingress.kubernetes.io/canary: "true"
nginx.ingress.kubernetes.io/canary-by-header: "httpHeader"

matches:
- conditions:
 - header: httpHeader
 value: never
 action:
 pass: echo
 - header: httpHeader
 value: always
 action:
 pass: echo-canary
action:
 pass: echo

nginx.ingress.kubernetes.io/canary: "true"
nginx.ingress.kubernetes.io/canary-by-header: "httpHeader"
nginx.ingress.kubernetes.io/canary-by-header-value: "my-value"

matches:
- conditions:
 - header: httpHeader
 value: my-value
 action:
 pass: echo-canary
action:
 pass: echo

 (continues)

EVEN AS YOU PUSH FREQUENT
CODE CHANGES TO YOUR
PRODUCTION CONTAINER
WORKLOADS, YOU MUST
CONTINUE TO SERVE YOUR
EXISTING USERS

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#canary
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#match

20CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 20

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER

nginx.ingress.kubernetes.io/canary: "true"
nginx.ingress.kubernetes.io/canary-by-cookie: "cookieName"

matches:
- conditions:
 - cookie: cookieName
 value: never
 action:
 pass: echo
 - cookie: cookieName
 value: always
 action:
 pass: echo-canary
action:
 pass: echo

nginx.ingress.kubernetes.io/canary: "true"
nginx.ingress.kubernetes.io/canary-weight: "10"

splits:
- weight: 90
 action:
 pass: echo
- weight: 10
 action:
 pass: echo-canary

Traffic Control

In microservices environments, where applications are ephemeral by nature and so more
likely to return error responses, DevOps teams make extensive use of traffic-control policies –
such as circuit breaking and rate and connection limiting – to prevent error conditions when
applications are unhealthy or not functioning as expected .

The table shows the fields in NGINX VirtualServer and VirtualServerRoute resources that
correspond to community Ingress controller annotations for rate limiting, custom HTTP errors,
a custom default backend, and URI rewriting .

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER

nginx.ingress.kubernetes.io/custom-http-errors: "code"
nginx.ingress.kubernetes.io/default-backend: "default-svc"

errorPages:
- codes: [code]
 redirect:
 code: 301
 url: default-svc

nginx.ingress.kubernetes.io/limit-connections: "number" http-snippets: |
 limit_conn_zone $binary_remote_addr
zone=zone_name:size;
routes:
- path: /path
 location-snippets: |
 limit_conn zone_name number;

 (continues)

https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#split
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#rate-limiting
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-http-errors
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#default-backend
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#rewrite
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#errorpage
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#virtualserver-specification

21CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 21

As indicated in the table, as of this writing NGINX Ingress resources do not include fields
that directly translate the following four community Ingress controller annotations, and you
must use snippets . Direct support for the four annotations, using Policy objects, is planned
for future releases of NGINX Ingress Controller .

• nginx.ingress.kubernetes.io/limit-connections

• nginx.ingress.kubernetes.io/limit-rate

• nginx.ingress.kubernetes.io/limit-rate-after

• nginx.ingress.kubernetes.io/limit-whitelist

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER

nginx.ingress.kubernetes.io/limit-rate: "number"
nginx.ingress.kubernetes.io/limit-rate-after: "number"

location-snippets: |
 limit_rate number;
 limit_rate_after number;

nginx.ingress.kubernetes.io/limit-rpm: "number"
nginx.ingress.kubernetes.io/limit-burst-multiplier: "multiplier"

rateLimit:
 rate: numberr/m
 burst: number * multiplier
 key: ${binary_remote_addr}
 zoneSize: size

nginx.ingress.kubernetes.io/limit-rps: "number"
nginx.ingress.kubernetes.io/limit-burst-multiplier: "multiplier"

rateLimit:
 rate: numberr/s
 burst: number * multiplier
 key: ${binary_remote_addr}
 zoneSize: size

nginx.ingress.kubernetes.io/limit-whitelist: "CIDR" http-snippets
server-snippets

nginx.ingress.kubernetes.io/rewrite-target: "URI" rewritePath: URI

https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#virtualserverroute
https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/#ratelimit
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#virtualserver-specification
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#virtualserver-specification
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#actionproxy

22CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 22

Header Manipulation

Manipulating HTTP headers is useful in many use cases, as they contain additional
information that is important and relevant for systems involved in an HTTP transaction .
For example, the community Ingress controller supports enabling and setting cross-origin
resource sharing (CORS) headers, which are used with AJAX applications, where front-end
JavaScript code from a browser is connecting to a backend app or web server .

The table shows the fields in NGINX VirtualServer and VirtualServerRoute resources that
correspond to community Ingress Controller annotations for header manipulation .

MANIPULATING HTTP
HEADERS IS USEFUL
IN MANY USE CASES

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER

nginx.ingress.kubernetes.io/enable-cors: "true"
nginx.ingress.kubernetes.io/cors-allow-credentials: "true"
nginx.ingress.kubernetes.io/cors-allow-headers:
"X-Forwarded-For"
nginx.ingress.kubernetes.io/cors-allow-methods: "PUT, GET,
POST, OPTIONS"
nginx.ingress.kubernetes.io/cors-allow-origin: "*"
nginx.ingress.kubernetes.io/cors-max-age: "seconds"

responseHeaders:
 add:
 - name: Access-Control-Allow-
Credentials
 value: "true"
 - name: Access-Control-Allow-Headers
 value: "X-Forwarded-For"
 - name: Access-Control-Allow-Methods
 value: "PUT, GET, POST, OPTIONS"

 - name: Access-Control-Allow-Origin
 value: "*"
 - name: Access-Control-Max-Age
 value: "seconds"

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#enable-cors
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#actionproxy

23CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 23

Other Proxying and Load Balancing Annotations

There are other proxying and load-balancing functionalities you might want to configure in
NGINX Ingress Controller depending on the specific use case . These functionalities include
setting load-balancing algorithms and timeouts and buffering settings for proxied connections .

The table shows the statements in the upstream field of NGINX VirtualServer and
VirtualServerRoute resources that correspond to community Ingress Controller annotations
for custom NGINX load balancing, proxy timeouts, proxy buffering, and routing connections
to a service’s Cluster IP address and port .

THERE ARE OTHER PROXYING
AND LOAD-BALANCING
FUNCTIONALITIES YOU
MIGHT WANT TO CONFIGURE

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER

nginx.ingress.kubernetes.io/load-balance lb-method

nginx.ingress.kubernetes.io/proxy-buffering buffering

nginx.ingress.kubernetes.io/proxy-buffers-number
nginx.ingress.kubernetes.io/proxy-buffer-size

buffers

nginx.ingress.kubernetes.io/proxy-connect-timeout connect-timeout

nginx.ingress.kubernetes.io/proxy-next-upstream next-upstream

nginx.ingress.kubernetes.io/proxy-next-upstream-timeout next-upstream-timeout

nginx.ingress.kubernetes.io/proxy-read-timeout read-timeout

nginx.ingress.kubernetes.io/proxy-send-timeout send-timeout

nginx.ingress.kubernetes.io/service-upstream use-cluster-ip

https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#upstream
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-nginx-load-balancing
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-timeouts
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#proxy-buffering
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#service-upstream
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#service-upstream

24CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 24

mTLS Authentication

As previously noted, a service mesh is particularly useful in a strict zero-trust environment, where
distributed applications inside a cluster communicate securely by mutually authenticating .
What if we need to impose that same level of security on traffic entering and exiting the cluster?

We can configure mTLS authentication at the Ingress Controller layer so that the end
systems of external connections authenticate each other by presenting a valid certificate .

The table shows the fields in NGINX Policy resources that correspond to community Ingress
Controller annotations for client certificate authentication and backend certificate authentication .

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER

nginx.ingress.kubernetes.io/auth-tls-secret: secretName
nginx.ingress.kubernetes.io/auth-tls-verify-client: "on"
nginx.ingress.kubernetes.io/auth-tls-verify-depth: "1"

ingressMTLS:
 clientCertSecret: secretName
 verifyClient: "on"
 verifyDepth: 1

nginx.ingress.kubernetes.io/proxy-ssl-secret: "secretName"
nginx.ingress.kubernetes.io/proxy-ssl-verify: "on|off"
nginx.ingress.kubernetes.io/proxy-ssl-verify-depth: "1"
nginx.ingress.kubernetes.io/proxy-ssl-protocols: "TLSv1.2"
nginx.ingress.kubernetes.io/proxy-ssl-ciphers: "DEFAULT"
nginx.ingress.kubernetes.io/proxy-ssl-name: "server-name"
nginx.ingress.kubernetes.io/proxy-ssl-server-name: "on|off"

egressMTLS:
 tlsSecret: secretName
 verifyServer: true|false
 verifyDepth: 1
 protocols: TLSv1.2
 ciphers: DEFAULT
 sslName: server-name
 serverName: true|false

A SERVICE MESH IS
PARTICULARLY USEFUL
IN A STRICT ZERO-TRUST
ENVIRONMENT

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER

nginx.ingress.kubernetes.io/affinity: "cookie"
nginx.ingress.kubernetes.io/session-cookie-name: "cookieName"
nginx.ingress.kubernetes.io/session-cookie-expires: "x"
nginx.ingress.kubernetes.io/session-cookie-path: "/route"
nginx.ingress.kubernetes.io/session-cookie-secure: "true"

sessionCookie:
 enable: true
 name: cookieName
 path: /route
 expires: xh
 secure: true

Session Persistence (Exclusive to NGINX Plus)

The table shows the fields in NGINX Policy resources that are exclusive to the
NGINX Ingress Controller based on NGINX Plus and correspond to community Ingress
Controller annotations for session persistence (affinity) .

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#client-certificate-authentication
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#backend-certificate-authentication
https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/#ingressmtls
https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/#egressmtls
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#upstreamsessioncookie
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#session-affinity

25CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 25

Option 2: Migrate Using the Kubernetes Ingress Resource

The second option for migrating from the community Ingress controller to NGINX Ingress
Controller is to use only annotations and ConfigMaps in the standard Kubernetes Ingress
resource and potentially rely on “master/minion”-style processing . This keeps all the
configuration in the Ingress object .

Note: With this method, do not alter the spec field of the Ingress resource .

Advanced Configuration with Annotations

The following table outlines the community Ingress controller annotations that correspond
directly to annotations supported by NGINX Ingress Controller (for both the NGINX Open
Source-based and NGINX Plus-based models) .

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER NGINX DIRECTIVE

nginx.ingress.kubernetes.io/
configuration-snippet: |

nginx.org/location-snippets: | N/A

nginx.ingress.kubernetes.io/load-
balance1

nginx.org/lb-method Default: random two least_conn

nginx.ingress.kubernetes.io/proxy-
buffering: "on|off"

nginx.org/proxy-buffering:
"True|False"

proxy_buffering

nginx.ingress.kubernetes.io/proxy-
buffers-number: "number"
nginx.ingress.kubernetes.io/proxy-
buffer-size: "xk"

nginx.org/proxy-buffers: "number
4k|8k"
nginx.org/proxy-buffer-size: "4k|8k"

proxy_buffers
proxy_buffer_size

nginx.ingress.kubernetes.io/proxy-
connect-timeout: "seconds"

nginx.org/proxy-connect-timeout:
"secondss"

proxy_connect_timeout

nginx.ingress.kubernetes.io/proxy-
read-timeout: "seconds"

nginx.org/proxy-read-timeout:
"secondss"

proxy_read_timeout

nginx.ingress.kubernetes.io/proxy-
send-timeout: "seconds"

nginx.org/proxy-send-timeout:
"secondss"

proxy_send_timeout

nginx.ingress.kubernetes.io/rewrite-
target: "URI"

nginx.org/rewrites: "serviceName=svc
rewrite=URI"

rewrite

nginx.ingress.kubernetes.io/server-
snippet: |

nginx.org/server-snippets: | N/A

nginx.ingress.kubernetes.io/ssl-
redirect: "true|false"

ingress.kubernetes.io/ssl-redirect:
"True|False"

N/A2

1 . The community Ingress controller uses Lua to implement some of its load-balancing algorithms . NGINX Ingress Controller doesn’t have an
equivalent for all of them .

2 . Redirects HTTP traffic to HTTPS . The community Ingress controller implements this with Lua code, while NGINX Ingress Controller uses
native NGINX ifif conditions .

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://github.com/nginxinc/kubernetes-ingress/tree/main/examples/mergeable-ingress-types
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#configuration-snippet
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#configuration-snippet
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#snippets-and-custom-templates
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-nginx-load-balancing
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-nginx-load-balancing
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#backend-services-upstreams
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#random
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#proxy-buffering
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#proxy-buffering
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#general-customization
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#proxy-buffers-number
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#proxy-buffers-number
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#proxy-buffer-size
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#proxy-buffer-size
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#general-customization
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#general-customization
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffers
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffer_size
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-timeouts
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-timeouts
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#general-customization
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_connect_timeout
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-timeouts
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-timeouts
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#general-customization
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_read_timeout
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-timeouts
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#custom-timeouts
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#general-customization
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_send_timeout
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#rewrite
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#rewrite
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#request-uriheader-manipulation
https://nginx.org/en/docs/http/ngx_http_rewrite_module.html#rewrite
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#server-snippet
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#server-snippet
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#snippets-and-custom-templates
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#server-side-https-enforcement-through-redirect
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#server-side-https-enforcement-through-redirect
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#auth-and-ssltls
https://nginx.org/en/docs/http/ngx_http_rewrite_module.html#if

26CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 26

The following table outlines the community Ingress controller annotations that correspond
directly to annotations supported by the NGINX Ingress Controller based on NGINX Plus .

Note: The NGINX Ingress Controller based on NGINX Plus has additional annotations for
features that the community Ingress controller doesn’t support at all, including active health
checks and authentication using JSON Web Tokens (JWTs) .

Global Configuration with ConfigMaps

The following table maps community Ingress controller ConfigMap keys to their directly
corresponding NGINX Ingress Controller ConfigMap keys . Note that a handful of ConfigMap
key names are identical . Also, both the community Ingress controller and NGINX Ingress
Controller have ConfigMaps keys that the other does not (not shown in the table) .

COMMUNITY INGRESS CONTROLLER NGINX INGRESS CONTROLLER

nginx.ingress.kubernetes.io/affinity: "cookie"

nginx.ingress.kubernetes.io/session-cookie-name: "cookie_name"

nginx.ingress.kubernetes.io/session-cookie-expires: "seconds"

nginx.ingress.kubernetes.io/session-cookie-path: "/route"

nginx.com/sticky-cookie-services:
"serviceName=example-svc cookie_name
expires=time path=/route"

COMMUNITY INGRESS RESOURCE NGINX INGRESS CONTROLLER

disable-access-log access-log-off

error-log-level error-log-level

hsts hsts

hsts-include-subdomains hsts-include-subdomains

hsts-max-age hsts-max-age

http-snippet http-snippets

keep-alive keepalive-timeout

keep-alive-requests keepalive-requests

load-balance lb-method

location-snippet location-snippets

log-format-escape-json: "true" log-format-escaping: "json"

log-format-stream stream-log-format

log-format-upstream log-format

main-snippet main-snippets

max-worker-connections worker-connections

max-worker-open-files worker-rlimit-nofile

 (continues)

https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#backend-services-upstreams
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#backend-services-upstreams
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#auth-and-ssltls
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#session-affinity
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#cookie-affinity
https://kubernetes.github.io/ingress-nginx/examples/affinity/cookie/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#cookie-affinity
https://docs.nginx.com/nginx-ingress-controller/configuration/ingress-resources/advanced-configuration-with-annotations/#backend-services-upstreams
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#disable-access-log
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#logging
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#error-log-level
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#logging
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#hsts
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#auth-and-ssltls
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#hsts-include-subdomains
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#auth-and-ssltls
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#hsts-max-age
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#auth-and-ssltls
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#http-snippet
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#snippets-and-custom-templates
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#keep-alive
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#keep-alive-requests
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#load-balance
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#backend-services-upstreams
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#location-snippet
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#snippets-and-custom-templates
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#log-format-escape-json
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#logging
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#log-format-stream
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#logging
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#log-format-upstream
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#logging
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#main-snippet
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#snippets-and-custom-templates
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#max-worker-connections
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#max-worker-open-files
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization

27CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 27

COMMUNITY INGRESS RESOURCE NGINX INGRESS CONTROLLER

proxy-body-size client-max-body-size

proxy-buffering proxy-buffering

proxy-buffers-number: "number"
proxy-buffer-size: "size"

proxy-buffers: number size

proxy-connect-timeout proxy-connect-timeout

proxy-read-timeout proxy-read-timeout

proxy-send-timeout proxy-send-timeout

server-name-hash-bucket-size server-names-hash-bucket-size

server-name-hash-max-size server-names-hash-max-size

server-snippet server-snippets

server-tokens server-tokens

ssl-ciphers ssl-ciphers

ssl-dh-param ssl-dhparam-file

ssl-protocols ssl-protocols

ssl-redirect ssl-redirect

upstream-keepalive-connections keepalive

use-http2 http2

use-proxy-protocol proxy-protocol

variables-hash-bucket-size variables-hash-bucket-size

worker-cpu-affinity worker-cpu-affinity

worker-processes worker-processes

worker-shutdown-timeout worker-shutdown-timeout

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#proxy-body-size
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#proxy-buffering
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#proxy-buffers-number
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#proxy-buffer-size
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#proxy-connect-timeout
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#proxy-read-timeout
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#proxy-send-timeout
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#server-name-hash-bucket-size
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#proxy-headers-hash-max-size
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#server-snippet
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#snippets-and-custom-templates
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#server-tokens
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#ssl-ciphers
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#auth-and-ssltls
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#ssl-dh-param
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#auth-and-ssltls
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#ssl-protocols
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#auth-and-ssltls
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#ssl-redirect
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#auth-and-ssltls
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#upstream-keepalive-connections
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#backend-services-upstreams
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#use-http2
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#listeners
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#use-proxy-protocol
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#listeners
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#variables-hash-bucket-size
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#worker-cpu-affinity
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#worker-processes
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#worker-shutdown-timeout
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/#general-customization

28CHAPTER 1 – INSTALLING AND DEPLOYING F5 NGINX CONTROLLER AND F5 NGINX SERVICE MESH 28

C H A P T E R S U M M A RY

We defined what an Ingress controller and service mesh are and what they do, explained why
it’s beneficial to deploy them together, and showed how to install NGINX Ingress Controller
and NGINX Service Mesh .

Let’s summarize some of the key concepts from this chapter:

• An Ingress controller is a tightly integrated traffic-management solution for Kubernetes
environments that bridges between applications in the Kubernetes cluster and clients
on external networks .

• A service mesh is a layer of infrastructure that enables secure and high-performance
communication between application services, while also providing visibility and insights .

• NGINX Service Mesh comes in handy when setting up zero-trust production environments,
especially those with large-scale distributed app topologies .

• NGINX Service Mesh has two key components: the data plane and the control plane .
The data plane (implemented as sidecar proxy instances) manages the traffic between
instances, and its behavior is configured and controlled by the control plane .

• You can migrate from the community Ingress controller to NGINX Ingress Controller using
either custom NGINX Ingress resources or the standard Kubernetes Ingress resource with
annotations and ConfigMaps . The former option supports a broader set of networking
capabilities and so is more suitable for production-grade Kubernetes environments .

• NGINX Ingress resources not only enable configuration of load balancing, but also
provide additional customization, including circuit breaking, routing, header manipulation,
mTLS authentication, and web application firewall (WAF) .

29CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

2. Traffic Management Use Cases
In this chapter we show how to configure NGINX Ingress Controller for several traffic
management use cases .

• Load Balancing TCP and UDP Traffic

• Load Balancing TLS-Encrypted Traffic with TLS Passthrough

• Enabling Multi-Tenancy and Namespace Isolation

• Configuring Traffic Control and Traffic Splitting

• Chapter Summary

L O A D B A L A N C I N G T C P A N D U D P T R A F F I C

NGINX Ingress Controller supports TCP and UDP load balancing, so you can use it to manage
traffic for a wide range of apps and utilities based on those protocols, including:

• MySQL, LDAP, and MQTT – TCP-based apps used by many popular applications

• DNS, syslog, and RADIUS – UDP-based utilities used by edge devices and
non-transactional applications

TCP and UDP load balancing with NGINX Ingress Controller is also an effective solution for
distributing network traffic to Kubernetes applications in the following circumstances:

• You are using end-to-end encryption (EE2E) and having the application handle
encryption and decryption rather than NGINX Ingress Controller

• You need high-performance load balancing for applications that are based on TCP or UDP

• You want to minimize the amount of change when migrating an existing network (TCP/UDP)
load balancer to a Kubernetes environment

NGINX Ingress Controller comes with two NGINX Ingress resources that support TCP/UDP
load balancing:

• GlobalConfiguration resources are typically used by cluster administrators to specify the
TCP/UDP ports (listeners) that are available for use by DevOps teams . Note that each
NGINX Ingress Controller deployment can only have one GlobalConfiguration resource .

• TransportServer resources are typically used by DevOps teams to configure TCP/UDP
load balancing for their applications . NGINX Ingress Controller listens only on ports that
were instantiated by the administrator in the GlobalConfiguration resource . This prevents
conflicts between ports and provides an extra layer of security by ensuring DevOps
teams expose to public external services only ports that the administrator has
predetermined are safe .

NGINX INGRESS CONTROLLER
SUPPORTS TCP AND UDP
LOAD BALANCING

https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/globalconfiguration-resource/
https://docs.nginx.com/nginx-ingress-controller/configuration/transportserver-resource/

30CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

The following diagram depicts a sample use case for the GlobalConfiguration and
TransportServer resources . In gc.yaml, the cluster administrator defines TCP and UDP listeners
in a GlobalConfiguration resource . In ts.yaml, a DevOps engineer references the TCP listener
in a TransportServer resource that routes traffic to a MySQL deployment .

Public
Entry
Point

Set TCP LB
Rules

Admin

Kubernetes API

MySQL
Deployment

MySQL
Client

DevOps Engineer

tcp/5353 tcp/3306

gc.yaml ts.yaml

Kubernetes
Cluster

The GlobalConfiguration resource in gc.yaml defines two listeners: a UDP listener on
port 514 for connection to a syslog service and a TCP listener on port 5353 for connection
to a MySQL service .

 1 apiVersion: k8s.nginx.org/v1alpha1
 2 kind: GlobalConfiguration
 3 metadata:
 4 name: nginx-configuration
 5 namespace: nginx-ingress
 6 spec:
 7 listeners:
 8 - name: syslog-udp
 9 port: 541
 10 protocol: UDP
 11 - name: mysql-tcp
 12 port: 5353
 13 protocol: TCP

31CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Lines 6–8 of the TransportServer resource in ts.yaml reference the TCP listener defined in
gc.yaml by name (mysql-tcp) and lines 9–14 define the routing rule that sends TCP traffic
to the mysql-db upstream .

 1 apiVersion: k8s.nginx.org/v1alpha1
 2 kind: TransportServer
 3 metadata:
 4 name: mysql-tcp
 5 spec:
 6 listener:
 7 name: mysql-tcp
 8 protocol: TCP
 9 upstreams:
 10 - name: mysql-db
 11 service: mysql
 12 port: 3306
 13 action:
 14 pass: mysql-db

In this example, a DevOps engineer uses the MySQL client to verify that the configuration is
working, as confirmed by the output with the list of tables in the rawdata_content_schema
database inside the MySQL deployment .

$ echo "SHOW TABLES" | mysql -h echo "SHOW TABLES" | mysql -h <external_IP_address><external_IP_address> -P -P <port><port>
-u -u <user><user> -p rawdata_content_schema -p rawdata_content_schema
Enter Password: <password><password>
Tables_in_rawdata_content_schema
authors
posts

TransportServer resources for UDP traffic are configured similarly; for a complete example, see
Basic TCP/UDP Load Balancing in the NGINX Ingress Controller repo on GitHub . Advanced
NGINX users can extend the TransportServer resource with native NGINX configuration using
the stream-snippets ConfigMap key, as shown in the Support for TCP/UDP Load Balancing
example in the repo .

https://github.com/nginxinc/kubernetes-ingress/tree/v1.7.0-rc1/examples-of-custom-resources/basic-tcp-udp
https://github.com/nginxinc/kubernetes-ingress/tree/main/examples/tcp-udp

32CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

L O A D B A L A N C I N G T L S - E N C RY P T E D T R A F F I C W I T H
T L S PA S S T H R O U G H

Beyond TCP and UDP load balancing, you can use NGINX Ingress Controller for
TLS Passthrough, which means load balancing encrypted TLS traffic on port 443 among
different applications without decryption .

There are several other options for load balancing TLS-encrypted traffic with NGINX
Ingress Controller:

• TLS termination – NGINX Ingress Controller terminates inbound TLS connections and
routes them unencrypted to service endpoints, using either an NGINX VirtualServer or
a standard Kubernetes Ingress resource . This option is not secure if hackers are able
to access your private network and view traffic between NGINX Ingress Controller and
backend services .

• End-to-end encryption (E2EE) – NGINX Ingress Controller terminates inbound TLS
connections and establishes separate TLS connections with service endpoints, using
a VirtualServer resource . This option adds an extra layer of security because data
crossing the network is always encrypted . It also enables NGINX Ingress Controller to
make additional Layer 7 routing decisions and transform the headers or body .

• TCP load balancing with a TransportServer resource – NGINX Ingress Controller load
balances TCP connections that are bound to a specific port defined by the listeners
field in a GlobalConfiguration resource . Connections can be either clear text or
encrypted (in the second case the backend app decrypts them) .

TLS Passthrough is an alternative to E2EE when encrypting traffic in the local area network
is important . The difference is that with TLS Passthrough NGINX Ingress Controller does not
terminate inbound TLS connections, instead forwarding them encrypted to service endpoints .
As with E2EE, the service endpoints do the decryption and so require the certificate and keys .
A limitation with TLS Passthrough compared to EE2E is that NGINX Ingress Controller cannot
make additional Layer 7 routing decisions or transform the headers and body because it
doesn’t decrypt traffic coming from the client .

TLS Passthrough is also an alternative to TCP load balancing with a TransportServer resource
(the third option above) . The difference is that with the third option the GlobalConfiguration
resource can specify multiple ports for load balancing TCP/UDP connections, but only
one TransportServer resource can reference the GlobalConfiguration resource . With TLS
Passthrough, there is a single built-in listener that exposes port 443 only, but many
TransportServer resources can reference the built-in listener for load balancing encrypted
TLS connections .

TLS Passthrough is also extremely useful when the backend configures and performs the
process for TLS verification of the client, and it is not possible to move authentication to
NGINX Ingress Controller .

TLS PASSTHROUGH IS AN
ALTERNATIVE TO E2EE WHEN
ENCRYPTING TRAFFIC IN
THE LOCAL AREA NETWORK
IS IMPORTANT

33CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

We can extend the example in Load Balancing TCP and UDP Traffic by adding TLS Passthrough
and deploying an app server or reverse proxy that decrypts the secure traffic forwarded by
NGINX Ingress Controller and connects to the MySQL deployment .

Public
Entry
Point

MySQL
Deployment

App
Server

MySQL
Client

Kubernetes Cluster

mysql-svc:3306:443

TLS
Passthrough

The following TransportServer resource for TLS Passthrough references a built-in listener
named tls-passthrough and sets the protocol to TLS_PASSTHROUGH (lines 7–8) . This exposes
port 443 on NGINX Ingress Controller for load balancing TLS-encrypted traffic . Users can
establish secure connections with the application workload by accessing the hostname
app.example.com (line 9), which resolves to NGINX Ingress Controller’s public entry point .
NGINX Ingress Controller passes the TLS-secured connections to the secure-app upstream
for decryption (lines 10–15) .

 1 apiVersion: k8s.nginx.org/v1alpha1
 2 kind: TransportServer
 3 metadata:
 4 name: secure-app
 5 spec:
 6 listener:
 7 name: tls-passthrough
 8 protocol: TLS_PASSTHROUGH
 9 host: app.example.com
 10 upstreams:
 11 - name: secure-app
 12 service: secure-app
 13 port: 8443
 14 action:
 15 pass: secure-app

For more information about features you can configure in TransportServer resources, see
the NGINX Ingress Controller documentation .

https://docs.nginx.com/nginx-ingress-controller/configuration/transportserver-resource/

34CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

E N A B L I N G M U LT I -T E N A N CY A N D N A M E S PA C E I S O L AT I O N

As organizations scale up, development and operational workflows in Kubernetes get more
complex . It’s generally more cost-effective – and can be more secure – for teams to share
Kubernetes clusters and resources, rather than each team getting its own cluster . But there
can be critical damage to your deployments if teams don’t share those resources in a safe
and secure manner or hackers exploit your configurations .

Multi-tenancy practices and namespace isolation at the network and resource level help teams
share Kubernetes resources safely . You can also significantly reduce the magnitude of breaches
by isolating applications on a per-tenant basis . This method helps boost resiliency because
only subsections of applications owned by specific teams can be compromised, while systems
providing other functionalities remain intact .

NGINX Ingress Controller supports multiple multi-tenancy models, but we see two primary
patterns . The infrastructure service provider pattern typically includes multiple NGINX
Ingress Controller deployments with physical isolation, while the enterprise pattern typically
uses a shared NGINX Ingress Controller deployment with namespace isolation . In this
section we explore the enterprise pattern in depth; for information about running multiple
NGINX Ingress Controllers see our documentation .

Delegation with NGINX Ingress Controller

NGINX Ingress Controller supports both the standard Kubernetes Ingress resource and
custom NGINX Ingress resources, which enable both more sophisticated traffic management
and delegation of control over configuration to multiple teams . The custom resources are
VirtualServer, VirtualServerRoute, GlobalConfiguration, TransportServer, and Policy .

With NGINX Ingress Controller, cluster administrators use VirtualServer resources to
provision Ingress domain (hostname) rules that route external traffic to backend applications,
and VirtualServerRoute resources to delegate management of specific URLs to application
owners and DevOps teams .

There are two models you can choose from when implementing multi-tenancy in your
Kubernetes cluster: full self-service and restricted self-service .

AS ORGANIZATIONS SCALE
UP, DEVELOPMENT AND
OPERATIONAL WORKFLOWS
IN KUBERNETES GET
MORE COMPLEX

NGINX INGRESS CONTROLLER
SUPPORTS MULTIPLE
MULTI-TENANCY MODELS

https://docs.nginx.com/nginx-ingress-controller/installation/running-multiple-ingress-controllers/
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/globalconfiguration-resource/
https://docs.nginx.com/nginx-ingress-controller/configuration/transportserver-resource
https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/

35CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Implementing Full Self-Service

In a full self-service model, administrators are not involved in day-to-day changes to
NGINX Ingress Controller configuration . They are responsible only for deploying NGINX
Ingress Controller and the Kubernetes Service which exposes the deployment externally .
Developers then deploy applications within an assigned namespace without involving the
administrator . Developers are responsible for managing TLS secrets, defining load-balancing
configuration for domain names, and exposing their applications by creating VirtualServer
or standard Ingress resources .

To illustrate this model, we replicate the bookinfo application with two subdomains,
a.bookinfo.com and b.bookinfo.com, as depicted in the following diagram . Once the
administrator installs and deploys NGINX Ingress Controller in the nginx-ingress
namespace (highlighted in green), teams DevA (pink) and DevB (purple) create their
own VirtualServer resources and deploy applications isolated within their namespaces
(A and B respectively) .

Public
Entry
Point

Admin

Kubernetes API

Client B

Client A

User A User B

Kubernetes
Cluster

Namespace: A

Pod A

Pod A

Namespace: B
Pod B

Namespace: nginx-ingress

NGINX Ingress Controller

VirtualServer
(kubectl)

Set LB rules for host a.bookinfo.com
with TLS termination

VirtualServer
(kubectl)

Set LB rules for host b.bookinfo.com
with TLS termination

https://b.bookinfo.com

https://a.bookinfo.com

IN A FULL SELF-SERVICE
MODEL, ADMINISTRATORS
ARE NOT INVOLVED IN
DAY-TO-DAY CHANGES TO
NGINX INGRESS CONTROLLER
CONFIGURATION

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/

36CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Teams DevA and DevB set Ingress rules for their domains to route external connections to
their applications .

Team DevA applies the following VirtualServer resource to expose applications for the
a.bookinfo.com domain in the A namespace .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: bookinfo
 5 namespace: A
 6 spec:
 7 host: a.bookinfo.com
 8 upstreams:
 9 - name: productpageA
 10 service: productpageA
 11 port: 9080
 12 routes:
 13 - path: /
 14 action:
 15 pass: productpageA

Similarly, team DevB applies the following VirtualServer resource to expose applications for
the b.bookinfo.com domain in the B namespace .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: bookinfo
 5 namespace: B
 6 spec:
 7 host: b.bookinfo.com
 8 upstreams:
 9 - name: productpageB
 10 service: productpageB
 11 port: 9080
 12 routes:
 13 - path: /
 14 action:
 15 pass: productpageB

37CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Implementing Restricted Self-Service

In a restricted self-service model, administrators configure VirtualServer resources to route
traffic entering the cluster to the appropriate namespace, but delegate configuration of the
applications in the namespaces to the responsible development teams . Each such team is
responsible only for its application subroute as instantiated in the VirtualServer resource
and uses VirtualServerRoute resources to define traffic rules and expose application
subroutes within its namespace .

Kubernetes
Cluster

Public
Entry
Point

Kubernetes API

Clients

NGINX
Ingress Controller

VirtualServer
Set LB rules for hostname
bookinfo.example.com with
TLS termination

Namespace: A
Pod A

VirtualServerRoute
bookinfo.example.com

Namespace: B
Pod B

VirtualServerRoute
bookinfo.example.com

/productpage-B

/productpage-A

Admin User A User B

Namespace: nginx-ingress

As illustrated in the diagram, the cluster administrator installs and deploys NGINX Ingress
Controller in the nginx-ingress namespace (highlighted in green), and defines a VirtualServer
resource that sets path-based rules referring to VirtualServerRoute resource definitions .

38CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

This VirtualServer resource definition sets two path-based rules that refer to VirtualServerRoute
resource definitions for two subroutes, /productpage-A and /productpage-B .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: example
 5 spec:
 6 host: bookinfo.example.com
 7 routes:
 8 - path: /productpage-A
 9 route: A/ingress
10 - path: /productpage-B
11 route: B/ingress

The developer teams responsible for the apps in namespaces A and B then define
VirtualServerRoute resources to expose application subroutes within their namespaces .
The teams are isolated by namespace and restricted to deploying application subroutes set
by VirtualServer resources provisioned by the administrator:

• Team DevA (pink in the diagram) applies the following VirtualServerRoute resource to
expose the application subroute rule set by the administrator for /productpage-A .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServerRoute
 3 metadata:
 4 name: ingress
 5 namespace: A
 6 spec:
 7 host: bookinfo.example.com
 8 upstreams:
 9 - name: productpageA
 10 service: productpageA-svc
 11 port: 9080
 12 subroutes:
 13 - path: /productpage-A
 14 action:
 15 pass: productpageA

39CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

• Team DevB (purple) applies the following VirtualServerRoute resource to expose the
application subroute rule set by the administrator for /productpage-B .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServerRoute
 3 metadata:
 4 name: ingress
 5 namespace: B
 6 spec:
 7 host: bookinfo.example.com
 8 upstreams:
 9 - name: productpageB
 10 service: productpageB-svc
 11 port: 9080
 12 subroutes:
 13 - path: /productpage-B
 14 action:
 15 pass: productpageB

For more information about features you can configure in VirtualServer and VirtualServerRoute
resources, see the NGINX Ingress Controller documentation .

Note: You can use mergeable Ingress types to configure cross-namespace routing, but in
a restricted self-service delegation model that approach has three downsides compared to
VirtualServer and VirtualServerRoute resources:

1 . It is less secure .

2 . As your Kubernetes deployment grows becomes larger and more complex, it becomes
increasingly prone to accidental modifications, because mergeable Ingress types do not
prevent developers from setting Ingress rules for hostnames within their namespace .

3 . Unlike VirtualServer and VirtualServerRoute resources, mergeable Ingress types
don’t enable the primary (“master”) Ingress resource to control the paths of “minion”
Ingress resources .

Leveraging Kubernetes RBAC in a Restricted Self-Service Model

You can use Kubernetes role-based access control (RBAC) to regulate a user’s access to
namespaces and NGINX Ingress resources based on the roles assigned to the user .

For instance, in a restricted self-service model, only administrators with special privileges
can safely be allowed to access VirtualServer resources – because those resources define
the entry point to the Kubernetes cluster, misuse can lead to system-wide outages .

Developers use VirtualServerRoute resources to configure Ingress rules for the application
routes they own, so administrators set RBAC polices that allow developers to create only
those resources . They can even restrict that permission to specific namespaces if they need
to regulate developer access even further .

YOU CAN USE KUBERNETES
ROLE-BASED ACCESS
CONTROL (RBAC) TO
REGULATE A USER’S ACCESS

https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/
https://github.com/nginxinc/kubernetes-ingress/tree/main/examples/mergeable-ingress-types

40CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

In a full self-service model, developers can safely be granted access to VirtualServer resources,
but again the administrator might restrict that permission to specific namespaces .

For more information on RBAC authorization, see the Kubernetes documentation .

Adding Policies

NGINX Policy resources are another tool for enabling distributed teams to configure
Kubernetes in multi-tenancy deployments . Policy resources enable functionalities like
authentication using OAuth and OpenID Connect (OIDC), rate limiting, and web application
firewall (WAF) . Policy resources are referenced in VirtualServer and VirtualServerRoute
resources to take effect in the Ingress configuration .

For instance, a team in charge of identity management in a cluster can define JSON Web
Token (JWT) or OIDC policies like this one (defined in Identity-Security/okta-oidc-policy.yaml)
for using Okta as the OIDC identity provider (IdP), which we discuss in detail in Chapter 4 .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: Policy
 3 metadata:
 4 name: okta-oidc-policy
 5 spec:
 6 oidc:
 7 clientID: client-id
 8 clientSecret: okta-oidc-secret
 9 authEndpoint: https://your-okta-domain/oauth2/v1/authorize
 10 tokenEndpoint: https://your-okta-domain/oauth2/v1/token
 11 jwksURI: https://your-okta-domain/oauth2/v1/keys

View on GitHub

NetOps and DevOps teams can use VirtualServer or VirtualServerRoute resources to
reference those policies, as in this example (Identity-Security/okta-oidc-bookinfo-vs.yaml) .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: bookinfo-vs
 5 spec:
 6 host: bookinfo.example.com
 7 tls:
 8 secret: bookinfo-secret
 9 upstreams:
 10 - name: backend
 11 service: productpage
 12 port: 9080

 (continues)

NGINX POLICY RESOURCES
ARE ANOTHER TOOL FOR
ENABLING DISTRIBUTED
TEAMS TO CONFIGURE
KUBERNETES

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://oauth.net
https://openid.net/connect/
https://jwt.io/introduction
https://jwt.io/introduction
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/okta-oidc-policy.yaml

41CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

 13 routes:
 14 - path: /
 15 policies:
 16 - name: okta-oidc-policy
 17 action:
 18 pass: backend

View on GitHub

Together, the NGINX Policy, VirtualServer, and VirtualServerRoute resources enable distributed
configuration architectures, where administrators can easily delegate configuration to other
teams . Teams can assemble modules across namespaces and configure the NGINX Ingress
Controller with sophisticated use cases in a secure, scalable, and manageable fashion .

DevOps-NG

Host
TLS
Policies
Upstreams
Routes
- Path
 Policies
 Action
 Split
 Match
 Route
 ErrorPage

pass
redirect
return
proxy

delegation

Host
TLS
Policies
Upstreams
Routes
- Path
 Policies
 Action
 Split
 Match
 Route
 ErrorPage

pass
redirect
return
proxy

delegation

Identity

Auth (JWT, OIDC)

Access Control

DevSecOps

MTLS (Ingress/Egress)

App Protect: WAF

DEV
SEC
OPS

DevOps-FE

Host
Upstreams
Subroutes
- Path
 Policies
 Action
 Split
 Match
 ErrorPage

pass
redirect
return
proxy

Rate Limiting

Host
TLS
Policies
Upstreams
Routes
- Path
 Policies
 Action
 Split
 Match
 Route
 ErrorPage

pass
redirect
return
proxy

delegation

NetOps

For more information about Policy resources, see the NGINX Ingress Controller documentation .

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/okta-oidc-bookinfo-vs.yaml
https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/

42CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

C O N F I G U R I N G T R A F F I C C O N T R O L A N D T R A F F I C S P L I T T I N G

“Art and science have their meeting point in method”
 – Edward G. Bulwer-Lytton

Traffic control and traffic splitting are two key traffic-management approaches that have
become critical in modern application topologies .

This section uses a sample application called bookinfo, originally created by Istio, to
illustrate how traffic control and traffic splitting affect application behavior . Some of the
use cases leverage features that are available only when you deploy both NGINX Service
Mesh and the NGINX Ingress Controller based on NGINX Plus, but many are also available
with just the NGINX Ingress Controller based on NGINX Open Source .

We have prepared a GitHub repo that includes all the files for deploying the bookinfo app
and implementing the sample use cases in this section as well as Chapter 4 . To get started,
see Deploying the Sample Application .

Why Is Traffic Management So Vital?

Customer satisfaction and “always on” accessibility of resources are paramount for most
companies delivering services online . Loss of customers, loss of revenue up to $550,000
for each hour of downtime, and loss of employee productivity are all factors that directly
hurt not only the bottom line but also the reputation of the company . If a company isn’t
successfully using modern app-delivery technologies and approaches to manage its online
traffic, customers are quick to react on social media, and you just don’t want to be known as
“that company” .

Traffic-management strategy is therefore a critical piece of planning and delivering a modern
application architecture . It requires a change of approach in how traffic is treated, such as
controlling services rather than packets, or adapting traffic-management rules dynamically via
the Kubernetes API . Whether you’re limiting the number of requests to your app to avoid cascade
failures or testing a new app service for stability with real-world traffic loads, managing traffic
without downtime is a science, an art, and most certainly a method . . . well two, actually .

TRAFFIC-MANAGEMENT
STRATEGY IS A CRITICAL
PIECE OF PLANNING AND
DELIVERING A MODERN
APPLICATION ARCHITECTURE

https://istio.io/latest/docs/examples/bookinfo/
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/

43CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

How Do I Pick a Traffic Control or Traffic Splitting Method?

Traffic control and traffic splitting are both essential for maximizing application performance,
but the method to choose depends on your goals:

• To protect services from being overwhelmed with requests, use rate limiting (traffic control)

• To prevent cascading failure, use circuit breaking (traffic control)

• To upgrade to a new application version without downtime, use blue-green deployment
(traffic splitting)

• To test how a new application version handles load by gradually increasing the amount
of traffic directed to it, use a canary release (traffic splitting)

• To determine which version of an application users prefer, use A/B testing (traffic splitting)

• To expose a new application or feature only to a defined set of users, use debug routing
(traffic splitting)

You can implement all of these methods with NGINX Ingress Controller and NGINX Service
Mesh, configuring robust traffic routing and splitting policies in seconds .

When Do I Use NGINX Ingress Controller vs. NGINX Service Mesh?

Both NGINX Ingress Controller and NGINX Service Mesh help you implement robust traffic
control and traffic splitting in seconds . However, they are not equally suitable for all use
cases and app architectures . As a general rule of thumb:

• NGINX Ingress Controller is appropriate when there is no service-to-service communication
in your cluster or apps are direct endpoints from NGINX Ingress Controller .

• NGINX Service Mesh is appropriate when you need to control east-west traffic within
the cluster, for example when testing and upgrading individual microservices .

Deploying the Sample Application

In this section you use NGINX Ingress Controller to expose the sample bookinfo application,
using the VirtualServer resource defined in Traffic-Management/bookinfo-vs.yaml .

VirtualServer and VirtualServerRoute are custom NGINX resources, introduced in
NGINX Ingress Controller 1 .5 . They enable use cases – including traffic splitting and advanced
content-based routing – that are possible with the standard Kubernetes Ingress resource
only by using annotations, which are limited in scope .

TRAFFIC CONTROL AND
TRAFFIC SPLITTING ARE
BOTH ESSENTIAL FOR
MAXIMIZING APPLICATION
PERFORMANCE

BOTH NGINX INGRESS
CONTROLLER AND NGINX
SERVICE MESH HELP YOU
IMPLEMENT ROBUST TRAFFIC
CONTROL AND TRAFFIC
SPLITTING IN SECONDS

https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

44CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Line 8 of bookinfo-vs.yaml references the Kubernetes Secret for the bookinfo app, which
is defined in Traffic-Management/bookinfo-secret.yaml . For the purposes of the sample
application, the Secret is self-signed; in a production environment we strongly recommend
that you use real keys and certificates generated by a Certificate Authority .

Lines 9–16 of bookinfo-vs.yaml define the routing rule that directs requests for
bookinfo.example.com to the productpage service .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: bookinfo-vs
 5 spec:
 6 host: bookinfo.example.com
 7 tls:
 8 secret: bookinfo-secret
 9 upstreams:
 10 - name: backend
 11 service: productpage
 12 port: 9080
 13 routes:
 14 - path: /
 15 action:
 16 pass: backend

View on GitHub

Here is bookinfo-secret.yaml, with a self-signed key and certificate for the purposes of
this example:

 1 apiVersion: v1
 2 kind: Secret
 3 metadata:
 4 name: bookinfo-secret
 5 type: kubernetes.io/tls
 6 data:
 7 tls.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0...
 8 tls.key: LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVk...

View on GitHub

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bookinfo-vs.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bookinfo-secret.yaml

45CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Deploy the sample application:

1 . Load the key and certificate, and activate the VirtualServer resource for bookinfo:

$ kubectl apply -f ./Traffic-Management/bookinfo-secret.yaml kubectl apply -f ./Traffic-Management/bookinfo-secret.yaml
secret/bookinfo-secret created
$ kubectl apply -f ./Traffic-Management/bookinfo-vs.yaml kubectl apply -f ./Traffic-Management/bookinfo-vs.yaml
virtualserver.k8s.nginx.org/bookinfo-vs created

2 . To enable external clients to access resources in the cluster via NGINX Ingress Controller,
you need to advertise a public IP address as the entry point for the cluster .

In on-premises deployments, this is the IP address of the hardware or software load
balancer you configured in Step 5 of Installation and Deployment Instructions for
NGINX Ingress Controller .

In cloud deployments, this is the public IP address of the LoadBalancer service you
created in Step 5 .

Obtain the public IP address of the LoadBalancer service (the output is spread across
two lines for legibility):

$ kubectl get svc nginx-ingress -n nginx-ingress kubectl get svc nginx-ingress -n nginx-ingress
NAME TYPE CLUSTER-IP ...
nginx-ingress LoadBalancer 203.0.x.5 ...

... EXTERNAL-IP PORT(S) AGE

... a309c13t-2.elb.amazonaws.com 80:32148/TCP,443:32001/TCP 1h

For Azure and Google Cloud Platform, the public IP address is reported in the EXTERNAL-IP
field . For AWS, however, the public IP address of the Network Load Balancer (NLB) is
not static and the EXTERNAL-IP field instead reports its DNS name, as in the sample
output above . To find the public IP address, run the nslookup command (here the public
address is 203 .0 .x .66):

$ nslookup a309c13t-2.elb.amazonaws.com nslookup a309c13t-2.elb.amazonaws.com
Server: 198.51.100.1
Address: 198.51.100.1#53

Non-authoritative answer:
Name: a309c13t-2.elb.amazonaws.com
Address: 203.0.x.66

46CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

3 . Edit the local /etc/hosts file, adding an entry for bookinfo.example.com with the public
IP address . For example:

203.0.x.66 bookinfo.example.com

4 . Deploy the sample bookinfo application, defined in Traffic-Management/bookinfo.yaml:

$ kubectl apply -f ./Traffic-Management/bookinfo.yaml kubectl apply -f ./Traffic-Management/bookinfo.yaml
service/details created
serviceaccount/bookinfo-details created
deployment.apps/details-v1 created
service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
service/productpage created
serviceaccount/bookinfo-productpage created
deployment.apps/productpage-v1 created

5 . Verify that all pods have a sidecar injected, as indicated by nginx-mesh-sidecar in the
CONTAINERS field:

$ kubectl get pods -o custom-columns=NAME:.metadata. kubectl get pods -o custom-columns=NAME:.metadata.
name,CONTAINERS:.spec.containers[*].name name,CONTAINERS:.spec.containers[*].name
NAME CONTAINERS
details-v1-847c7999fb-9vvbv details,nginx-mesh-sidecar
productpage-v1-764fd8c446-kxskn productpage,nginx-mesh-sidecar
ratings-v1-7c46bc6f4d-vpf74 ratings,nginx-mesh-sidecar
reviews-v1-988d86446-zvwvc reviews-v1,nginx-mesh-sidecar

6 . Deploy a bash container (defined in Traffic-Management/bash.yaml) in the cluster:

$ kubectl apply -f ./Traffic-Management/bash.yaml kubectl apply -f ./Traffic-Management/bash.yaml
deployment.apps/bash created

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bookinfo.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bash.yaml

47CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

7 . To verify that the bookinfo app is running, fetch its main page from within the
bash container:

$ kubectl exec deploy/bash -it -c bash -- bash kubectl exec deploy/bash -it -c bash -- bash
$ curl -I -k http://productpage:9080/productpage\?u=normal curl -I -k http://productpage:9080/productpage\?u=normal
HTTP/1.1 200 OK
Server: nginx/1.21.5
Date: Day, DD Mon HH:MM:SS YYYY TZ
Content-Type: text/html; charset=utf-8
Content-Length: 4183
Connection: keep-alive
X-Mesh-Request-ID: d8d3418d7b701363e6830155b520bf3e

8 . To verify that external clients can access the app by connecting to NGINX Ingress
Controller, navigate to https://bookinfo.example.com/ in a browser .

In this guide we deploy NGINX Service Mesh in mTLS strict mode . If you use off or
permissive mode, an alternative way to verify that clients can access the app is to run
this command to port-forward the product page to your local environment, and then
open http://localhost:9080/ in your browser .

$ kubectl port-forward svc/productpage 9080 kubectl port-forward svc/productpage 9080
Forwarding from 127.0.0.1:9080 -> 9080
Forwarding from [::1]:9080 -> 9080

Configuring Traffic Control

Traffic control refers to the act of regulating the flow of traffic to your apps in terms of source,
volume, and destination . It’s a necessity when running Kubernetes in production because
it allows you to protect your infrastructure and apps from attacks and traffic spikes . In simple
terms, it’s always an advantage to regulate the traffic coming to your app or service .
Traffic control incorporates two techniques:

• Rate limiting

• Circuit breaking

Configuring Rate Limiting

An app that’s receiving more HTTP requests than it can handle is likely to crash . And it
completely doesn’t matter whether the requests are intentionally harmful (a brute-force
attempt to guess passwords, say) or good news in disguise (eager customers flocking to
your Cyber Monday sale) – either way, your services are at stake . Rate limiting protects
against overload by limiting the number of requests your app accepts from each client
within a defined period of time .

AN APP THAT’S RECEIVING
MORE HTTP REQUESTS
THAN IT CAN HANDLE
IS LIKELY TO CRASH

48CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Activating Client Rate Limiting with NGINX Ingress Controller

In non-Kubernetes environments, and many Kubernetes environments as well, excessive
requests from external clients represent the biggest threat . In this case, it makes sense to
implement rate limiting with NGINX Ingress Controller, because it can classify clients on
many criteria and rate limit based on those criteria . (If you need to limit requests from other
services in the Kubernetes cluster, apply rate limiting with NGINX Service Mesh as described
in Activating Interservice Rate Limiting with NGINX Service Mesh .)

SVCSVC SVC SVC

NGINX
Ingress

Controller

EgressIngress

A simple way to rate-limit all clients is to create an NGINX Ingress Controller Policy resource
and apply it to VirtualServer and VirtualServerRoute resources .

A VirtualServer or VirtualServerRoute can reference multiple rate-limiting policies . When there
is more than one policy, NGINX Ingress Controller configures NGINX to use all of them, with the
most restrictive one setting the actual enforced rate . The values of the dryRun, logLevel, and
rejectCode parameters in the first referenced policy are inherited by the additional policies .

https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/
https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/#ratelimit
https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/#ratelimit
https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/#ratelimit

49CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

1 . Create a rate-limiting policy . This sample policy (Traffic-Management/nic-rate-limit-
policy.yaml) accepts 1 request per second from each IP address; additional
requests arriving within that second are rejected with a 503 (Service Unavailable)
response code:

 1 apiVersion: k8s.nginx.org/v1
 2 kind: Policy
 3 metadata:
 4 name: nic-rate-limit-policy
 5 spec:
 6 rateLimit:
 7 rate: 1r/s
 8 zoneSize: 10M
 9 key: ${binary_remote_addr}
 10 logLevel: warn
 11 rejectCode: 503
 12 dryRun: false

View on GitHub

2 . To enable NGINX Ingress Controller to apply the policy, include a reference to it in
Traffic-Management/bookinfo-vs-rate-limit.yaml:

 17 policies:
 18 - name: nic-rate-limit-policy

View on GitHub

3 . Apply the changes to the bookinfo application you exposed in Deploying the
Sample Application:

$ kubectl apply -f ./Traffic-Management/nic-rate-limit-policy.yaml kubectl apply -f ./Traffic-Management/nic-rate-limit-policy.yaml
policy.k8s.nginx.org/nic-rate-limit-policy created

$ kubectl apply -f ./Traffic-Management/bookinfo-vs-rate-limit.yaml kubectl apply -f ./Traffic-Management/bookinfo-vs-rate-limit.yaml
virtualserver.k8s.nginx.org/bookinfo-vs configured

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nic-rate-limit-policy.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bookinfo-vs-rate-limit.yaml

50CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

4 . To verify that the policy is in effect, use the Traffic-Management/generate-traffic.sh script,
which generates and directs traffic to the Ingress Controller:

 1 #!/bin/bash
 2
 3 # get IP address of NGINX Ingress Controller
 4 IC_IP=$(kubectl get svc -n nginx-ingress -o jsonpath="{.items[0].

status.loadBalancer.ingress[0].ip}")
 5 [-z "$IC_IP"] && IC_IP=$(kubectl get svc -n nginx-ingress -o

jsonpath="{.items[0].status.loadBalancer.ingress[0].hostname}")
 6
 7 # send 300 requests to bookinfo
 8 for i in $(seq 1 300);
 9 do curl -I -k https://$IC_IP:443/productpage\?u=normal -H "host:

bookinfo.example.com";
 10 done

View on GitHub

5 . Run the script on your local machine . Requests that exceed the rate limit get rejected
with error code 503 (Service Unavailable) as for the second request in this example:

$ bash generate-traffic.sh bash generate-traffic.sh
HTTP/1.1 200 OK
Server: nginx/1.21.5
Date: Day, DD Mon HH:MM:SS YYYY TZ
Content-Type: text/html; charset=utf-8
Content-Length: 4183
Connection: keep-alive
X-Mesh-Request-ID: c9df5e030d3c6871745527ea93e403b8

HTTP/1.1 503 Service Unavailable
Server: nginx/1.21.5
Date: Day, DD Mon HH:MM:SS YYYY TZ
Content-Type: text/html
Content-Length: 197
Connection: keep-alive

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/generate-traffic.sh

51CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Allowing Bursts of Requests with NGINX Ingress Controller

To preserve a satisfactory user experience, you often need to make rate-limiting policies
more flexible, for example to accommodate “bursty” apps . Such apps tend to send multiple
requests in rapid succession followed by a period of inactivity . If the rate-limiting policy is
set such that it always rejects bursty traffic, many legitimate client requests don’t succeed .

To avoid this, instead of immediately rejecting requests that exceed the limit, you can buffer
them in a queue and service them in a timely manner . The burst field in a rateLimit policy
defines how many requests a client can make in excess of the rate, and requests that exceed
burst are rejected immediately . We can also control how quickly the queued requests are sent .
The noDelay field sets the number of queued requests (which must be smaller than burst)
NGINX Ingress Controller proxies to the app without delay; the remaining queued requests
are delayed to comply with the defined rate limit .

1 . Create a policy that allows bursting . In this update (Traffic-Management/nic-rate-limit-
policy-burst.yaml) to the policy introduced in the previous section, the combination of
the rate of 10 requests per second (line 7), the noDelay parameter (line 13), and the
burst value of 10 (line 14) means that NGINX Ingress Controller immediately proxies up to
20 requests per second for each client .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: Policy
 3 metadata:
 4 name: nic-rate-limit-policy
 5 spec:
 6 rateLimit:
 7 rate: 10r/s
 8 zoneSize: 10M
 9 key: ${binary_remote_addr}
 10 logLevel: warn
 11 rejectCode: 503
 12 dryRun: false
 13 noDelay: true
 14 burst: 10

View on GitHub

2 . Verify that the new rate limit is in effect by running the Traffic-Management/generate-
traffic.sh script as in Step 4 of the previous section .

Rate limiting with NGINX Ingress Controller is implemented with the NGINX Limit Requests
module . For a more detailed explanation of how rate limiting works, see the NGINX blog .

TO PRESERVE A
SATISFACTORY USER
EXPERIENCE, YOU OFTEN
NEED TO MAKE RATE-
LIMITING POLICIES
MORE FLEXIBLE

https://docs.nginx.com/nginx-ingress-controller/configuration/policy-resource/#ratelimit
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nic-rate-limit-policy-burst.yaml
https://nginx.org/en/docs/http/ngx_http_limit_req_module.html
https://www.nginx.com/blog/rate-limiting-nginx/

52CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Activating Interservice Rate Limiting with NGINX Service Mesh

Traffic between services in a Kubernetes cluster doesn’t necessarily fall under the scope
of the NGINX Ingress Controller, making NGINX Service Mesh the more appropriate way to
rate limit it .

SVCSVC SVC SVC

NGINX
Ingress

Controller

NGINX
Service
Mesh

NGINX
Service
Mesh

NGINX
Service
Mesh

EgressIngress

As with NGINX Ingress Controller, you create a rate-limiting policy to have NGINX Service Mesh
limit the number of requests an app accepts from each service within a defined period of time .

The NGINX Service Mesh RateLimit object takes different parameters from the
NGINX Ingress Controller rateLimit policy:

• destination – Service for which the rate limit is being set

• sources – Group of client services subject to the rate limit

• rate – Allowed number of requests per second or minute from each client

https://docs.nginx.com/nginx-service-mesh/guides/smi-traffic-policies/#rate-limiting

53CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

This policy definition in Traffic-Management/nsm-rate-limit.yaml sets a limit of 10 requests
per minute, or 1 every 6 seconds (line 16) .

 1 apiVersion: specs.smi.nginx.com/v1alpha1
 2 kind: RateLimit
 3 metadata:
 4 name: nsm-rate-limit
 5 namespace: default
 6 spec:
 7 destination:
 8 kind: Service
 9 name: productpage
 10 namespace: default
 11 sources:
 12 - kind: Deployment
 13 name: bash
 14 namespace: default
 15 name: 10rm
 16 rate: 10r/m
 17 burst: 0
 18 delay: nodelay

View on GitHub

1 . Apply the policy:

$ kubectl apply -f ./Traffic-Management/nsm-rate-limit.yaml kubectl apply -f ./Traffic-Management/nsm-rate-limit.yaml
ratelimit.specs.smi.nginx.com/nsm-rate-limit created

2 . To test the policy, initialize a bash container:

$ kubectl exec deploy/bash -it -c bash -- bash kubectl exec deploy/bash -it -c bash -- bash

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nsm-rate-limit.yaml

54CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

3 . Run the following curl command several times in rapid succession in the bash container
to verify the rate limit is being imposed . As shown for the second request, the error
code 503 (Service Unavailable) indicates the request was rejected because it
exceeded the limit .

$ curl -I -k http://productpage:9080/productpage\?u=normal curl -I -k http://productpage:9080/productpage\?u=normal
HTTP/1.1 200 OK
Server: nginx/1.21.5
Date: Day, DD Mon HH:MM:SS YYYY TZ
Content-Type: text/html; charset=utf-8
Content-Length: 5183
Connection: keep-alive
X-Mesh-Request-ID: 27c4030698264b7136f2218002d9933f

$ curl -I -k http://productpage:9080/productpage\?u=normal curl -I -k http://productpage:9080/productpage\?u=normal
HTTP/1.1 503 Service Unavailable
Server: nginx/1.21.5
Date: Day, DD Mon HH:MM:SS YYYY TZ
Content-Type: text/html
Content-Length: 198
Connection: keep-alive

Configuring Circuit Breaking

When a service is unavailable or experiencing high latency, it can take a long time for incoming
requests to time out and for the clients to receive an error response . Such long timeouts can
potentially cause a cascading failure, in which the outage of one service leads to timeouts at
other services and ultimately failure of the application as a whole .

The circuit breaker pattern helps prevent cascading failure by:

1 . Detecting and isolating the service that failed

2 . Sending a predefined response to clients without waiting for a timeout

3 . Redirecting failed responses and timeouts to an external or backup service (a failsafe)
that handles requests differently

To enable a circuit breaker with NGINX Service Mesh, you set a limit on the number of errors
that occur within a defined period . When the number of failures exceeds the limit, the circuit
breaker starts returning an error response to clients as soon as a request arrives . You can also
define a custom informational page to return when your service is not functioning correctly
or under maintenance, as detailed in Returning a Custom Page .

55CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

The circuit breaker continues to intercept and reject requests for the defined amount of time
before allowing a limited number of requests to pass through as a test . If those requests are
successful, the circuit breaker stops throttling traffic . Otherwise, the clock resets and the circuit
breaker again rejects requests for the defined time .

The use of a circuit breaker can improve the performance of an application by eliminating calls
to a failed component that would otherwise time out or cause delays, and it can often mitigate
the impact of a failed non-essential component .

The following lines in Traffic-Management/broken-deployment.yaml simulate a service failure
in which the release of version 2 of the reviews service is followed by a command (lines 44–45)
that causes the associated pod to crash and start returning error code 502 (Bad Gateway) .

 18 apiVersion: apps/v1
 19 kind: Deployment
 25 spec:
 31 template:
 32 metadata:
 33 labels:
 34 app: reviews-v2
 34 version: v2
 36 spec:
 37 serviceAccountName: bookinfo-reviews
 38 containers:
 39 - name: reviews-v2
 40 image: docker.io/istio/examples-bookinfo-reviews-v2:1.15.0
 41 imagePullPolicy: IfNotPresent
 42 ports:
 43 - containerPort: 9080
 44 command: ["/bin/sh","-c"]
 45 args: ["timeout --signal=SIGINT 5 /opt/ibm/wlp/bin/server run

defaultServer"]

View on GitHub

1 . Apply the failure simulation . In the STATUS column of the output from kubectl get pods,
the value CrashLoopBackOff for the reviews-v2 pod indicates that it is repeatedly
starting up and crashing . When you send a curl request to the reviews service, you
get a 502 (Bad Gateway) error response:

$ kubectl apply -f ./Traffic-Management/broken-deployment.yaml kubectl apply -f ./Traffic-Management/broken-deployment.yaml
service/reviews configured
deployment.apps/reviews-v2 created

 (continues)

THE USE OF A CIRCUIT
BREAKER CAN IMPROVE
THE PERFORMANCE OF
AN APPLICATION

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/broken-deployment.yaml

56CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

$ kubectl get pods kubectl get pods
NAME READY STATUS RESTARTS AGE
bash-5bbdcb458d-tbzrb 2/2 Running 0 42h
details-v1-847c7999fb-47fsw 2/2 Running 0 9d
maintenance-v1-588566b84f-57wrr 2/2 Running 0 3h53m
productpage-v1-764fd8c446-px5p9 2/2 Running 0 4m47s
ratings-v1-7c46bc6f4d-qjqff 2/2 Running 0 9d
reviews-v1-76ddd45467-vvw56 2/2 Running 0 9d
reviews-v2-7fb86bc686-5jkhq 1/2 CrashLoopBackOff 9 2m

$ kubectl exec deploy/bash -it -c bash -- bash kubectl exec deploy/bash -it -c bash -- bash
$ curl -I -k http://reviews:9080/health
HTTP/1.1 502 Bad Gateway
Server: nginx/1.21.5
Date: Day, DD Mon HH:MM:SS YYYY TZ
Content-Type: text/html
Content-Length: 158
Connection: keep-alive

2 . Configure an NGINX Service Mesh CircuitBreaker object to route traffic away from the
reviews-v2 pod and to reviews-v1 instead, preventing clients from receiving the 502
error . This configuration (defined in Traffic-Management/nsm-circuit-breaker.yaml) trips
the circuit when there are more than 3 errors within 30 seconds .

 1 apiVersion: specs.smi.nginx.com/v1alpha1
 2 kind: CircuitBreaker
 3 metadata:
 4 name: nsm-circuit-breaker
 5 namespace: default
 6 spec:
 7 destination:
 8 kind: Service
 9 name: reviews
 10 namespace: default
 11 errors: 3
 12 timeoutSeconds: 30
 13 fallback:
 14 service: default/reviews-v1
 15 port: 9080

View on GitHub

https://docs.nginx.com/nginx-service-mesh/guides/smi-traffic-policies/#circuit-breaking
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nsm-circuit-breaker.yaml

57CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

3 . Apply the circuit breaker . The curl request to the reviews service succeeds with
status code 200 (OK) even though the output from kubectl get pods shows that the
reviews-v2 pod is still down:

$ kubectl apply -f ./Traffic-Management/nsm-circuit-breaker.yaml kubectl apply -f ./Traffic-Management/nsm-circuit-breaker.yaml
service/reviews-backup created
circuitbreaker.specs.smi.nginx.com/nsm-circuit-breaker created

$ kubectl get pods kubectl get pods
NAME READY STATUS RESTARTS AGE
bash-5bbdcb458d-tbzrb 2/2 Running 0 42h
details-v1-847c7999fb-47fsw 2/2 Running 0 9d
maintenance-v1-588566b84f-57wrr 2/2 Running 0 3h53m
productpage-v1-764fd8c446-px5p9 2/2 Running 0 4m47s
ratings-v1-7c46bc6f4d-qjqff 2/2 Running 0 9d
reviews-v1-76ddd45467-vvw56 2/2 Running 0 9d
reviews-v2-7fb86bc686-5jkhq 1/2 CrashLoopBackOff 9 26m

$ kubectl exec deploy/bash -it -c bash -- bash kubectl exec deploy/bash -it -c bash -- bash
$ curl -I -k http://reviews:9080/health curl -I -k http://reviews:9080/health
HTTP/1.1 200 OK
Server: nginx/1.21.5
Date: Day, DD Mon HH:MM:SS YYYY TZ
Content-Type: text/html; charset=utf-8
Content-Length: 4063
Connection: keep-alive
X-Mesh-Request-ID: 574e93b8b1736f7dcfd866bca547d370

Note: The NGINX Service Mesh circuit breaker relies on passive health checks to monitor
the status of service endpoints . With the configuration shown above, it marks the broken
deployment as unhealthy when more than 3 requests issued from the bash container trigger
an error response during a 30-second period .

When implementing the circuit breaker pattern with the NGINX Ingress Controller based
on NGINX Plus, you can use active health checks instead . For more information, see the
NGINX blog .

https://www.nginx.com/blog/announcing-nginx-ingress-controller-for-kubernetes-release-1-7-0/#circuit-breaker

58CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Returning a Custom Page

A circuit breaker with a backup service improves the user experience by reducing the number
of error messages clients see, but it doesn’t eliminate such messages entirely . We can
enhance the user experience further by returning a response that’s more helpful than an
error code when failure occurs .

Consider, for example, an application with a web or mobile interface that presents a list
of ancillary items – comments on an article, recommendations, advertisements, and
so on – in addition to the information specifically requested by clients . If the Kubernetes
service that generates this list fails, by default it returns error code 502 (Bad Gateway) .
You can create a more appropriate response for the circuit breaker to send, such as a redirect
to a URL that explains the failure .

The following lines in Traffic-Management/bookinfo-vs-circuit-breaker.yaml amend the
VirtualServer configuration for the bookinfo app with a redirect to a “Sorry, we’re doing
maintenance” page for error code 502:

 17 errorPages:
 18 - codes: [502]
 19 redirect:
 20 code: 301
 21 url: https://cdn.f5.com/maintenance/f5.com/SorryPage.html

View on GitHub

1 . Apply the new configuration that performs the redirect:

$ kubectl apply -f ./Traffic-Management/bookinfo-vs-circuit- kubectl apply -f ./Traffic-Management/bookinfo-vs-circuit-
breaker.yaml breaker.yaml
virtualserver.k8s.nginx.org/bookinfo-vs configured

A CIRCUIT BREAKER WITH
A BACKUP SERVICE IMPROVES
THE USER EXPERIENCE

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bookinfo-vs-circuit-breaker.yaml

59CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

2 . Turn off the productpage-v1 service to cause a failure . Now a curl request to the
bookinfo app results in a redirect (code 301 Moved Permanently) to the maintenance
page rather than a 502 error:

$ kubectl scale --replicas=0 deployment/productpage-v1 kubectl scale --replicas=0 deployment/productpage-v1
deployment.apps/productpage-v1 scaled

$ curl -k -I https://bookinfo.example.com curl -k -I https://bookinfo.example.com
HTTP/1.1 301 Moved Permanently
Server: nginx/1.21.5
Date: Day, DD Mon HH:MM:SS YYYY TZ
Content-Type: text/html
Content-Length: 169
Connection: keep-alive
Location: https://cdn.f5.com/maintenance/f5.com/SorryPage.html

Configuring Traffic Splitting

Traffic splitting is a technique which directs different proportions of incoming traffic to
two versions of a backend app running simultaneously in an environment (usually the
current production version and an updated version) . One use case is testing the stability
and performance of the new version as you gradually increase the amount of traffic to it .
Another is seamlessly updating the app version by changing routing rules to transfer all
traffic at once from the current version to the new version . Traffic splitting techniques include:

• Blue-green deployment

• Canary deployment

• A/B testing

• Debug routing

Generating Cluster-Internal Traffic to Split

All of the examples in this section use a script called traffic.sh to generate the traffic split by
the various configurations . Here you define the script within the bash container in which you
generate traffic in the following sections .

1 . Connect to a bash container:

$ kubectl exec deploy/bash -it -c bash -- bash kubectl exec deploy/bash -it -c bash -- bash

TRAFFIC SPLITTING DIRECTS
DIFFERENT PROPORTIONS OF
INCOMING TRAFFIC TO TWO
VERSIONS OF A BACKEND APP

60CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

2 . Create the script:

$ cat << 'EOF' > traffic.sh cat << 'EOF' > traffic.sh
#!/bin/bash #!/bin/bash
for i in for i in $(seq 1 1000); (seq 1 1000);
do do
curl http://reviews:9080/health; curl http://reviews:9080/health;
curl -H "User-Agent: Firefox" http://reviews:9080/health; curl -H "User-Agent: Firefox" http://reviews:9080/health;
sleep 0.1; sleep 0.1;
done done
EOFEOF

Implementing Blue-Green Deployment

Suppose you have a new version of an app and are ready to deploy it . Blue-green deployment
enables you to switch user traffic to a new version such that users don’t experience any down-
time and might not even notice that a new version is servicing their requests . To do this, keep
the old version (blue) running while simultaneously deploying the new version (green) alongside
in the same environment . Then change the routing rule to direct traffic to the new version .

Blue-Green Deployment with NGINX Service Mesh

The following example implements a blue-green deployment that directs traffic to the new
version of a sample service (reviews-v2-1) without removing the old one (reviews-v1) .
Keeping reviews-v1 in place means it’s easy to roll back if reviews-v2-1 has problems or fails .

1 . Generate traffic to the reviews service (if necessary, repeat the instructions in
Generating Cluster-Internal Traffic to Split to create the script):

$ bash traffic.sh bash traffic.sh

2 . The nginx-meshctl top command shows that all traffic is flowing to the
reviews-v1 service:

$ nginx-meshctl top nginx-meshctl top
Deployment Incoming Success Outgoing Success NumRequests
bash 100.00% 253
reviews-v1 100.00% 253

BLUE-GREEN DEPLOYMENT
ENABLES YOU TO SWITCH
USER TRAFFIC TO A
NEW VERSION SUCH THAT
USERS DON’T EXPERIENCE
ANY DOWN TIME

61CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

3 . Define a TrafficSplit object in Traffic-Management/nsm-blue-green.yaml that points
all traffic to the reviews-v2-1 service:

 1 apiVersion: split.smi-spec.io/v1alpha3
 2 kind: TrafficSplit
 3 metadata:
 4 name: reviews
 5 spec:
 6 service: reviews
 7 backends:
 8 - service: reviews-v1
 9 weight: 0
 10 - service: reviews-v2-1
 11 weight: 100

View on GitHub

4 . Apply the TrafficSplit resource:

$ kubectl apply -f ./Traffic-Management/nsm-blue-green.yaml kubectl apply -f ./Traffic-Management/nsm-blue-green.yaml
trafficsplit.split.smi-spec.io/reviews created
service/reviews configured
service/reviews-v1 created
service/reviews-v2-1 created
deployment.apps/reviews-v2-1 created

5 . Run nginx-meshctl top again to verify that all traffic is flowing to the
reviews-v2-1 service:

$ nginx-meshctl top nginx-meshctl top
Deployment Incoming Success Outgoing Success NumRequests
reviews-v2-1 100.00% 129
bash 100.00% 129

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nsm-blue-green.yaml

62CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Blue-Green Deployment with NGINX Ingress Controller

Blue-green deployment with NGINX Ingress Controller is similar to NGINX Service Mesh,
except that traffic originates from outside the cluster rather than from inside the bash container .
(You can generate that traffic with the Traffic-Management/generate-traffic.sh script;
see Step 4 in Activating Client Rate Limiting with NGINX Ingress Controller .)

1 . Define a VirtualServer resource in Traffic-Management/bookinfo-vs-blue-green.yaml
that directs almost all traffic to the reviews-v2-1 service:

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: reviews
 5 spec:
 6 host: reviews.example.com
 7 upstreams:
 8 - name: reviews-v1
 9 service: reviews-v1
 10 port: 9080
 11 - name: reviews-v2-1
 12 service: reviews-v2-1
 13 port: 9080
 14 routes:
 15 - path: /
 16 splits:
 17 - weight: 1
 18 action:
 19 pass: reviews-v1
 20 - weight: 99
 21 action:
 22 pass: reviews-v2-1

View on GitHub

2 . Apply the resource:

$ kubectl apply -f ./Traffic-Management/bookinfo-vs-blue-green.yaml kubectl apply -f ./Traffic-Management/bookinfo-vs-blue-green.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/generate-traffic.sh
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bookinfo-vs-blue-green.yaml

63CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Implementing Canary Deployment

After deploying a new version of an app, it’s often prudent to test how it performs before
switching over 100% of user traffic to it . A canary deployment minimizes possible negative
effects on the user base as a whole, by initially directing a small percentage of user traffic to
the new version and the bulk of traffic to the existing stable version . If the updated version
successfully handles traffic from the test group, you increase the proportion of traffic directed
to it . Usually the increase is done incrementally with a test period for each increment, but
you can also switch over all users at once, as in a blue-green deployment . Like blue-green
deployment, canary deployment lets you quickly revert to the old version in case of issues
with the new version .

Canary Deployment with NGINX Service Mesh

The following example uses NGINX Service Mesh to implement a canary deployment that
directs 10% of traffic to the new version (reviews-v2-1) of the sample service and the rest to
old one (reviews-v1) .

1 . Define a TrafficSplit object in Traffic-Management/nsm-canary.yaml that leverages
the weight field to set the traffic proportions:

 1 apiVersion: split.smi-spec.io/v1alpha3
 2 kind: TrafficSplit
 3 metadata:
 4 name: reviews
 5 spec:
 6 service: reviews
 7 backends:
 8 - service: reviews-v1
 9 weight: 90
 10 - service: reviews-v2-1
 11 weight: 10

View on GitHub

2 . Generate traffic to the reviews service (if necessary, repeat the instructions in Generating
Cluster-Internal Traffic to Split to create the script):

$ bash traffic.sh bash traffic.sh

3 . Apply the traffic-splitting configuration:

$ kubectl apply -f ./Traffic-Management/nsm-canary.yaml kubectl apply -f ./Traffic-Management/nsm-canary.yaml
trafficsplit.split.smi-spec.io/reviews configured
service/reviews-v3 created
deployment.apps/reviews-v3 created

A CANARY DEPLOYMENT
MINIMIZES POSSIBLE
NEGATIVE EFFECTS ON
THE USER BASE

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nsm-canary.yaml

64CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

4 . Run the nginx-meshctl top command to verify the split: about 10% of requests (16) are
going to the reviews-v2-1 service:

$ nginx-meshctl top nginx-meshctl top
Deployment Incoming Success Outgoing Success NumRequests
bash 100.00% 16
reviews-v1 100.00% 164
reviews-v2-1 100.00% 16

Canary Deployment with NGINX Ingress Controller

Canary deployment with NGINX Ingress Controller is similar to NGINX Service Mesh, except
that traffic originates from outside the cluster rather than from inside the bash container .
(You can generate that traffic with the Traffic-Management/generate-traffic.sh script; see
Step 4 in Activating Client Rate Limiting with NGINX Ingress Controller .)

1 . Define a VirtualServer resource in Traffic-Management/bookinfo-vs-canary.yaml that
splits traffic between the reviews-v1 and reviews-v2-1 services:

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: reviews
 5 spec:
 6 host: reviews.example.com
 7 upstreams:
 8 - name: reviews-v1
 9 service: reviews-v1
 10 port: 9080
 11 - name: reviews-v2-1
 12 service: reviews-v2-1
 13 port: 9080
 14 routes:
 15 - path: /
 16 splits:
 17 - weight: 90
 18 action:
 19 pass: reviews-v1
 20 - weight: 10
 21 action:
 22 pass: reviews-v2-1

View on GitHub

2 . Apply the resource:

$ kubectl apply -f ./Traffic-Management/bookinfo-vs-canary.yaml kubectl apply -f ./Traffic-Management/bookinfo-vs-canary.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/generate-traffic.sh
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bookinfo-vs-canary.yaml

65CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Implementing A/B Testing

Suppose you’ve just released a preview version of an app and want to evaluate its performance
and user appeal before swapping it in for the current app version . Evaluation criteria can
include feedback directly from end users (perhaps in response to a survey) and performance
metrics (latency percentile distribution, requests or connections per second, and so on) .
This is a common use case for A/B testing, which – like blue-green deployment – directs
users to different versions .

A/B Testing with NGINX Service Mesh

The following example uses NGINX Service Mesh to split traffic between two app versions
based on which browser the client is using .

1 . Define an HTTPRouteGroup object in Traffic-Management/nsm-ab-testing.yaml that
groups users based on the value of the HTTP User-Agent header, assigning users of
the Firefox browser to the test group .

 1 apiVersion: specs.smi-spec.io/v1alpha3
 2 kind: HTTPRouteGroup
 3 metadata:
 4 name: reviews-testgroup-rg
 5 namespace: default
 6 spec:
 7 matches:
 8 - name: test-users
 9 headers:
 10 - user-agent: ".*Firefox.*"

View on GitHub

2 . Define a TrafficSplit object in nsm-ab-testing.yaml that directs traffic from users in
the test group to the reviews-v3 version of the app:

 12 apiVersion: split.smi-spec.io/v1alpha3
 13 kind: TrafficSplit
 14 metadata:
 15 name: reviews
 16 spec:
 17 service: reviews
 18 backends:
 19 - service: reviews-v1
 20 weight: 0
 21 - service: reviews-v3
 22 weight: 100
 23 matches:
 24 - kind: HTTPRouteGroup
 25 name: reviews-testgroup-rg

View on GitHub

YOU’VE JUST RELEASED
A PREVIEW VERSION OF AN
APP AND WANT TO EVALUATE
ITS PERFORMANCE AND
USER APPEAL

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nsm-ab-testing.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nsm-ab-testing.yaml

66CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

3 . Generate traffic to the reviews service (if necessary, repeat the instructions in Generating
Cluster-Internal Traffic to Split to create the script):

$ bash traffic.sh bash traffic.sh

Recall that traffic.sh includes this command to generate traffic from the test group by
setting the User-Agent header to Firefox:

curl -H "User-Agent: Firefox" http://reviews:9080/health;

4 . Apply the configuration and check the traffic split:

$ kubectl apply -f ./Traffic-Management/nsm-ab-testing.yamlkubectl apply -f ./Traffic-Management/nsm-ab-testing.yaml
httproutegroup.specs.smi-spec.io/reviews-testgroup-rg created
trafficsplit.split.smi-spec.io/reviews configured

$ nginx-meshctl top nginx-meshctl top
Deployment Incoming Success Outgoing Success NumRequests
bash 100.00% 65
reviews-v3 100.00% 65
reviews-v1 100.00% 65

67CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

A/B Testing with NGINX Ingress Controller

A/B testing with NGINX Ingress Controller is similar to NGINX Service Mesh, except that traffic
originates from outside the cluster rather than from inside the bash container . (You can generate
that traffic with the Traffic-Management/generate-traffic.sh script; see Step 4 in Activating
Client Rate Limiting with NGINX Ingress Controller .)

1 . Define a VirtualServer resource in Traffic-Management/bookinfo-vs-ab-testing.yaml
that directs traffic from Firefox users to the reviews-v3 service and from users of other
browsers to reviews-v1:

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: reviews
 5 spec:
 6 host: reviews.example.com
 7 upstreams:
 8 - name: reviews-v1
 9 service: reviews-v1
 10 port: 9080
 11 - name: reviews-v2-1
 12 service: reviews-v2-1
 13 port: 9080
 14 - name: reviews-v3
 15 service: reviews-v3
 16 port: 9080
 17 routes:
 18 - path: /
 19 matches:
 20 - conditions:
 21 - header: "user-agent"
 22 value: ".*Firefox.*"
 23 action:
 24 pass: reviews-v3
 25 action:
 26 pass: reviews-v1

View on GitHub

2 . Apply the resource:

$ kubectl apply -f ./Traffic-Management/bookinfo-vs-ab-testing.yaml kubectl apply -f ./Traffic-Management/bookinfo-vs-ab-testing.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/generate-traffic.sh
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bookinfo-vs-ab-testing.yaml

68CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Implementing Debug Routing

Suppose you’ve added a new feature to the sample reviews service and want to test how the
feature performs in production . This is a use case for debug routing, which restricts access to
the service to defined group of users, based on Layer 7 attributes such as a session cookie,
session ID, or group ID . This makes the updating process safer and more seamless .

Debug Routing with NGINX Service Mesh

The following example uses NGINX Service Mesh to direct traffic from users who have a
session cookie to a development version of the app .

1 . Define an HTTPRouteGroup object in Traffic-Management/nsm-debug-routing.yaml
that identifies GET requests for /api/reviews that include a session cookie .

 1 apiVersion: specs.smi-spec.io/v1alpha3
 2 kind: HTTPRouteGroup
 3 metadata:
 4 name: reviews-session-cookie
 5 namespace: default
 6 spec:
 7 matches:
 8 - name: get-session-cookie
 9 headers:
 10 - Cookie: "session_token=xxx-yyy-zzz"
 11 - name: get-api-requests
 12 pathRegex: "/api/reviews"
 13 methods:
 14 - GET

View on GitHub

2 . Define a TrafficSplit object in nsm-debug-routing.yaml that directs requests identified
by the HTTPRouteGroup object to the development version of the service, reviews-v3 .

 16 apiVersion: split.smi-spec.io/v1alpha3
 17 kind: TrafficSplit
 18 metadata:
 19 name: reviews
 20 spec:
 21 service: reviews
 22 backends:
 23 - service: reviews-v1
 24 weight: 0
 25 - service: reviews-v3
 26 weight: 100
 27 matches:
 28 - kind: HTTPRouteGroup
 29 name: reviews-session-cookie

View on GitHub

YOU’VE ADDED A NEW
FEATURE TO THE SAMPLE
REVIEWS SERVICE AND WANT
TO TEST HOW THE FEATURE
PERFORMS IN PRODUCTION

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nsm-debug-routing.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/nsm-debug-routing.yaml

69CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

3 . Connect to a bash container:

$ kubectl exec deploy/bash -it -c bash -- bash kubectl exec deploy/bash -it -c bash -- bash

4 . Create a traffic-generation script:

$ cat << 'EOF' > traffic.sh cat << 'EOF' > traffic.sh
#!/bin/bash #!/bin/bash
for i in for i in $(seq 1 1000); (seq 1 1000);
do do
curl http://reviews:9080/health; curl http://reviews:9080/health;
curl -i -H 'Cookie:session_token=xxx-yyy-zzz' http://curl -i -H 'Cookie:session_token=xxx-yyy-zzz' http://
review:9080/health; review:9080/health;
sleep 0.1; sleep 0.1;
done done
EOFEOF

5 . Apply the configuration and check the traffic split .

$ kubectl apply -f ./Traffic-Management/nsm-debug-routing.yaml kubectl apply -f ./Traffic-Management/nsm-debug-routing.yaml
httproutegroup.specs.smi-spec.io/reviews-session-cookie
unchanged
trafficsplit.split.smi-spec.io/reviews configured

$ nginx-meshctl top nginx-meshctl top
Deployment Incoming Success Outgoing Success NumRequests
bash 100.00% 65
reviews-v1 100.00% 65
reviews-v3 100.00% 65

70CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

Debug Routing with NGINX Ingress Controller

Debug routing with NGINX Ingress Controller is similar to NGINX Service Mesh, except that
traffic originates from outside the cluster rather than from inside the bash container . (You can
generate that traffic with the Traffic-Management/generate-traffic.sh script; see Step 4 in
Activating Client Rate Limiting with NGINX Ingress Controller .)

1 . Define a VirtualServer resource in Traffic-Management/bookinfo-vs-debug-routing.yaml
that directs traffic users who have a session cookie to the reviews-v3 service:

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: reviews
 5 spec:
 6 host: reviews.example.com
 7 upstreams:
 8 - name: reviews-v1
 9 service: reviews-v1
 10 port: 9080
 11 - name: reviews-v2-1
 12 service: reviews-v2-1
 13 port: 9080
 14 - name: reviews-v3
 15 service: reviews-v3
 16 port: 9080
 17 routes:
 18 - path: /api/reviews
 19 matches:
 20 - conditions:
 21 - header: "cookie"
 22 value: "session_token=xxx-yyy-zzz"
 23 - variable: $request_method
 24 value: GET
 25 action:
 26 pass: reviews-v3
 27 action:
 28 pass: reviews-v1

View on GitHub

2 . Apply the resource:

$ kubectl apply -f ./Traffic-Management/bookinfo-vs-debug- kubectl apply -f ./Traffic-Management/bookinfo-vs-debug-
routing.yamlrouting.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/generate-traffic.sh
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Traffic-Management/bookinfo-vs-debug-routing.yaml

71CHAPTER 2 – TRAFFIC MANAGEMENT USE CASES

C H A P T E R S U M M A RY

Application traffic management is an important contributor to successful operation of apps
and services . In this chapter we used NGINX Ingress Controller and NGINX Service Mesh
to apply traffic control – for better app performance and resilience – and traffic splitting for
seamless upgrades without downtime and testing of new app versions and features .

Let’s summarize some of the key concepts from this chapter:

• NGINX Ingress Controller supports TCP and UDP load balancing for use cases involving
TCP- and UDP-based apps and utilities .

• TLS Passthrough is an effective option for Layer 4 (TCP) routing where the encrypted
traffic is passed to application workloads in Kubernetes .

• Multi-tenancy and delegation are especially important for organizations leveraging
Kubernetes that are looking to scale up while reducing operational costs .

• Traffic control and traffic splitting are two basic categories of traffic-management methods .

 – Traffic control refers to the act of regulating the flow of traffic to your apps in terms of
source, volume, and destination, using rate limiting and circuit breaking .

 Ղ Rate limiting refers to setting the maximum number of requests that an app or
service accepts from each client within a certain time period . Set rate limits with
NGINX Ingress Controller for traffic from cluster-external clients, and with NGINX
Service Mesh for traffic from other services within the Kubernetes cluster .

 Ղ Circuit breaking refers to a mechanism that detects when an app or service is
unavailable or experiencing high latency and immediately returns an error to
clients instead of waiting for a timeout period as is the usual default behavior .
This improves user experience and averts the cascading failures that occur when
multiple services time out waiting for responses from other services .

 – Traffic splitting refers to dividing traffic between different versions of an app or
service that are running simultaneously . Methods include blue-green deployment,
canary deployment, A/B testing, and debug routing .

 Ղ Blue-green deployment enables seamless app upgrades by directing all traffic to
the new version of an app while while keeping the old version running as a backup .

 Ղ Canary deployment directs a small proportion of traffic to a new app version to verify
that it performs well, while the rest of the traffic continues to go to the current version .
When the new version proves stable, it receives increasing amounts of traffic .

 Ղ A/B testing helps determine which version of an app users prefer . A group of users
is defined based on characteristics (such as the value of an HTTP header) and their
requests are always sent to one of the versions .

 Ղ Debug routing is great for verifying the performance or stability of a new app
version or feature by directing traffic to it from a group of users selected on the
basis of a Layer 7 attributes (such as the session cookie they are using) .

APPLICATION TRAFFIC
MANAGEMENT IS AN
IMPORTANT CONTRIBUTOR
TO SUCCESSFUL OPERATION
OF APPS AND SERVICES

72CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 72

3. Monitoring and Visibility Use Cases
In this chapter we explore how to use NGINX and third-party tools and services for monitoring,
visibility, tracing, and the insights required for successful traffic management in Kubernetes .

• Monitoring with the NGINX Plus Live Activity Monitoring Dashboard

• Distributed Tracing, Monitoring, and Visualization with Jaeger, Prometheus, and Grafana

• Logging and Monitoring with the Elastic Stack

• Displaying Logs and Metrics with Amazon CloudWatch

• Chapter Summary

M O N I T O R I N G W I T H T H E N G I N X P L U S L I V E A C T I V I T Y
M O N I T O R I N G D A S H B O A R D

Monitoring and visibility are crucial for successful app delivery, as tracking of app availability
and request processing helps you identify issues quickly and resolve them in a timely way .
For this reason, by default the NGINX Plus API and live monitoring dashboard are enabled
for the NGINX Ingress Controller based on NGINX Plus .

(The stub_status module is enabled by default for the NGINX Ingress Controller based
on NGINX Open Source, but no dashboard is provided .)

The NGINX Plus live monitoring dashboard is enabled on port 8080 by default, but you can
designate a different port by adding the following line to the args section (starting on line 66)
of Installation-Deployment/nginx-plus-ingress.yaml:

 - -nginx-status-port=<port_number>

View on GitHub

Although we don’t recommend it, you can disable statistics gathering completely by adding
this line to the args section:

 - -nginx-status=false

View on GitHub

To access the live activity monitoring dashboard:

1 . Apply the dashboard configuration:

$ kubectl apply -f ./Installation-Deployment/nginx-plus- kubectl apply -f ./Installation-Deployment/nginx-plus-
ingress.yamlingress.yaml

MONITORING AND VISIBILITY
ARE CRUCIAL FOR SUCCESSFUL
APP DELIVERY

https://www.nginx.com/products/nginx/live-activity-monitoring/
https://www.nginx.com/products/nginx/live-activity-monitoring/
https://nginx.org/en/docs/http/ngx_http_stub_status_module.html
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/nginx-plus-ingress.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/nginx-plus-ingress.yaml

73CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 73

2 . Run the kubectl port-forward command to forward connections made to port 8080
on your local machine to port 8080 of the specified NGINX Ingress Controller pod:

$ kubectl port-forward deploy/nginx-ingress 8080 -n nginx- kubectl port-forward deploy/nginx-ingress 8080 -n nginx-
ingressingress

3 . Open the dashboard in your browser at http://localhost:8080/dashboard.html .

The main page of the dashboard displays summary metrics, which you can explore in
fine-grained detail, down to the level of a single pod, on the tabs:

• HTTP Zones – Statistics for each server{} and location{} block in the http{}
context that includes the status_zone directive

• HTTP Upstreams – Statistics for each upstream{} block in the http{} context that
includes the zone directive

• Caches – Statistics for each cache

• Shared Zones – The amount of memory currently used by each shared memory zone

For more information about the tabs, see the NGINX Plus documentation .

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://nginx.org/en/docs/http/ngx_http_api_module.html#status_zone
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#zone
https://docs.nginx.com/nginx/admin-guide/monitoring/live-activity-monitoring/#tabs-overview
https://docs.nginx.com/nginx/admin-guide/monitoring/live-activity-monitoring/#tabs-overview

74CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 74

D I S T R I B U T E D T R A C I N G , M O N I T O R I N G , A N D V I S UA L I Z AT I O N
W I T H JA E G E R , P R O M E T H E U S , A N D G R A FA N A

Although a microservices-based application looks like a single entity to its clients, internally
it’s a daisy-chain network of several microservices involved in completing a request from
end users . How can you troubleshoot issues as requests are routed through this potentially
complex network? Distributed tracing is a method for tracking services that shows detailed
session information for all requests as they are processed, helping you diagnose issues with
your apps and services .

Traffic management tools such as load balancers, reverse proxies, and Ingress controllers
generate a lot of information about the performance of your services and applications . You can
configure NGINX Ingress Controller and NGINX Service Mesh to feed such information to
third-party monitoring tools, which among other features give you extra insight with visualization
of performance over time .

In this section we show how to deploy three of the most popular tools:

• Jaeger for distributed tracing

• Prometheus for monitoring and alerting

• Grafana for analytics and visualization of data collected by Prometheus

Enabling Distributed Tracing, Monitoring, and Visualization for
NGINX Service Mesh

Distributed tracing, monitoring, and visualization are enabled by default for NGINX Service Mesh,
but a server for each of Jaeger, Prometheus, and Grafana must be deployed in the cluster .

At the time of writing, NGINX Service Mesh automatically deploys default Jaeger, Prometheus,
and Grafana servers . These deployments are intended for onboarding and evaluation, and
might not be feature-complete or robust enough for production environments . In addition,
by default the data they gather and present does not persist .

For production environments, we recommend that you separately deploy Jaeger, Prometheus,
and Grafana . In the Monitoring-Visibility directory of the eBook repo, we provide configuration
for each server: jaeger.yaml, prometheus.yaml, and grafana.yaml .

Notes:

• The next planned release of NGINX Service Mesh, version 1 .5, will not create default
deployments of these servers, making the commands in Step 1 below mandatory even
for non-production environments .

• Large-scale production deployments of Jaeger need an Elasticsearch cluster for backend
storage . The sample Jaeger deployment defined in jaeger.yaml stores data in memory
and is not recommended for use in production . For information about deploying Jaeger
with Elasticsearch, see the jaegertracing repo on GitHub .

TRAFFIC MANAGEMENT
TOOLS SUCH AS LOAD
BALANCERS, REVERSE
PROXIES, AND INGRESS
CONTROLLERS GENERATE
A LOT OF INFORMATION

https://en.wikipedia.org/wiki/Network_topology#Daisy_chain
https://opentracing.io/docs/overview/what-is-tracing/
https://www.jaegertracing.io
https://prometheus.io
https://grafana.com
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/jaeger.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/prometheus.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/grafana.yaml
https://github.com/jaegertracing/helm-charts/tree/main/charts/jaeger#storage

75CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 75

Enable distributed tracing, monitoring, and visualization for NGINX Service Mesh:

1 . Create the monitoring namespace and configure Grafana, Prometheus, and Jaeger:

$ kubectl create ns monitoringkubectl create ns monitoring
$ kubectl apply -f ./Monitoring-Visibility/grafana.yamlkubectl apply -f ./Monitoring-Visibility/grafana.yaml
$ kubectl apply -f ./Monitoring-Visibility/prometheus.yamlkubectl apply -f ./Monitoring-Visibility/prometheus.yaml
$ kubectl apply -f ./Monitoring-Visibility/jaeger.yamlkubectl apply -f ./Monitoring-Visibility/jaeger.yaml

2 . Connect Grafana, Prometheus, and Jaeger to NGINX Service Mesh:

$ nginx-meshctl removenginx-meshctl remove
$ nginx-meshctl deploy --sample-rate 1 --prometheus-address nginx-meshctl deploy --sample-rate 1 --prometheus-address
"prometheus-service.monitoring:9090" --tracing-address "prometheus-service.monitoring:9090" --tracing-address
"jaeger.monitoring:6831" "jaeger.monitoring:6831"

For more information, see the NGINX Service Mesh documentation .

Enabling Distributed Tracing for NGINX Ingress Controller

NGINX Ingress Controller supports distributed tracing with a third-party OpenTracing module
that works with Datadog, Jaeger, and Zipkin . Distributed tracing is disabled by default .

To enable distributed tracing with OpenTracing and Jaeger:

1 . Include lines 10–11 in the data section of the ConfigMap for NGINX Ingress Controller,
in Monitoring-Visibility/nginx-config.yaml:

 6 data:
 10 enable-opentracing: "true"
 11 jaeger-collector-host: jaeger.monitoring.svc.cluster.local

View on GitHub

2 . Apply the ConfigMap:

$ kubectl apply -f ./Monitoring-Visibility/nginx-config.yamlkubectl apply -f ./Monitoring-Visibility/nginx-config.yaml

3 . Run the kubectl port-forward command to forward connections made to port 16686
on your local machine to the Jaeger service in the monitoring namespace:

$ kubectl port-forward -n monitoring svc/jaeger 16686kubectl port-forward -n monitoring svc/jaeger 16686

For more information, see the NGINX Ingress Controller documentation .

NGINX INGRESS CONTROLLER
SUPPORTS DISTRIBUTED
TRACING

https://docs.nginx.com/nginx-service-mesh/guides/monitoring-and-tracing/
https://docs.nginx.com/nginx-service-mesh/guides/monitoring-and-tracing/
https://docs.nginx.com/nginx-ingress-controller/third-party-modules/opentracing/
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/nginx-config.yaml
https://docs.nginx.com/nginx-ingress-controller/third-party-modules/opentracing/
https://docs.nginx.com/nginx-ingress-controller/third-party-modules/opentracing/

76CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 76

Enabling Monitoring and Visualization for NGINX Ingress Controller

Metrics from the NGINX Ingress Controller based on NGINX Plus (as well as general latency
metrics) are exposed in Prometheus format at /metrics, on port 9913 by default . To change
the port, see Step 1 .

To enable metrics collection:

1 . Include the following settings in the configuration for the NGINX Ingress Controller
based on NGINX Plus, in Installation-Deployment/nginx-plus-ingress.yaml:

• A label with nginx-ingress as the resource name:

 13 labels:
 14 app: nginx-ingress
 15 nsm.nginx.com/deployment: nginx-ingress

View on GitHub

• Annotations that define how Prometheus scrapes metrics:

 17 annotations:
 20 prometheus.io/scrape: "true"
 21 prometheus.io/port: "9113"
 22 prometheus.io/scheme: "http"

View on GitHub

• These arguments to the NGINX Ingress Controller initialization command line:

 66 args:
 71 - -enable-prometheus-metrics
 72 - -enable-latency-metrics

View on GitHub

• (Optional .) This argument in the args section (starting on line 66), if you want to
change the port on which metrics are exposed from the default of 9113:

 - - prometheus-metrics-listen-port=<port_number>

View on GitHub

2 . Apply the configuration:

$ kubectl apply -f ./Installation-Deployment/nginx-plus-kubectl apply -f ./Installation-Deployment/nginx-plus-
ingress.yamlingress.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/nginx-plus-ingress.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/nginx-plus-ingress.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/nginx-plus-ingress.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/nginx-plus-ingress.yaml

77CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 77

3 . Port-forward connections made to the Prometheus UI on port 9090 and to Grafana
on port 3000 of your local machine to the Prometheus and Grafana services in the
monitoring namespace:

$ kubectl port-forward -n monitoring svc/prometheus-service 9090kubectl port-forward -n monitoring svc/prometheus-service 9090
$ kubectl port-forward -n monitoring svc/grafana 3000kubectl port-forward -n monitoring svc/grafana 3000

Visualizing Distributed Tracing and Monitoring Data

There are several ways to visualize data from distributed tracing and monitoring of NGINX
Ingress Controller and NGINX Service Mesh .

To display distributed tracing data for NGINX Ingress Controller, open the Jaeger dashboard
in a browser at http://localhost:16686 .

This sample Jaeger dashboard show details for four requests, with the most recent at the top .
The information includes how much time a response took, and the length of time between
responses . In the example, the most recent response, with ID 00496e0, took 2 .83ms, starting
about 4 seconds after the previous response .

THERE ARE SEVERAL
WAYS TO VISUALIZE
DATA FROM DISTRIBUTED
TRACING AND MONITORING

78CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 78

To display metrics for NGINX Ingress Controller and NGINX Service Mesh with Prometheus,
open the Prometheus dashboard in a browser at http://localhost:9090 . Select the metrics
you want to include in the dashboard from the Execute drop-down menu .

Prometheus metrics exported from the NGINX Ingress Controller are prefixed with nginx_ingress
and metrics exported from the NGINX Service Mesh sidecars are prefixed with nginxplus .
For example, nginx_ingress_controller_upstream_server_response_latency_ms_count
is specific to NGINX Ingress Controller, while nginxplus_upstream_server_response_
latency_ms_count is specific to NGINX Service Mesh sidecars .

For descriptions of available metrics, see:

• Available Metrics in the NGINX Ingress Controller documentation

• NGINX Plus Ingress Controller Metrics in the NGINX Service Mesh documentation

• NGINX Prometheus Exporter on GitHub

https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/prometheus/#available-metrics
https://docs.nginx.com/nginx-service-mesh/tutorials/kic/deploy-with-kic/#nginx-plus-ingress-controller-metrics
https://github.com/nginxinc/nginx-prometheus-exporter#exported-metrics

79CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 79

To display metrics for NGINX Ingress Controller and NGINX Service Mesh with Grafana, open
the Grafana UI in a browser at http://localhost:3000 . Add Prometheus as a data source and
create a dashboard . This example includes global success rate and request volume per second,
memory usage, and more:

https://grafana.com/docs/grafana/latest/datasources/prometheus/
https://grafana.com/docs/grafana/latest/dashboards/

80CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 80

L O G G I N G A N D M O N I T O R I N G W I T H T H E E L A S T I C S TA C K

The Elastic Stack (formerly called the ELK stack) is a popular open source logging tool made
up of three base tools:

• Elasticsearch – Search and analytics engine

• Logstash – Server-side data processing pipeline

• Kibana – Visualization engine for charts and graphs

In this section we explain how to collect and visualize NGINX Ingress Controller logs with
Elastic Stack, using the Filebeat module for NGINX . Filebeat monitors the log files or locations
that you specify, collects log events, and forwards them to either Elasticsearch or Logstash
for indexing .

Configuring the NGINX Ingress Controller Access and Error Logs

NGINX Ingress Controller writes to two logs:

• Access log – Information about client requests recorded right after the request is processed .
To customize the information included in the access log entries, add these ConfigMap
keys to the data section (starting on line 6) of Monitoring-Visibility/nginx-config.yaml:

 – log-format for HTTP and HTTPS traffic

 – stream-log-format for TCP, UDP, and TLS Passthrough traffic

For an example of log-entry customization, see the NGINX Ingress Controller repo on
GitHub . For a list of all the NGINX built-in variables you can include in log entries, see
the NGINX reference documentation .

Although we do not recommend that you disable access logging, you can do so
by including this key in the data section of nginx-config.yaml:

 access-log-off: "true"

View on GitHub

Run:

$ kubectl apply -f ./Monitoring-Visibility/nginx-config.yamlkubectl apply -f ./Monitoring-Visibility/nginx-config.yaml

https://www.elastic.co/elastic-stack/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/logstash/
https://www.elastic.co/kibana/
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-module-nginx.html
https://github.com/nginxinc/kubernetes-ingress/tree/main/examples/custom-log-format
https://nginx.org/en/docs/varindex.html
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/nginx-config.yaml

81CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 81

• Error log – Information about error conditions at the severity levels you configure with
the error-log-level ConfigMap key .

To enable debug logging, include this key in the data section (starting on line 6) of
Monitoring-Visibility/nginx-config.yaml:

 error-log-level: "debug"

View on GitHub

Also include this line in the args section (starting on line 66) of Installation-Deployment/
nginx-plus-ingress.yaml . This starts NGINX Ingress Controller in debug mode .

 - -nginx-debug

View on GitHub

Run these commands:

$ kubectl apply -f ./Monitoring-Visibility/nginx-config.yamlkubectl apply -f ./Monitoring-Visibility/nginx-config.yaml
$ kubectl apply -f ./Installation-Deployment/nginx-plus-kubectl apply -f ./Installation-Deployment/nginx-plus-
ingress.yamlingress.yaml

To view NGINX Ingress Controller logs, run:

$ kubectl logs deploy/nginx-ingress -n nginx-ingress -fkubectl logs deploy/nginx-ingress -n nginx-ingress -f

Enabling Filebeat

Filebeat is a module in the Elastic stack that “monitors the log files or locations that you specify,
collects log events, and forwards them either to Elasticsearch or Logstash for indexing” .
Here we use two Filebeat features:

• The module for NGINX, which parses the NGINX access and error logs

• The autodiscover feature, which tracks containers as their status changes (they spin up
and down or change locations) and adapts logging settings automatically

To enable the Filebeat NGINX module with the autodiscover feature:

1 . Sign in to your Elastic Cloud account (start a free trial if you don’t already have an account)
and create a deployment . Record the username and password for the deployment in a
secure location, as you need the password in the next step and cannot retrieve it after
the deployment is created .

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/nginx-config.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Installation-Deployment/nginx-plus-ingress.yaml
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-overview.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-module-nginx.html
https://www.elastic.co/guide/en/beats/filebeat/7.4/configuration-autodiscover.html
https://cloud.elastic.co/login?redirectTo=%2Fhome
https://cloud.elastic.co/registration

82CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 82

2 . Configure the Filebeat NGINX module with the autodiscover feature . The templates
section (starting on line 14) of Monitoring-Visibility/elk/filebeat.yaml directs the
autodiscover subsystem to start monitoring new services when they initialize .

On line 26, replace cloud_ID with the Cloud ID associated with your Elastic Cloud
deployment . (To access the Cloud ID, select Manage this deployment in the left-hand
navigation column in Elastic Cloud . The value appears in the Cloud ID field on the page
that opens .)

On line 27, replace password with the password associated with the deployment, which
you noted in Step 1 .

 11 filebeat.autodiscover:
 12 providers:
 13 - type: kubernetes
 14 templates:
 15 - condition:
 16 equals:
 17 kubernetes.container.name: "nginx-plus-ingress"
 18 config:
 19 - module: nginx
 20 access:
 21 enabled: true
 22 input:
 23 type: container
 24 paths:
 25 - /var/log/containers/*-

 ${data.kubernetes.container.id}.log
 26 cloud.id: "cloud_ID"
 27 cloud.auth: "elastic:password"

 View on GitHub

3 . Apply the Filebeat configuration:

$ kubectl apply -f ./Monitoring-Visibility/elk/filebeat.yamlkubectl apply -f ./Monitoring-Visibility/elk/filebeat.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/elk/filebeat.yaml

83CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 83

4 . Confirm that your Filebeat deployment appears on the Data Streams tab of the Elastic
Cloud Index Management page . (To navigate to the tab, click Stack Management in the
Management section of the left-hand navigation column . Then click Index Management
in the navigation column and Data Streams on the Index Management page .) In the
screenshot, the deployment is called filebeat-8.1.1 .

Displaying NGINX Ingress Controller Log Data with Filebeat

To display the NGINX Ingress Controller access and error logs that Filebeat has forwarded
to Elasticsearch, access the Stream page . (In the left-hand navigation column, click Logs in
the Observability section . The Stream page opens by default .)

84CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 84

To display statistics about log entries, navigate to the Kibana Dashboards tab (in the left-hand
navigation column, click Dashboard in the Analytics section) . The following sample chart
displays the number of log entries in each 5-minute period for requests that resulted in
status code 200 and 404 .

85CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 85

The Filebeat module for NGINX comes with a pre-configured dashboard . To load the
Filebeat dashboards, run the following command in the Filebeat pod:

$ kubectl exec -it kubectl exec -it <filebeat_pod_name><filebeat_pod_name> -n kube-system -- bash -n kube-system -- bash

$./filebeat setup -e --dashboards \ ./filebeat setup -e --dashboards \
> -E output.elasticsearch.hosts=['> -E output.elasticsearch.hosts=['<Elastic_Cloud_host><Elastic_Cloud_host>:9200'] \ :9200'] \
> -E output.elasticsearch.username=elastic \ > -E output.elasticsearch.username=elastic \
> -E output.elasticsearch.password=> -E output.elasticsearch.password=<password><password> \ \
> -E setup.kibana.host=> -E setup.kibana.host=<Elastic_Cloud_host><Elastic_Cloud_host>:5601 \ :5601 \
> -c /etc/filebeat.yaml> -c /etc/filebeat.yaml

Navigate to Dashboards and search for nginx to see the available dashboards:

86CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 86

Select the [Filebeat NGINX] Access and error logs ECS dashboard . This sample dashboard
includes a graph that plots the number of NGINX Ingress access logs over time and scrollable
lists of log entries .

87CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 87

Enabling Metricbeat and Displaying NGINX Ingress Controller and
NGINX Service Mesh Metrics

Just as the Filebeat module for NGINX exports NGINX Ingress Controller logs to Elasticsearch,
the Metricbeat module for NGINX scrapes Prometheus metrics from NGINX Ingress Controller
and NGINX Service Mesh and sends them to Elasticsearch .

To enable the Metricbeat NGINX module with the autodiscover feature:

1 . Sign in to your Elastic Cloud account if you have not already done so . (For information
about creating an account, as well as the autodiscover feature, see Enabling Filebeat .)

2 . Configure the Metricbeat NGINX module with the autodiscover feature to scrape
metrics and display them in the Elastic Metrics Explorer . The templates section
(starting on line 14) of Monitoring-Visibility/elk/metricbeat.yaml directs the
autodiscover subsystem to start monitoring new services when they initialize .

By default, the NGINX Service Mesh sidecar and NGINX Ingress Controller expose
metrics in Prometheus format at /metrics, on ports 8887 and 9113 respectively .
To change the defaults, edit lines 20–21 for NGINX Service Mesh and lines 29–30
for NGINX Ingress Controller .

On line 31, replace cloud_ID with the Cloud ID associated with your Elastic Cloud
deployment . (To access the Cloud ID, select Manage this deployment from the
left-hand navigation column in Elastic Cloud . The value appears in the Cloud ID field
on the page that opens .)

On line 32, replace password with the password associated with the deployment .

 11 metricbeat.autodiscover:
 12 providers:
 13 - type: kubernetes
 14 templates:
 15 - condition.equals:
 16 kubernetes.container.name: "nginx-mesh-sidecar"
 17 config:
 18 - module: prometheus
 19 period: 10s
 20 hosts: ["${data.host}:8887"]
 21 metrics_path: /metrics
 22 - type: kubernetes
 23 templates:
 24 - condition.equals
 25 kubernetes.container.name: "nginx-plus-ingress"
 26 config:
 27 - module: prometheus
 28 period: 10s
 29 hosts: ["${data.host}:9113"]
 30 metrics_path: /metrics
 31 cloud.id: "cloud_ID"
 32 cloud.auth: "elastic:password"

View on GitHub

https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-module-nginx.html
https://cloud.elastic.co/login?redirectTo=%2Fhome
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/elk/metricbeat.yaml

88CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 88

3 . Apply the Metricbeat configuration:

$ kubectl apply -f ./Monitoring-Visibility/elk/metricbeat.yamlkubectl apply -f ./Monitoring-Visibility/elk/metricbeat.yaml

This sample screenshot displays the Maximum value of the
prometheus.metrics.nginxplus_workers_mem_private metric during each time period,
grouped by kubernetes.pod.name .

For more information about logging and the Elastic Stack, see:

• Logging in the NGINX Ingress Controller documentation

• How to monitor NGINX web servers with the Elastic Stack on the Elastic blog

• Run Filebeat on Kubernetes and Run Metricbeat on Kubernetes in the Elastic documentation

• Nginx module (Filebeat) and Nginx module (Metricbeat) in the Elastic documentation

https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/logging/
https://www.elastic.co/blog/how-to-monitor-nginx-web-servers-with-the-elastic-stack
https://www.elastic.co/guide/en/beats/filebeat/current/running-on-kubernetes.html
https://www.elastic.co/guide/en/beats/metricbeat/current/running-on-kubernetes.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-module-nginx.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-module-nginx.html

89CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 89

DISPLAYING LOGS AND METRICS WITH AMAZON CLOUDWATCH

Amazon CloudWatch is a monitoring and observability service that provides a unified view of your
NGINX Ingress Controller and NGINX Service Mesh deployment in the CloudWatch console .

Configuring CloudWatch

To configure and use CloudWatch, you create two configurations: a standard Prometheus
<scrape_config> configuration and a CloudWatch agent configuration .

1 . Complete the instructions in Enabling Distributed Tracing, Monitoring, and
Visualization for NGINX Service Mesh and Enabling Monitoring and Visualization
for NGINX Ingress Controller .

2 . Configure Prometheus scraping and an embedded metric format (EMF)
processor rule for sending NGINX Ingress Controller metrics to CloudWatch, in
Monitoring-Visibility/cloudwatch/cw-metrics.yaml . (Similar EMF configuration for
NGINX Service Mesh is on lines 68–75 .)

For descriptions of the fields, see CloudWatch agent configuration for Prometheus in
the CloudWatch documentation .

On line 65, change nginx-demo-cluster to match your cluster name .

 53 data:
 54 cwagentconfig.json: |
 55 {
 60 "logs": |
 61 "metrics_collected": {
 61 "prometheus": {
 63 "prometheus_config_path": "/etc/prometheusconfig/

prometheus.yaml",
 64 "log_group_name":"nginx-metrics",
 65 "cluster_name":"nginx-demo-cluster",
 66 "emf_processor": {
 67 "metric_declaration": [
 76 {
 77 "source_labels": ["job"],
 78 "label_matcher": "nic",
 79 "dimensions": [["PodNamespace","PodName"]],
 80 "metric_selectors": [
 81 "̂ nginx*"
 82]
 83 }
 84]
 85 }
 86 }
 87 },
 89 }
 90 }

 View on GitHub

https://aws.amazon.com/cloudwatch/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights-Prometheus-Setup-configure.html
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/cloudwatch/cw-metrics.yaml

90CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 90

3 . Configure Prometheus to scrape metrics from NGINX Ingress Controller (the
nginx-plus-ingress pod) once per minute (similar configuration for NGINX Service
Mesh is on lines 103–125):

 97 data:
 98 prometheus.yaml: |
 99 global:
 100 scrape_interval: 1m
 101 scrape_timeout: 5s
 102 scrape_configs:
 126 - job_name: nic
 127 sample_limit: 10000
 128 kubernetes_sd_configs:
 129 - role: pod
 130 relabel_configs:
 131 - source_labels: [__meta_kubernetes_pod_container_name]
 132 action: keep
 133 regex: '̂ nginx-plus-ingress$'
 134 - action: replace
 135 source_labels:
 136 - __meta_kubernetes_namespace
 137 target_label: PodNamespace
 138 - action: replace
 139 source_labels:
 140 - __meta_kubernetes_pod_name
 141 target_label: PodName
 142 - action: labelmap
 143 regex: __meta_kubernetes_pod_label_(.+)

View on GitHub

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/cloudwatch/cw-metrics.yaml

91CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 91

4 . Specify your AWS credentials by replacing:

• << AWS_access_key >> on line 153 with your AWS access key

• << AWS_secret_access_key >> on line 154 with your secret access key

(For instructions about creating and accessing AWS access keys, see the AWS
documentation .)

 150 data:
 151 credentials: |
 152 [AmazonCloudWatchAgent]
 153 aws_access_key_id = << AWS_access_key >>
 154 aws_secret_access_key = << AWS_secret_access_key >>

View on GitHub

If you have an AWS session token, add this line directly below line 154:

 aws_session_token = << your_AWS_session_token >>

5 . Apply the CloudWatch configuration:

$ kubectl apply -f ./Monitoring-Visibility/cloudwatch/ kubectl apply -f ./Monitoring-Visibility/cloudwatch/
cw-metrics.yamlcw-metrics.yaml

With this configuration in place, the nginx-metrics log group appears on the
Log Groups tab .

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/cloudwatch/cw-metrics.yaml

92CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 92

Creating Graphs in CloudWatch

To graph metrics on a CloudWatch dashboard:

1 . In the left-hand navigation column, select All metrics in the Metrics section .

2 . On the page that opens, select the ContainerInsights/Prometheus custom namespace
on the Browse tab in the lower part of the page .

3 . On the Browse tab, click the checkbox at the left end of the row for a metric to
graph it in the upper part of the page . This screenshot displays a graph of the
nginx_ingress_nginxplus_http_requests_total metric .

93CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 93

Capturing Logs in CloudWatch with Fluent Bit

There are two ways to send logs from your containers to CloudWatch: Fluent Bit and
Fluentd . Here we use Fluent Bit because it has the following advantages over Fluentd:

• A smaller resource footprint and more resource-efficient usage of memory and CPU

• The image is developed and maintained by AWS, resulting in quicker adoption of new
Fluent Bit image features and faster reaction to bugs or other issues

To export logs to CloudWatch using Fluent Bit:

1 . Configure logging with with Fluent Bit, in
Monitoring-Visibility/cloudwatch/cw-fluentbit.yaml:

 66 nginx-ingress.conf: |
 67 [INPUT]
 68 Name tail
 69 Tag nic.data
 70 Path /var/log/containers/nginx-ingress*.log
 71 Parser docker
 72 DB /var/fluent-bit/state/flb_log.db
 73 Mem_Buf_Limit 5MB
 74 Skip_Long_Lines On
 75 Refresh_Interval 10
 76 [FILTER]
 77 Name parser
 78 Match nic.*
 79 Key_Name log
 80 Parser nginx_nic
 81 Reserve_Data On
 82 Preserve_Key On
 83 [OUTPUT]
 84 Name cloudwatch_logs
 85 Match nic.*
 86 region ${AWS_REGION}
 87 log_group_name nginx-logs
 88 log_stream_prefix ${HOST_NAME}-
 89 auto_create_group true
 90 extra_user_agent container-insights

View on GitHub

2 . Apply the Fluent Bit configuration:

$ kubectl apply -f ./Monitoring-Visibility/cloudwatch/ kubectl apply -f ./Monitoring-Visibility/cloudwatch/
cw-fluentbit.yamlcw-fluentbit.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Monitoring-Visibility/cloudwatch/cw-fluentbit.yaml

94CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 94

With this configuration in place, the CloudWatch log stream is formatted as follows:

For more information about CloudWatch, see:

• Scraping additional Prometheus sources and importing those metrics in the
CloudWatch documentation

• A sample CloudWatch configuration on GitHub used by AWS’s One Observability Workshop

• Set up NGINX with sample traffic on Amazon EKS and Kubernetes in the
Cloud Watch documentation

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights-Prometheus-Setup-configure.html
https://github.com/aws-samples/one-observability-demo/blob/main/PetAdoptions/cdk/pet_stack/resources/prometheus-eks.yaml
https://catalog.us-east-1.prod.workshops.aws/workshops/31676d37-bbe9-4992-9cd1-ceae13c5116c/en-US
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights-Prometheus-Sample-Workloads-nginx.html

95CHAPTER 3 – MONITORING AND VISIBILITY USE CASES 95

C H A P T E R S U M M A RY

We discussed why actionable insights into app and service performance are crucial to
successful traffic management in Kubernetes clusters – they help you quickly identify and
resolve issues that worsen user experience . We showed how to configure tools for tracing,
monitoring, and visibility of NGINX Ingress Controller and NGINX Service Mesh .

Let’s summarize some of the key concepts from this chapter:

• With the NGINX Ingress Controller based on NGINX Plus, the NGINX Plus API and live
activity monitoring dashboard are enabled by default and report key load-balancing
and performance metrics for insight into app performance and availability .

• The Jaeger distributed tracing service tracks and shows detailed session information
for all requests as they are processed, which is key to diagnosing and troubleshooting
issues with apps and services .

• Prometheus and Grafana combine as a comprehensive monitoring tool . Prometheus
monitors performance and generates alerts about problems, while Grafana generates
graphs and other visualizations of the data collected by Prometheus .

• The Elastic Stack (formerly the ELK stack) is a popular open source logging tool made
up of Elasticsearch for search and analytics, Logstash as the data processing pipeline,
and Kibana for charts and graphs .

• Amazon CloudWatch is a monitoring and observability tool for Kubernetes clusters .
It tracks abnormal behavior and performs automated mitigations, visualizes metrics,
and highlights situations to troubleshoot .

ACTIONABLE INSIGHTS
INTO APP AND SERVICE
PERFORMANCE ARE CRUCIAL
TO SUCCESSFUL TRAFFIC
MANAGEMENT

96CHAPTER 4 – IDENTITY AND SECURITY USE CASES 96

4. Identity and Security Use Cases
In this chapter we explore techniques for verifying user identity and securing applications .
We show how to configure tools for both capabilities that are examples of the available solutions .

While there are many ways to protect applications, authenticating user identities and
enforcing permissions are probably the most common way to prevent unauthorized access
to application resources . App developers commonly leverage a third-party identity provider
to manage user credentials and digital profiles . Identity providers eliminate the need for app
developers and administrators to write and manage bespoke solutions for authenticating
users’ digital identities and controlling access to application resources .

Identity-provider solutions increase overall user satisfaction by enabling single sign-on (SSO) .
Users do not need to input profile data separately for each app and then remember the
associated unique usernames and passwords . Instead, one paired username and password
enables access to all apps . The identity provider enforces consistent security criteria for
identity attributes like passwords, reducing end-user frustration with the registration process
which can lead to abandonment .

OpenID Connect (OIDC) is an authentication protocol for SSO built on the industry-standard
OAuth 2 .0 protocol . We show how to implement a full-fledged SSO solution that supports
the OIDC Authorization Code Flow, with the NGINX Ingress Controller based on
F5 NGINX Plus as the relaying party which analyzes user requests to determine the
requester’s level of authorization and routes requests to the appropriate app service .
(For ease of reading, the remainder of this chapter uses the term NGINX Ingress Controller
for the NGINX Plus-based model .)

We provide instructions for implementing SSO with three OIDC identity providers (IdPs):
Okta, Azure Active Directory (AD), and Ping Identity .

Finally, we show how to “shift security left” by integrating F5 NGINX App Protect WAF with
NGINX Ingress Controller .

• Implementing SSO with Okta

• Implementing SSO with Azure Active Directory

• Implementing SSO with Ping Identity

• Implementing SSO for Multiple Apps

• Deploying NGINX App Protect with NGINX Ingress Controller

• Chapter Summary

AUTHENTICATING USER
IDENTITIES AND
ENFORCING PERMISSIONS
ARE PROBABLY THE MOST
COMMON WAY TO PREVENT
UNAUTHORIZED ACCESS

WE SHOW HOW TO
IMPLEMENT A
FULL-FLEDGED
SSO SOLUTION

https://openid.net/connect/
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://www.nginx.com/products/nginx/
https://www.nginx.com/products/nginx-app-protect/web-application-firewall/

97CHAPTER 4 – IDENTITY AND SECURITY USE CASES 97

I M P L E M E N T I N G S S O W I T H O K TA

In this section you use the Okta CLI to preconfigure Okta as the OIDC identity provider (IdP)
for SSO and then configure NGINX Ingress Controller as the relaying party .

• Prerequisites

• Configuring Okta as the IdP

• Configuring NGINX Ingress Controller as the Relaying Party with Okta

Prerequisites

1 . Download the Okta CLI software to the local machine .

2 . Create an Okta Developer account:

$ okta register okta register
First name: <your_first_name>
Last name: <your_last_name>
Email address: <your_email_address>
Country: <your_country>
Creating new Okta Organization, this may take a minute:
An account activation email has been sent to you.

Check your email

3 . Click the Activate button in the email .

4 . In the browser window that opens, the email address you provided in Step 2 appears
in the upper righthand corner . Click the down-arrow to the right of it and note the value
that appears below your email address in the pop-up (here, dev-609627xx.okta.com) .

5 . In the browser window, click the Create Token button . Follow Steps 3–5 of
Create the Token in the Okta documentation and record the token value .

https://www.okta.com
https://cli.okta.com/manual/
https://developer.okta.com/docs/guides/create-an-api-token/main/#create-the-token

98CHAPTER 4 – IDENTITY AND SECURITY USE CASES 98

Configuring Okta as the IdP

1 . Sign in to your Okta Developer account using the Okta CLI, substituting these values:

• <your_okta_domain> – URL starting with https://, followed by the
dev-xxxxxxxx.okta.com value you obtained in Step 4 of Prerequisites .

• <your_okta_API_token> – The token value you obtained in Step 5 of Prerequisites .

$ okta login okta login
Okta Org URL: <your_okta_domain><your_okta_domain>
Okta API token: <your_okta_API_token>

2 . Create an app integration for the bookinfo sample app . In response to the prompts,
type 1 (Web) and 5 (Other):

$ okta apps create --app-name=bookinfo --redirect- okta apps create --app-name=bookinfo --redirect-
uri=https://bookinfo.example.com/_codexch uri=https://bookinfo.example.com/_codexch
Type of Application
(The Okta CLI only supports a subset of application types
and properties):
> 1: Web
> 2: Single Page App
> 3: Native App (mobile)
> 4: Service (Machine-to-Machine)
Enter your choice [Web]: 11
Type of Application
> 1: Okta Spring Boot Starter
> 2: Spring Boot
> 3: JHipster
> 4: Quarkus
> 5: Other
Enter your choice [Other]: 55
Configuring a new OIDC Application, almost done:
Created OIDC application, client-id: 0oa1mi...OrfQAg5d7
Okta application configuration has been written to:
<current_directory>/.okta.env

3 . Obtain the integrated app’s client ID and Kubernetes Secret from the
OKTA_OAUTH2_CLIENT_ID and OKTA_OAUTH2_CLIENT_SECRET fields in .okta.env:

$ cat .okta.env cat .okta.env
export OKTA_OAUTH2_ISSUER="https://dev-xxxxxxxx.okta.com/
oauth2/default"
export OKTA_OAUTH2_CLIENT_ID="0oa4go...b735d7"
export OKTA_OAUTH2_CLIENT_SECRET="CMRErvVMJKM...PINeaofZZ6I"

99CHAPTER 4 – IDENTITY AND SECURITY USE CASES 99

4 . Base64-encode the secret:

$ echo CMRErvVMJKM...PINeaofZZ6I | base64 echo CMRErvVMJKM...PINeaofZZ6I | base64
Q01SRXJ2Vk...YW9mWlo2SQo

Configuring NGINX Ingress Controller as the Relaying Party with Okta

1 . Edit Identity-Security/okta-client-secret.yaml, replacing the client-secret parameter
on line 7 with the Base64-encoded Secret you generated in Step 4 of Configuring Okta
as the IdP (just above) .

 1 apiVersion: v1
 2 kind: Secret
 3 metadata:
 4 name: okta-oidc-secret
 5 type: nginx.org/oidc
 6 data:
 7 client-secret: client-secret

View on GitHub

2 . Apply the YAML file containing the Secret:

$ kubectl apply -f ./Identity-Security/okta-client-secret.yaml kubectl apply -f ./Identity-Security/okta-client-secret.yaml

3 . Obtain the URLs for the integrated app’s authorization endpoint, token endpoint,
and JSON Web Key (JWK) file from the Okta configuration . Run the following curl
command, piping the output to the indicated python command to output the entire
configuration in an easily readable format . The output is abridged to show only the
relevant fields . In the command, for <your_okta_domain> substitute the value
(https://dev-xxxxxxxx.okta.com) you used in Step 1 of Configuring Okta as the IdP .

$ curl -s https:// curl -s https://<your_okta_domain><your_okta_domain>/.well-known/openid-/.well-known/openid-
configuration | python -m json.tool configuration | python -m json.tool
{
 "authorization_endpoint":
"https://<your_okta_domain>/oauth2/v1/authorize",
 ...
 "jwks_uri": "https://<your_okta_domain>/oauth2/v1/keys",
 ...
 "token_endpoint": "https://<your_okta_domain>/oauth2/v1/token",
...
}

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/okta-client-secret.yaml

100CHAPTER 4 – IDENTITY AND SECURITY USE CASES 100

4 . Edit the NGINX Ingress OIDC Policy in Identity-Security/okta-oidc-policy.yaml, replacing
the parameters as indicated:

• client-id on line 7 – The value you obtained from the OKTA_OAUTH2_CLIENT_ID
field in Step 3 of Configuring Okta as the IdP

• your-okta-domain on lines 9–11 – The value used for <your_okta_domain> in the
command in the previous step

 1 apiVersion: k8s.nginx.org/v1
 2 kind: Policy
 3 metadata:
 4 name: okta-oidc-policy
 5 spec:
 6 oidc:
 7 clientID: client-id
 8 clientSecret: okta-oidc-secret
 9 authEndpoint: https://your-okta-domain/oauth2/v1/authorize
 10 tokenEndpoint: https://your-okta-domain/oauth2/v1/token
 11 jwksURI: https://your-okta-domain/oauth2/v1/keys

View on GitHub

5 . Apply the policy:

$ kubectl apply -f ./Identity-Security/okta-oidc-policy.yaml kubectl apply -f ./Identity-Security/okta-oidc-policy.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/okta-oidc-policy.yaml

101CHAPTER 4 – IDENTITY AND SECURITY USE CASES 101

6 . Apply the VirtualServer resource (Identity-Security/okta-oidc-bookinfo-vs.yaml) that
references okta-oidc-policy:

$ kubectl apply -f ./Identity-Security/okta-oidc-bookinfo-vs.yaml kubectl apply -f ./Identity-Security/okta-oidc-bookinfo-vs.yaml

The VirtualServer resource references okta-oidc-policy on line 16 . The path definition
on line 14 means that users who request a URL starting with / are authenticated
before the request is proxied to the upstream called backend (line 18) which maps to
the productpage service (lines 10–11):

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: bookinfo-vs
 5 spec:
 6 host: bookinfo.example.com
 7 tls:
 8 secret: bookinfo-secret
 9 upstreams:
 10 - name: backend
 11 service: productpage
 12 port: 9080
 13 routes:
 14 - path: /
 15 policies:
 16 - name: okta-oidc-policy
 17 action:
 18 pass: backend

View on GitHub

7 . Test the SSO deployment by navigating to https://bookinfo.example.com (the hostname
of NGINX Ingress Controller) in a browser . You are redirected to the Okta login portal,
where you can enter the credentials for your Okta developer account to gain access to
the backend application (the productpage service) .

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/okta-oidc-bookinfo-vs.yaml

102CHAPTER 4 – IDENTITY AND SECURITY USE CASES 102

I M P L E M E N T I N G S S O W I T H A Z U R E A C T I V E D I R E C T O RY

In this section you use the Microsoft Azure portal to preconfigure Azure Active Directory (AD)
as the OIDC identity provider (IdP) for SSO and then configure NGINX Ingress Controller as
the relaying party .

• Configuring Azure AD as the IdP

• Configuring NGINX Ingress Controller as the Relaying Party with Azure AD

Configuring Azure AD as the IdP

Note: The instructions and screenshots in this section are accurate as of the time of
publication, but are subject to change by Microsoft .

1 . Create a Microsoft Azure account if you don’t already have one .

2 . Log in at Azure Portal and click on the Azure Active Directory icon in the Azure
services section .

3 . In the left-hand navigation column, click App registrations .

4 . On the App registrations tab that opens, click + New registration .

https://azure.microsoft.com/en-us/features/azure-portal/
https://azure.microsoft.com/en-us/services/active-directory/#overview
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/features/azure-portal/

103CHAPTER 4 – IDENTITY AND SECURITY USE CASES 103

5 . On the Register an application page that opens:

a) Type a value in the Name box (here, oidc-demo-app) .

b) Click the top radio button (Single tenant) in the Supported account types section .

c) In the Redirect URI section:

 i) Select Web from the left-hand drop-down menu .

 ii) Type https://bookinfo.example.com/_codexch in the right-hand box .

d) Click the Register button .

104CHAPTER 4 – IDENTITY AND SECURITY USE CASES 104

6 . A page for the app (here, odic-demo-app) opens . In the left-hand navigation column,
click Certificates & secrets .

7 . On the Certificates & secrets tab that appears, click + New client secret .

8 . On the Add a client secret card that opens, enter a name in the Description field
(here, oidc-demo-secret) and select an expiration time from the Expires drop-down menu
(here, 12 months) . Click the Add button .

105CHAPTER 4 – IDENTITY AND SECURITY USE CASES 105

9 . The new secret appears in the table on the Certificates & secrets tab . Copy the character
string in the Value column to a safe location; you cannot access it after you leave this page .

10 . In the left-hand navigation column, click Overview and note the values in these fields:

• Application (client) ID

• Directory (tenant) ID

11 . In a terminal, Base64-encode the secret you obtained in Step 9 .

$ echo eqw7Q~jTWK...vFPzYWezxL | base64 echo eqw7Q~jTWK...vFPzYWezxL | base64
ZXF3N1F+alRX...ellXZXp4TAo=

Configuring NGINX Ingress Controller as the Relaying Party with Azure AD

1 . Edit Identity-Security/ad-client-secret.yaml, replacing client-secret on line 7 with the
Base64-encoded Secret you generated in Step 11 of the previous section (just above):

 1 apiVersion: v1
 2 kind: Secret
 3 metadata:
 4 name: ad-oidc-secret
 5 type: nginx.org/oidc
 6 data:
 7 client-secret: client-secret

View on GitHub

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/ad-client-secret.yaml

106CHAPTER 4 – IDENTITY AND SECURITY USE CASES 106

2 . Apply the YAML file containing the Secret:

$ kubectl apply -f ./Identity-Security/ad-client-secret.yaml kubectl apply -f ./Identity-Security/ad-client-secret.yaml

3 . Obtain the URLs for the registered app’s authorization endpoint, token endpoint, and
JSON Web Key (JWK) file . Run the following curl command, piping the output to the
indicated python command to output the entire configuration in an easily readable format .
The output is abridged to show only the relevant fields . In the command, make the
following substitutions as appropriate:

• For <tenant>, substitute the value from the Directory (tenant) ID field obtained in
Step 10 of the previous section .

• Be sure to include v2.0 in the path to obtain Azure AD Endpoint V2 endpoints .

• If you are using an Azure national cloud rather than the Azure “global” cloud, substitute
your Azure AD authentication endpoint for login.microsoftonline.com .

• If your app has custom signing keys because you’re using the Azure AD claims-mapping
feature in a multi-tenant environment, also append the appid query parameter to get
the jwks_uri value that is specific to your app’s signing key . For <app_id>, substitute
the value from the Application (client) ID field obtained in Step 10 of the previous section .

$ curl -s https://login.microsoftonline.com/ curl -s https://login.microsoftonline.com/<tenant><tenant>/v2.0/./v2.0/.
well-known/openid-configuration?appid=well-known/openid-configuration?appid=<app_id><app_id>
{
 "authorization_endpoint":
"https://login.microsoftonline.com/<tenant>/oauth2/v2.0/
authorize",
 ...
 "jwks_uri":
"https://login.microsoftonline.com/<tenant>/discovery/v2.0/
keys?appid=<app_id> ",
 ...
 "token_endpoint": "https://login.microsoftonline.com/
<tenant>/oauth2/v2.0/token",
 ...
 }

https://nicolgit.github.io/AzureAD-Endopoint-V1-vs-V2-comparison/
https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-national-cloud
https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-national-cloud#azure-ad-authentication-endpoints
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-claims-mapping#configure-a-custom-signing-key
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-claims-mapping

107CHAPTER 4 – IDENTITY AND SECURITY USE CASES 107

4 . Edit the NGINX Ingress OIDC Policy in Identity-Security/ad-oidc-policy.yaml, replacing
the parameters as indicated:

• ad-client-id on line 7 – The value from the Application (client) ID field obtained in
Step 10 of the previous section

• token on lines 9–11 – The value used for <tenant> in the command in the previous step
(as obtained from the Directory (tenant) ID field in Step 10 of the previous section)

• appid on line 11 – The value used for <app_id> in the command in the previous step
(and the same as ad-client-id on line 7)

 1 apiVersion: k8s.nginx.org/v1
 2 kind: Policy
 3 metadata:
 4 name: ad-oidc-policy
 5 spec:
 6 oidc:
 7 clientID: ad-client-id
 8 clientSecret: ad-oidc-secret
 9 authEndpoint: https://login.microsoftonline.com/token/oauth2/

v2.0/authorize
 10 tokenEndpoint: https://login.microsoftonline.com/token/oauth2/

v2.0/token
 11 jwksURI: https://login.microsoftonline.com/token/discovery/v2.0/

keys?appid=appid

View on GitHub

5 . Apply the policy:

$ kubectl apply -f ./Identity-Security/ad-oidc-policy.yaml kubectl apply -f ./Identity-Security/ad-oidc-policy.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/ad-oidc-policy.yaml

108CHAPTER 4 – IDENTITY AND SECURITY USE CASES 108

6 . Apply the VirtualServer resource (Identity-Security/ad-oidc-bookinfo-vs.yaml) that
references ad-oidc-policy:

$ kubectl apply -f ./Identity-Security/ad-oidc-bookinfo-vs.yaml kubectl apply -f ./Identity-Security/ad-oidc-bookinfo-vs.yaml

The VirtualServer resource references ad-oidc-policy on line 16 . The path definition
on line 14 means that users who request a URL starting with // are authenticated before
the request is proxied to the upstream called backend (line 18) which maps to the
productpage service (lines 10–11):

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: bookinfo-vs
 5 spec:
 6 host: bookinfo.example.com
 7 tls:
 8 secret: bookinfo-secret
 9 upstreams:
 10 - name: backend
 11 service: productpage
 12 port: 9080
 13 routes:
 14 - path: /
 15 policies:
 16 - name: ad-oidc-policy
 17 action:
 18 pass: backend

View on GitHub

7 . Test the SSO deployment by navigating to https://bookinfo.example.com (the hostname
of NGINX Ingress Controller) in a browser . You are redirected to the Microsoft login portal,
where you can enter the credentials for your Microsoft account to gain access to the
backend application (the productpage service) .

For more information about OIDC with Azure, see the Microsoft documentation .

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/ad-oidc-bookinfo-vs.yaml
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc

109CHAPTER 4 – IDENTITY AND SECURITY USE CASES 109

I M P L E M E N T I N G S S O W I T H P I N G I D E N T I T Y

In this section you use the Ping Identity portal to preconfigure Ping Identity as the OIDC identity
provider (IdP) for SSO and then configure NGINX Ingress Controller as the relaying party .

• Configuring Ping Identity as the IdP

• Configuring NGINX Ingress Controller as the Relaying Party with Ping Identity

Configuring Ping Identity as the IdP

Note: The instructions and screenshots in this section are accurate for the PingOne for
Customers product as of the time of publication, but are subject to change by Ping Identity .

1 . Authenticate at the Ping Identity Portal .

2 . Navigate to the Applications page and create an application .

3 . From the ADVANCED CONFIGURATION box, click the Configure button for the OIDC
connection type .

110CHAPTER 4 – IDENTITY AND SECURITY USE CASES 110

4 . In the REDIRECT URLS field, type https://bookinfo.example.com:443/_codexch:

5 . Edit the application configuration:

a) In the RESPONSE TYPE section, click the Code box .

b) In the GRANT TYPE section, click the Authorization Code box .

c) In the PKCE ENFORCEMENT section, select OPTIONAL from the drop-down menu .

6 . In the TOKEN ENDPOINT AUTHENTICATION METHOD section, click the
Client Secret Post radio button .

111CHAPTER 4 – IDENTITY AND SECURITY USE CASES 111

7 . Access the Configuration tab for the sample application (here, demo-oidc) and note
the following:

• In the URL section, the alphanumeric string that follows https://auth.pingone.com/ in
each field (in the screenshot, 21b8bf42-a22a...):

• In the GENERAL section, the value in both the CLIENT ID and CLIENT SECRET fields
(to see the actual client secret, click the eye icon) .

8 . In a terminal, Base64-encode the secret you obtained from the CLIENT SECRET field in
the previous step .

$ echo e4sZ0f...cGOaXVdywK | base64 echo e4sZ0f...cGOaXVdywK | base64
YWE2M0E+zkPW...dkkWYWo3SZn=

112CHAPTER 4 – IDENTITY AND SECURITY USE CASES 112

Configuring NGINX Ingress Controller as the Relaying Party
with Ping Identity

1 . Edit Identity-Security/ping-client-secret.yaml, replacing the client-secret parameter
on line 7 with the Base64-encoded Kubernetes Secret you generated in Step 8 of the
previous section (just above):

 1 apiVersion: v1
 2 kind: Secret
 3 metadata:
 4 name: ping-oidc-secret
 5 type: nginx.org/oidc
 6 data:
 7 client-secret: client-secret

View on GitHub

2 . Apply the YAML file containing the Secret:

$ kubectl apply -f ./Identity-Security/ping-client-secret.yaml kubectl apply -f ./Identity-Security/ping-client-secret.yaml

3 . Edit the NGINX Ingress OIDC Policy in Identity-Security/ping-oidc-policy.yaml, replacing
the parameters as indicated:

• ping-client-id on line 7 – The value from the CLIENT ID field obtained in Step 7 of
Configuring Ping Identity as the IdP

• token on lines 9–11 – The alphanumeric string from the items in the URL section obtained
in Step 7 of Configuring Ping Identity as the IdP (in this example, it is 21b8bf42-a22a...)

 1 apiVersion: k8s.nginx.org/v1
 2 kind: Policy
 3 metadata:
 4 name: ping-oidc-policy
 5 spec:
 6 oidc:
 7 clientID: ping-client-id
 8 clientSecret: ping-oidc-secret
 9 authEndpoint: https://auth.pingone.com/token/as/authorize
 11 tokenEndpoint: https://auth.pingone.com/token/as/token
 12 jwksURI: https://auth.pingone.com/token/as/jwks

View on GitHub

4 . Apply the policy:

$ kubectl apply -f ./Identity-Security/ping-oidc-policy.yaml kubectl apply -f ./Identity-Security/ping-oidc-policy.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/ping-client-secret.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/ping-oidc-policy.yaml

113CHAPTER 4 – IDENTITY AND SECURITY USE CASES 113

5 . Apply the VirtualServer resource (Identity-Security/ping-oidc-bookinfo-vs.yaml) that
references ping-oidc-policy:

$ kubectl apply -f ./Identity-Security/ping-oidc-bookinfo-vs.yaml kubectl apply -f ./Identity-Security/ping-oidc-bookinfo-vs.yaml

The VirtualServer resource references ping-oidc-policy on line 16 . The path definition
on line 14 means that users who request a URL starting with / are authenticated before
the request is proxied to the upstream called backend (line 18) which maps to the
productpage service (lines 10–11):

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: bookinfo-vs
 5 spec:
 6 host: bookinfo.example.com
 7 tls:
 1 secret: bookinfo-secret
 9 upstreams:
 10 - name: backend
 11 service: productpage
 12 port: 9080
 13 routes:
 14 - path: /
 15 policies:
 16 - name: ping-oidc-policy
 17 action:
 18 pass: backend

View on GitHub

6 . Test the SSO deployment by navigating to https://bookinfo.example.com (the hostname
of NGINX Ingress Controller) in a browser . You are redirected to the Ping Identity login
portal, where you can enter the credentials for your Ping Identity account to gain access
to the backend application (the productpage service) .

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/ping-oidc-bookinfo-vs.yaml

114CHAPTER 4 – IDENTITY AND SECURITY USE CASES 114

I M P L E M E N T I N G S S O F O R M U LT I P L E A P P S

In the previous three sections, we showed how to move the authentication process from the
application layer to three third-party OIDC IdPs (Okta, Microsoft Azure Active Directory, and
Ping Identity) . What if we want to enable each user to use the same set of credentials to
access more than one application or application service? What if your system scales to tens
or even hundreds of applications that users need to access using the same set of credentials?
Single sign-on (SSO) is the solution that addresses this problem .

You can easily add new application integrations by defining other OIDC policies if necessary
and referencing the policies in VirtualServer resources . In the following diagram, there are
two subdomains, unit-demo.marketing.net and unit-demo.engineering.net, which both
resolve to the external IP address of NGINX Ingress Controller . NGINX Ingress Controller
routes requests to either the Marketing app or the Engineering app based on the subdomain .
Once the identity of a user is verified, the user can access both applications until the session
ID token issued from the IdP is expired or no longer valid .

Kubernetes
Cluster

Marketing
App

Engineering
App

NGINX
Ingress

Controller unit-demo.engineering.net

Clients

IdP

unit-demo.marketing.net

WHAT IF YOUR SYSTEM
SCALES TO TENS OR EVEN
HUNDREDS OF APPLICATIONS
THAT USERS NEED TO ACCESS
USING THE SAME SET OF
CREDENTIALS?

115CHAPTER 4 – IDENTITY AND SECURITY USE CASES 115

D E P L OY I N G N G I N X A P P P R O T E C T W I T H
N G I N X I N G R E S S C O N T R O L L E R

Having discussed authentication approaches, let’s look at how to improve application security .
NGINX App Protect Web Application Firewall (WAF) provides advanced protection for apps and
APIs against attacks by bad actors, with minimal configuration and management overhead . The
diagram shows how NGINX App Protect WAF can be embedded in NGINX Ingress Controller:

Ingress
Resource

WAF Signature
Database

WAF
Policy

Kubernetes Cluster

NGINX Plus with
NGINX App Protect

App

App

App

App

Why Is Integrating a WAF into NGINX Ingress Controller So Significant?

There are several benefits from integrating NGINX App Protect WAF into NGINX
Ingress Controller:

• Securing the application perimeter – In a well-architected Kubernetes deployment,
the Ingress controller is the sole point of entry for data-plane traffic flowing to services
running within Kubernetes, making it an ideal location for security enforcement .

• Consolidating the data plane – Embedding the WAF within the Ingress controller
eliminates the need for a separate WAF device . This reduces complexity, cost, and the
number of points of failure .

LET’S LOOK AT HOW TO
IMPROVE APPLICATION
SECURITY

https://www.nginx.com/products/nginx-app-protect/web-application-firewall

116CHAPTER 4 – IDENTITY AND SECURITY USE CASES 116

• Consolidating the control plane – WAF configuration can be managed with the Kubernetes
API, making it significantly easier to automate CI/CD processes . The Ingress controller
configuration complies with Kubernetes role-based access control (RBAC) practices,
so you can securely delegate the WAF configuration to a dedicated DevSecOps team .

The configuration objects for NGINX App Protect are consistent across both NGINX Ingress
Controller (using YAML files) and NGINX Plus (using JSON) . A master configuration can easily
be translated and deployed to either device, making it even easier to manage WAF configuration
as code and deploy it to any application environment .

Configuring NGINX App Protect in NGINX Ingress Controller

You installed NGINX App Protect along with NGINX Ingress Controller in Step 3 of Installation
and Deployment Instructions for NGINX Ingress Controller .

NGINX App Protect is configured in NGINX Ingress Controller with three custom resources:

• APPolicy defines a WAF policy for NGINX App Protect to apply . An APPolicy WAF policy
is the YAML version of a standalone, JSON-formatted NGINX App Protect policy .

• APLogConf defines the logging behavior of NGINX App Protect .

• APUserSig defines a custom signature to protect against an attack type not covered by
the standard signature sets .

The NGINX Ingress Controller image also includes an NGINX App Protect signature set,
which is embedded at build time .

NGINX App Protect policies protect your web applications against many threats, including
the OWASP Top Ten, cross-site scripting (XSS), SQL injections, evasion techniques, information
leakage (with Data Guard), and more .

You can configure NGINX App Protect in two ways using either NGINX Ingress resources or
the standard Ingress resource .

https://docs.nginx.com/nginx-ingress-controller/app-protect/configuration/#app-protect-policies
https://docs.nginx.com/nginx-ingress-controller/app-protect/configuration/#app-protect-logs
https://docs.nginx.com/nginx-ingress-controller/app-protect/configuration/#app-protect-user-defined-signatures
https://docs.nginx.com/nginx-app-protect/configuration-guide/configuration/#configuring-attack-signatures
https://owasp.org/www-project-top-ten/
https://docs.nginx.com/nginx-app-protect/configuration-guide/configuration/#data-guard---blocking

117CHAPTER 4 – IDENTITY AND SECURITY USE CASES 117

Configuring NGINX App Protect WAF with NGINX Ingress Resources

To configure NGINX App Protect WAF with NGINX Ingress resources, you define policies,
logging configuration, and custom signatures with resources like the following from the
eBook repo . You then reference these resources in an NGINX Ingress Controller Policy
resource and the Policy resource in a VirtualServer resource .

This APPolicy resource (Identity-Security/app-protect/ap-dataguard-alarm-policy.yaml)
enables Data Guard protection in blocking mode (lines 17–21) .

 1 apiVersion: appprotect.f5.com/v1beta1
 2 kind: APPolicy
 3 metadata:
 4 name: dataguard-alarm
 5 spec:
 6 policy:
 16 applicationLanguage: utf-8
 17 blocking-settings:
 18 violations:
 19 - alarm: true
 20 block: false
 21 name: VIOL_DATA_GUARD
 22 data-guard:
 23 creditCardNumbers: true
 24 enabled: true
 25 enforcementMode: ignore-urls-in-list
 29 maskData: true
 30 usSocialSecurityNumbers: true
 31 enforcementMode: blocking
 32 name: dataguard-alarm
 33 template:
 34 name: POLICY_TEMPLATE_NGINX_BASE

View on GitHub

The accompanying APLogConf resource (Identity-Security/app-protect/ap-logconf.yaml)
configures the log to include entries for all requests .

 1 apiVersion: appprotect.f5.com/v1beta1
 2 kind: APLogConf
 3 metadata:
 4 name: logconf
 5 spec:
 6 content:
 7 format: default
 8 max_message_size: 64k
 9 max_request_size: any
 10 filter:
 11 request_type: all

 View on GitHub

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/app-protect/ap-dataguard-alarm-policy.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/app-protect/ap-logconf.yaml

118CHAPTER 4 – IDENTITY AND SECURITY USE CASES 118

This APUserSig resource (Identity-Security/app-protect/ap-apple-uds.yaml) defines a
signature that blocks all requests with a string payload that matches the regex apple (line 13) .

 1 apiVersion: appprotect.f5.com/v1beta1
 2 kind: APUserSig
 3 metadata:
 4 name: apple
 5 spec:
 6 signatures:
 7 - accuracy: medium
 8 attackType:
 9 name: Brute Force Attack
 10 description: Medium accuracy user defined signature with tag (Fruits)
 11 name: Apple_medium_acc
 12 risk: medium
 13 rule: content:"apple"; nocase;
 14 signatureType: request
 15 systems:
 16 - name: Microsoft Windows
 17 - name: Unix/Linux
 18 tag: Fruits

View on GitHub

The APPolicy and APLogConf resources are applied by references to dataguard-alarm on line 8
and logconf on line 11 in the Policy resource defined in Identity-Security/app-protect/waf.yaml:

 1 apiVersion: k8s.nginx.org/v1
 2 kind: Policy
 3 metadata:
 4 name: waf-policy
 5 spec:
 6 waf:
 7 enable: true
 8 apPolicy: "default/dataguard-alarm"
 9 securityLog:
 10 enable: true
 11 apLogConf: "default/logconf"
 12 logDest: "syslog:server=syslog-svc.default:514"

View on GitHub

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/app-protect/ap-apple-uds.yaml
https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/app-protect/waf.yaml

119CHAPTER 4 – IDENTITY AND SECURITY USE CASES 119

The WAF policy is applied in turn by a reference to it on line 8 of the VirtualServer resource
defined in Identity-Security/app-protect/bookinfo-vs.yaml .

 1 apiVersion: k8s.nginx.org/v1
 2 kind: VirtualServer
 3 metadata:
 4 name: bookinfo-vs
 5 spec:
 6 host: bookinfo.example.com
 7 policies:
 8 - name: waf-policy

View on GitHub

1 . Apply the APPolicy, APLogConf, and APUserSig resources .

$ kubectl apply -f ./Identity-Security/app-protect/ap-dataguard- kubectl apply -f ./Identity-Security/app-protect/ap-dataguard-
alarm-policy.yaml alarm-policy.yaml
$ kubectl apply -f ./Identity-Security/app-protect/ap-logconf.yaml kubectl apply -f ./Identity-Security/app-protect/ap-logconf.yaml
$ kubetcl apply -f ./Identity-Security/app-protect/ap-apple-uds.yaml kubetcl apply -f ./Identity-Security/app-protect/ap-apple-uds.yaml

2 . Activate the APPolicy, APLogConf, and APUserSig resources by applying the WAF Policy
resource (defined in waf.yaml) that references them and the VirtualServer resource
(defined in bookinfo-vs.yaml) that references the Policy .

$ kubetcl apply -f ./Identity-Security/app-protect/waf.yaml kubetcl apply -f ./Identity-Security/app-protect/waf.yaml
$ kubetcl apply -f ./Identity-Security/app-protect/bookinfo-vs.yaml kubetcl apply -f ./Identity-Security/app-protect/bookinfo-vs.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/app-protect/bookinfo-vs.yaml

120CHAPTER 4 – IDENTITY AND SECURITY USE CASES 120

After the resources are referenced, App Protect inspects and potentially blocks all requests
handled by NGINX Ingress Controller . With this approach, administrators can have
ownership over the full scope of the Ingress configuration with VirtualServer resources,
while delegating responsibilities to other teams who reference Policy resources .
Additionally, administrators can leverage Kubernetes RBAC to configure namespace
and resource isolation among teams such as NetOps Admin, DevOps, and DevSecOps .

kind: VirtualServer
metadata:
 name: bookinfo-vs
spec:
 host: bookinfo.example.com
 policies:
 - name: waf-policy
 tls:
 secret: bookinfo-secret
 upstreams:
 - name: backend
 service: productpage
 port: 9080
 routes:
 - path: /
 action:
 pass: backend

kind: APLogConf
metadata:
 name: logconf
spec:
 content:
 format: default
 max_message_size: 64k
 max_request_size: any
 filter:
 request_type: all

kind: APPolicy
metadata:
 name: dataguard-alarm
spec:
 policy:
 data-guard:
 creditCardNumbers: true
 enabled: true

kind: Policy
metadata:
 name: waf-policy
spec:
 waf:
 enable: true
 apPolicy: "default/dataguard-alarm"
 securityLog:
 enable: true
 apLogConf: "default/logconf"

121CHAPTER 4 – IDENTITY AND SECURITY USE CASES 121

Configuring NGINX App Protect WAF with the Standard Ingress Resource

As an alternative to NGINX Ingress resources, you can use annotations in a standard
Kubernetes Ingress resource to reference NGINX App Protect policies, as in this example
(Identity-Security/app-protect/bookinfo-ingress.yaml):

 1 apiVersion: networking.k8s.io/v1beta
 2 kind: Ingress
 3 metadata:
 4 name: bookinfo-ingress
 5 annotations:
 6 appprotect.f5.com/app-protect-policy: "default/dataguard-alarm"
 7 appprotect.f5.com/app-protect-enable: "True"
 8 appprotect.f5.com/app-protect-security-log-enable: "True"
 9 appprotect.f5.com/app-protect-security-log: "default/logconf"
 10 appprotect.f5.com/app-protect-security-log-destination:
 "syslog:server=syslog-svc.default:514"

View on GitHub

To activate the policy and log settings, apply the Ingress resource:

$ kubectl apply -f ./Identity-Security/app-protect/bookinfo-ingress.yaml kubectl apply -f ./Identity-Security/app-protect/bookinfo-ingress.yaml

Logging

The logs for NGINX App Protect WAF and NGINX Ingress Controller are separate by design,
to accommodate the delegation of responsibility to different teams such as DevSecOps and
application owners .

NGINX Ingress Controller logs are forwarded to the local standard output, as for all
Kubernetes containers .

To send NGINX App logs to a syslog destination:

• If using NGINX Ingress resources, set the logDest field of the WAF Policy resource
to the cluster IP address of the syslog service .

• If you are using a standard Kubernetes Ingress resource, set the
app-protect-security-log-destination annotation to the cluster IP address
of the syslog service .

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/app-protect/bookinfo-ingress.yaml

122CHAPTER 4 – IDENTITY AND SECURITY USE CASES 122

In the APLogConf resource you can specify which logs to push to the syslog pod .

Here’s a sample syslog deployment (Identity-Security/app-protect/syslog.yaml):

 1 apiVersion: apps/v1
 2 kind: Deployment
 3 metadata:
 4 name: syslog
 5 spec:
 6 replicas: 1
 7 selector:
 8 matchLabels:
 9 app: syslog
 10 template:
 11 metadata:
 12 labels:
 13 app: syslog
 14 spec:
 15 containers:
 16 - name: syslog
 17 image: balabit/syslog-ng:3.35.1
 18 ports:
 19 - containerPort: 514
 20 - containerPort: 601
 21 ---
 22 apiVersion: v1
 23 kind: Service
 24 metadata:
 25 name: syslog-svc
 26 spec:
 27 ports:
 29 - port: 514
 29 targetPort: 514
 30 protocol: TCP
 31 selector:
 32 app: syslog

View on GitHub

To configure logging to syslog, apply the resource:

$ kubectl apply -f ./Identity-Security/app-protect/syslog.yaml

https://github.com/nginxinc/ebook-managing-kubernetes-nginx/blob/main/Identity-Security/app-protect/syslog.yaml

123CHAPTER 4 – IDENTITY AND SECURITY USE CASES 123

Resource Thresholds

You can also use NGINX App Protect to set resource protection thresholds for both CPU
and memory utilization by NGINX App Protect processes . This is particularly important in
multi-tenant environments such as Kubernetes which rely on resource sharing and can
potentially suffer from the “noisy neighbor” problem . The following sample ConfigMap sets
resource thresholds:

 1 kind: ConfigMap
 2 apiVersion: v1
 3 metadata:
 4 name: nginx-config
 5 namespace: nginx-ingress
 6 data:
 7 app_protect_physical_memory_util_thresholds: "high=100 low=10"
 8 app_protect_cpu_thresholds: "high=100 low=50"
 9 app_protect_failure_mode_action: "drop"

For thresholds with high and low parameters, the former parameter sets the percent
utilization at which App Protect enters failure mode and the latter the percent utilization
at which it exits failure mode . Here the high and low parameters are set to 100% and 10%
respectively for memory utilization and to 100% and 50% for CPU utilization .

The app_protect_failure_mode_action field controls how NGINX App Protect handles
requests while in failure mode:

• drop – App Protect rejects requests, returning 503 (Service Unavailable) and
closing the connection

• pass – App Protect forwards requests without inspecting them or enforcing any policies

YOU CAN ALSO USE
NGINX APP PROTECT
TO SET RESOURCE
PROTECTION THRESHOLDS

https://www.techtarget.com/searchcloudcomputing/definition/noisy-neighbor-cloud-computing-performance

C H A P T E R S U M M A RY

Verifying user identity and enforcing security are key to successful operation for all types
of users and applications . We showed how to implement authentication of user identities
by integrating with third-party OIDC IdPs and how to secure applications with NGINX App
Protect WAF .

Let’s summarize some of the key concepts from this chapter:

• Authenticating user identities and enforcing authorization controls are as crucial for
protecting applications and APIs as any other protection technique .

• Offloading authentication and authorization from applications to a third-party
identity provider provides not only a wealth of benefits for app developers, admins,
and end users alike, but is also easy to implement and a wise architectural choice for
most implementations .

• Working with an OIDC identity provider (IdP), NGINX Ingress Controller operates as the
relaying party which enforces access controls on incoming traffic and routes it to the
appropriate services in the cluster .

• Integrating NGINX Ingress Controller with an IdP involves configuring the IdP to
recognize the application, defining NGINX Policy resources, and referencing the policies
in NGINX VirtualServer resources .

• NGINX App Protect integrates into NGINX Ingress Controller to secure the application
perimeter quickly and reliably, helping to protect web applications against bad actors .

©2022 F5, Inc . All rights reserved . F5, the F5 logo, NGINX, the NGINX logo, F5 NGINX, F5 NGINX App Protect, F5 NGINX App Protect DoS,
F5 NGINX App Protect WAF, F5 NGINX Ingress Controller, F5 NGINX Plus, F5 NGINX Service Mesh, and NGINX Open Source are trademarks
of F5 in the U .S . and in certain other countries . Other F5 trademarks are identified at f5 .com . Any other products, services, or company names
referenced herein may be trademarks of their respective owners with no endorsement or affiliation, expressed or implied, claimed by F5 .

VERIFYING USER IDENTITY
AND ENFORCING SECURITY
ARE KEY TO SUCCESSFUL
OPERATION FOR ALL TYPES
OF USERS AND APPLICATIONS

https://www.nginx.com
http://f5.com

	Chapter Summary
	Deploying NGINX App Protect with
NGINX Ingress Controller
	Why Is Integrating a WAF into NGINX Ingress Controller So Significant?
	Configuring NGINX App Protect in NGINX Ingress Controller
	Configuring NGINX App Protect WAF with NGINX Ingress Resources
	Configuring NGINX App Protect WAF with the Standard Ingress Resource
	Logging

	Resource Thresholds

	Implementing SSO for Multiple Apps
	Implementing SSO with Ping Identity
	Configuring Ping Identity as the IdP
	Configuring NGINX Ingress Controller as the Relaying Party
with Ping Identity

	Implementing SSO with Azure Active Directory
	Configuring Azure AD as the IdP
	Configuring NGINX Ingress Controller as the Relaying Party with Azure AD

	Implementing SSO with Okta
	Prerequisites
	Configuring Okta as the IdP
	Configuring NGINX Ingress Controller as the Relaying Party with Okta

	Chapter Summary
	4.	Identity and Security Use Cases

	Displaying Logs and Metrics with Amazon CloudWatch
	Configuring CloudWatch
	Creating Graphs in CloudWatch
	Capturing Logs in CloudWatch with Fluent Bit

	Logging and Monitoring with the Elastic Stack
	Configuring the NGINX Ingress Controller Access and Error Logs
	Enabling Filebeat
	Displaying NGINX Ingress Controller Log Data with Filebeat
	Enabling Metricbeat and Displaying NGINX Ingress Controller and
NGINX Service Mesh Metrics

	Distributed Tracing, Monitoring, and Visualization with Jaeger, Prometheus, and Grafana
	Enabling Distributed Tracing, Monitoring, and Visualization for
NGINX Service Mesh
	Enabling Distributed Tracing for NGINX Ingress Controller
	Enabling Monitoring and Visualization for NGINX Ingress Controller
	Visualizing Distributed Tracing and Monitoring Data

	Monitoring with the NGINX Plus Live Activity Monitoring Dashboard
	Chapter Summary
	3.	Monitoring and Visibility Use Cases

	Configuring Traffic Control and Traffic Splitting
	Why Is Traffic Management So Vital?
	How Do I Pick a Traffic Control or Traffic Splitting Method?
	When Do I Use NGINX Ingress Controller vs. NGINX Service Mesh?
	Deploying the Sample Application

	Configuring Traffic Control
	Configuring Rate Limiting
	Activating Client Rate Limiting with NGINX Ingress Controller
	Allowing Bursts of Requests with NGINX Ingress Controller
	Activating Interservice Rate Limiting with NGINX Service Mesh

	Configuring Circuit Breaking
	Returning a Custom Page

	Configuring Traffic Splitting
	Generating Cluster-Internal Traffic to Split
	Implementing Blue‑Green Deployment
	Blue-Green Deployment with NGINX Service Mesh
	Blue-Green Deployment with NGINX Ingress Controller

	Implementing Canary Deployment
	Canary Deployment with NGINX Service Mesh
	Canary Deployment with NGINX Ingress Controller

	Implementing A/B Testing
	A/B Testing with NGINX Service Mesh
	A/B Testing with NGINX Ingress Controller

	Implementing Debug Routing
	Debug Routing with NGINX Service Mesh
	Debug Routing with NGINX Ingress Controller

	Enabling Multi-Tenancy and Namespace Isolation
	Delegation with NGINX Ingress Controller
	Implementing Full Self-Service
	Implementing Restricted Self-Service
	Leveraging Kubernetes RBAC in a Restricted Self-Service Model
	Adding Policies

	Load Balancing TLS-Encrypted Traffic with
TLS Passthrough
	Chapter Summary
	2.	Traffic Management Use Cases

	Migrating from the Community Ingress Controller to F5 NGINX Ingress Controller
	Option 1: Migrate Using NGINX Ingress Resources
	Set Up SSL Termination and HTTP Path-Based Routing
	Set Up TCP/UDP Load Balancing and TLS Passthrough
	Convert Community Ingress Controller Annotations to NGINX Ingress Resources
	Canary Deployments
	Traffic Control
	Header Manipulation
	Other Proxying and Load Balancing Annotations
	mTLS Authentication
	Session Persistence (Exclusive to NGINX Plus)

	Option 2: Migrate Using the Kubernetes Ingress Resource
	Advanced Configuration with Annotations
	Global Configuration with ConfigMaps

	1.	Installing and Deploying F5 NGINX Ingress Controller and F5 NGINX Service Mesh
	What Is an Ingress Controller and Why Is It Important?
	What’s Special About NGINX Ingress Resources?
	Prerequisites
	Installation and Deployment Instructions for NGINX Ingress Controller
	What Is a Service Mesh and Do I Need One?
	Why Should I Try NGINX Service Mesh?
	Why Integrate NGINX Ingress Controller with NGINX Service Mesh?
	NGINX Service Mesh Architecture
	Installation and Deployment Instructions for NGINX Service Mesh

	Installation with the NGINX Service Mesh CLI
	Install the NGINX Service Mesh CLI
	Install NGINX Service Mesh

	Installation with Helm
	Prerequisites
	Installing with Helm Repository
	Installing with Chart Sources

	 Foreword

