
M
icroservices: U

p
 a

nd
 R

unning
M

icroservices: U
p

 a
nd

 R
unning

Ronnie Mitra &
Irakli Nadareishvili

Microservices Microservices
 Up & Running Up & Running
A Step-by-Step Guide to Building a
Microservices Architecture

compliments of

 Improve Kubernetes Resilience, Visibility,
and Security with F5 NGINX

If you’re ready to implement the methods discussed in this eBook, you need tools with the
right features to support your use cases. NGINX can help with our suite of production-grade
Kubernetes traffic-management tools:

©2022 F5, Inc. All rights reserved. F5, the F5 logo, NGINX, the NGINX logo, NGINX App Protect, NGINX App Protect DoS, NGINX App Protect WAF,
NGINX Ingress Controller, NGINX Plus, and NGINX Service Mesh are trademarks of F5, Inc. in the U.S. and in certain other countries. Other F5
trademarks are identified at f5.com. Any other products, services, or company names referenced herein may be trademarks of their respective
owners with no endorsement or affiliation, expressed or implied, claimed by F5, Inc.

NGINX Ingress Controller – Based on NGINX Plus, with advanced traffic control and shaping, monitoring
and visibility, authentication and SSO, and API gateway functions.

NGINX App Protect – Holistic protection for modern apps and APIs, built on F5’s market-leading
security technologies and integrated with NGINX Ingress Controller and NGINX Plus. Two independent
modules give you deployment flexibility and optimal resource utilization:

• NGINX App Protect WAF – Strong, lightweight protection against OWASP Top 10 and beyond,
plus PCI DDS compliance

• NGINX App Protect DoS – Behavior-based, adaptive, and consistent DoS detection and mitigation
across clouds and architectures

NGINX Service Mesh – Lightweight, turnkey, and developer-friendly, featuring NGINX Plus as an
enterprise sidecar.

Get started by requesting your free 30-day trial of NGINX Ingress Controller with NGINX App Protect WAF
and DoS, and download the always-free NGINX Service Mesh. Learn more today at nginx.com.

Kubernetes Environment

NGINX Ingress Controller
with NGINX App Protect

NGINX Service Mesh

Pages Service A

Pages Service B

https://www.nginx.com/free-trial-request

Ronnie Mitra and Irakli Nadareishvili

Microservices: Up and Running
A Step-by-Step Guide to Building

a Microservices Architecture

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14278-0

[LSI]

Microservices: Up and Running
by Ronnie Mitra and Irakli Nadareishvili

Copyright © 2021 Mitra Pandey Consulting, Ltd. and Irakli Nadareishvili. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Melissa Potter
Production Editor: Deborah Baker
Copyeditor: Charles Roumeliotis
Proofreader: Piper Editorial, LLC

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2020: First Edition

Revision History for the First Edition
2020-11-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492075455 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Microservices: Up and Running, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492075455
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

To every person who took the time to chronicle and share their experiences. And to
Kairav, who didn’t help me write this dedication.

—Ronnie Mitra

To Lucas, who was born shortly after we started working on this book and whose smiles
gave me the strength to complete this book in the middle of a global pandemic; to my

wife Ana, for her support; and to my amazing students at Temple University, in Phila‐
delphia, who kindly “test drove” early versions of a lot of the content in this book.

—Irakli

Table of Contents

Preface. xiii

1. Toward a Microservices Architecture. 1
What Are Microservices? 2
Reducing Coordination Costs 4

The Coordination Cost Problem 4
The Hard Parts 6

Learning by Doing 7
The “Up and Running” Microservices Model 8

Decisions, Decisions… 10
Writing a Lightweight Architectural Decision Record 11

Summary 13

2. Designing a Microservices Operating Model. 15
Why Teams and People Matter 16

Team Size 17
Team Skills 18
Interteam Coordination 19

Introducing Team Topologies 21
Team Types 21
Interaction Modes 23

Designing a Microservices Team Topology 24
Establish a System Design Team 24
Building a Microservices Team Template 26
Platform Teams 29
Enabling and Complicated-Subsystem Teams 31
Consumer Teams 32

vii

Summary 34

3. Designing Microservices: The SEED(S) Process. 35
Introducing the Seven Essential Evolutions of Design for Services: The

SEED(S) Method 36
Identifying Actors 37

Example Actors in Our Sample Project 39
Identifying Jobs That Actors Have to Do 39

Using Job Story Format to Capture JTBDs 41
Example JTBDs in Our Sample Project 42

Discovering Interaction Patterns with Sequence Diagrams 43
Deriving Actions and Queries from JTBDs 45

Example Queries and Actions for Our Sample Project 47
Describing Each Query and Action as a Specification with an Open Standard 48

Example OAS for an Action in Our Sample Project 49
Getting Feedback on the API Specification 53
Implementing Microservices 53
Microservices Versus APIs 54
Summary 56

4. Rightsizing Your Microservices: Finding Service Boundaries. 57
Why Boundaries Matter, When They Matter, and How to Find Them 57
Domain-Driven Design and Microservice Boundaries 59

Context Mapping 62
Synchronous Versus Asynchronous Integrations 65
A DDD Aggregate 66

Introduction to Event Storming 66
The Event-Storming Process 68

Introducing the Universal Sizing Formula 73
The Universal Sizing Formula 74

Summary 74

5. Dealing with the Data. 75
Independent Deployability and Data Sharing 75
Microservices Embed Their Data 77

Embedding Data Should Not Lead to an Explosion in the Number of
Database Clusters 78

Data Embedding and the Data Delegate Pattern 79
Using Data Duplication to Solve for Independence 81
Distributed Transactions and Surviving Failures 82

Event Sourcing and CQRS 85

viii | Table of Contents

Event Sourcing 85
Improving Performance with Rolling Snapshots 91
Event Store 92
Command Query Responsibility Segregation 93

Event Sourcing and CQRS Beyond Microservices 94
Summary 95

6. Building an Infrastructure Pipeline. 97
DevOps Principles and Practices 98

Immutable Infrastructure 99
Infrastructure as Code 100
Continuous Integration and Continuous Delivery 102

Setting Up the IaC Environment 104
Set Up GitHub 104
Install Terraform 105

Configuring Amazon Web Services 106
Setting Up an AWS Operations Account 106
Configure the AWS CLI 110
Setting Up AWS Permissions 112
Creating an S3 Backend for Terraform 115

Building an IaC Pipeline 116
Creating the Sandbox Repository 117
Understanding Terraform 119
Writing the Code for the Sandbox Environment 120
Building the Pipeline 123
Testing the Pipeline 133

Summary 135

7. Building a Microservices Infrastructure. 137
Infrastructure Components 137

The Network 138
The Kubernetes Service 139
The GitOps Deployment Server 140

Implementing the Infrastructure 142
Installing kubectl 142
Setting Up the Module Repositories 142
The Network Module 145
The Kubernetes Module 160
Setting Up Argo CD 171
Testing the Environment 175
Cleaning Up the Infrastructure 177

Table of Contents | ix

Summary 178

8. Developer Workspace. 179
Coding Standards and the Developer’s Setup 180

10 Workspace Guidelines for a Superior Developer Experience 181
Setting Up a Containerized Environment Locally 187

Installing Multipass 188
Entering the Container and Mapping Folders 189

Installing Docker 190
Testing Docker 191

Advanced Local Docker Usage: Installing Cassandra 192
Installing Kubernetes 193
Summary 195

9. Developing Microservices. 197
Designing Microservice Endpoints 197

Flights Microservice 201
Reservations Microservice 201
Designing an OpenAPI Specification 202

Implementing the Data for a Microservice 208
Redis for the Reservations Data Model 209
MySQL Data Model for the Flights Microservice 211

Implementing Code for a Microservice 212
The Code Behind the Flights Microservice 213
Health Checks 218

Introducing a Second Microservice to the Project 220
Hooking Services Up with an Umbrella Project 226
Summary 229

10. Releasing Microservices. 231
Setting Up the Staging Environment 232

The Ingress Module 233
The Database Module 234
Forking the Staging Infrastructure Project 234
Configuring the Staging Workflow 235
Editing the Staging Infrastructure Code 237

Shipping the Flight Information Container 241
Introducing Docker Hub 241
Configuring Docker Hub 242
Configuring the Pipeline 242

Deploying the Flights Service Container 246

x | Table of Contents

Understanding Kubernetes Deployments 247
Creating a Helm Chart 248
Creating the Microservices Deployment Repository 249
Argo CD for GitOps Deployment 255

Clean Up 260
Summary 261

11. Managing Change. 263
Changes in a Microservices System 263

Be Data-Oriented 264
The Impact of Changes 265
Three Deployment Patterns 266

Considerations for Our Architecture 268
Infrastructure Changes 269
Microservices Changes 273
Data Changes 277

Summary 279

12. A Journey’s End (and a New Beginning). 281
On Complexity and Simplification Using Microservices 282

Microservices Quadrant 283
Measuring the Progress of a Microservices Transformation 285
Summary 288

Index. 291

Table of Contents | xi

Preface

Ten years ago a group of software architects gathered together and coined the term
microservices to define a style of software architecture that had evolved. Since that
time, there’s been an explosion of classes, videos, and written works for the microser‐
vices style. In fact, in 2016 we coauthored Microservice Architecture, a book that
offered an introductory guide to the principles of a microservices system.

Since the publication of that book, we and many others have had a chance to live with
the microservices systems we’ve built. Our own experiences, as well as conversations
with other practitioners, have led to a better understanding of the practical problems
that implementers face. A lot of that understanding comes from success, but some of
the most useful insights have come from mistakes.

We’ve endeavored to package up the experiences of practitioners into a highly opin‐
ionated guide. We live in an age with an abundance of practitioner advice available.
But, it can be difficult to navigate this sea of information and put it together in a way
that works. This book offers a practical, prescriptive model that spans team design,
domain design, infrastructure, engineering, and release. Our goal is to give you a uni‐
fied view of a microservices implementation and a strong first step in your journey to
adoption.

Who Should Read This Book
We’ve written this book for microservices implementers. While we touch on some of
the principles and patterns of a microservices system, the focus of the book is on
practical design and engineering. If you are an architect or engineer tasked with
building microservices or a microservices architecture, this is the book for you.

But this book is also a useful guide for readers who simply want to get “up close and
personal” with a microservices implementation. No matter what your role is, if you’re
interested in understanding the work that goes into building a microservices system,
you’ll find this book enlightening.

xiii

https://learning.oreilly.com/library/view/microservice-architecture/9781491956328

What You’ll Need
Since the scope of microservices is quite large, we use a number of different tools and
methods. If you want to follow along with all of the examples, you’ll need to install or
subscribe to use the folllowing tools and platforms:

• Docker
• Redis
• MySQL
• GitHub
• GitHub Actions
• Terraform
• Amazon Web Services
• kubectl

• Helm
• Argo CD

We provide instructions on where and how to access these tools in their relevant
sections.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xiv | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/MicroservicesUpandRunning.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Microservices: Up and
Running by Ronnie Mitra and Irakli Nadareishvili (O’Reilly). Copyright 2021 Mitra
Pandey Consulting, Ltd. and Irakli Nadareishvili, 978-1-492-07545-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xv

https://oreil.ly/MicroservicesUpandRunning
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can access the web page for this book, where we list errata, examples, and any
additional information at https://oreil.ly/Microservices_Up_and_Running.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We’d like to thank our editors Melissa Potter and Deborah Baker, and the team at
O’Reilly, without whom we’d never have finished this book. We’d also like to thank
Pete Hodgson, Chris O’Dell, Lorinda Brandon, JP Morgenthal, Mike Amundsen, and
David Butland for the incredible insight, feedback, and observations they provided.
Finally, we’d like to thank Capital One and Publicis Sapient for the support they pro‐
vided in allowing us to bring this book to life.

xvi | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/Microservices_Up_and_Running
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Toward a Microservices Architecture

The goal of this book is to help you build a working microservices architecture. In
pages you’ll find opinionated and prescriptive advice for building software. That
advice comes from real practitioner experiences that we’ve gathered, both from suc‐
cessful implementations and the ones that could have gone better. We’ve refined these
lessons into a model that we hope will get you up and running faster with your own
system.

Recently, the microservices style of building software has exploded in popularity. In
the early 2010s, the term microservices emerged as a way to describe a new style of
software architecture. Applications built in this newly named style are built with
small, independent components that work together. Since then, adoption rates for the
microservices style have skyrocketed. Startups, enterprise companies, and everyone
in between have been learning and implementing microservices-style architectures.
The growing ecosystem of tools, services, and solutions in this space is testament to
its widespread popularity. At the time of this writing, Allied Market Research has pre‐
dicted that the global market for microservices architectures will grow to $8.07 billion
USD in 2026, from the current $2.07 billion USD. These kinds of numbers indicate a
lot of interest, a lot of adoption, and lots and lots of microservices work.

For many, building software in the microservices way has turned out to be a chal‐
lenge. The truth is that implementing a microservices system isn’t easy. Making lots of
independent parts work together is harder to do than it might sound. Management,
maintenance, support, and testing costs add up in the system. At scale, those costs
can become prohibitive. If you aren’t careful, the pain of managing the system can
make microservices seem like a bad idea.

But the benefits of building microservices make the risks worthwhile. Microservices
done well enable you to make software changes faster and safer at scale. Faster and

1

https://oreil.ly/cugsz

safer change means more agility for your business. That agility translates to better
outcomes for your business and your organization.

The trick to unlocking all that value is to have the right architecture in place to sup‐
port the services. It needs to reduce system costs, without diminishing the value of
independent services. To build that architecture, you’ll need to make important deci‐
sions early. Those decisions will span methods, processes, teams, technologies, and
tools. They’ll also need to work together to form an emergent, optimized whole.

A good way to build a system like this is through evolution. You could start with a few
small decisions and learn and grow as you go. In fact, most early adopters ended up
with microservices through iterative experimentation. They didn’t set out with a goal
of building a microservices-based application. Instead, they ended up with them
through a continuous process of optimization and improvement.

Starting from scratch and iterating takes time. But the good news is that you can use
the experiences of these practitioners to help you build your system faster. Begin your
build with a foundation of patterns, methods, and tools that have been used together
successfully. Then optimize the system to meet the unique goals and constraints of
your organization.

In this book, we’ve documented the decisions that form a strong microservices foun‐
dation. Before we can dive into the details of the model, let’s address an important
question. What exactly do we mean by “microservices”?

What Are Microservices?
There isn’t one official, canonical definition for microservices. A good starting place is
James Lewis and Martin Fowler’s seminal article on microservices from 2014. In that
piece, they describe microservices as:

an approach to developing a single application as a suite of small services, each run‐
ning in its own process and communicating with lightweight mechanisms. […] built
around business capabilities and independently deployable by fully automated deploy‐
ment machinery.

The real heart of Lewis and Fowler’s article is the set of nine characteristics that
microservices possess. Their list starts with the core microservice characteristic of
componentization via services, which means breaking an application into smaller serv‐
ices. From there they go on to cover a wide breadth of capabilities. They document
the need for organizational and management design with the characteristics of orga‐
nization around business capabilities and decentralized governance. They hint at
DevOps and Agile delivery practices when they introduce infrastructure automation
and products not projects. They also identify a few key architecture principles, such as
smart endpoints and dumb pipes, design for failure, and evolutionary design.

2 | Chapter 1: Toward a Microservices Architecture

https://oreil.ly/guhCP

Each of these characteristics is worth understanding, and we encourage you to read
their article if you haven’t already. Together, these characteristics form a holistic solu‐
tion with a very large set of concerns. It includes technology, infrastructure, engineer‐
ing, operationalization, governance, team structure, and culture.

For contrast, here is another definition for microservices from the book Microservice
Architecture by Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amund‐
sen (O’Reilly):

A microservice is an independently deployable component of bounded scope that sup‐
ports interoperability through message-based communication. Microservice architec‐
ture is a style of engineering highly automated, evolvable software systems made up of
capability-aligned microservices.

This definition is similar to Lewis and Fowler’s, but it pays special attention to boun‐
ded scopes, interoperability, and message-based communication. It also makes a dis‐
tinction between microservices and the architecture that enables them.

These are just two examples from a sea of microservices definitions. As with these
examples, most definitions are broadly similar, but each of them differs slightly in
their focus. But they’re usually different enough that it becomes hard to gauge if
you’ve built a textbook microservices system.

In the world of technology, names are important because they give us a simple way of
communicating complex concepts. In this case, the “microservices” label allows us to
describe a style of software architecture that has three general design traits:

1. The application architecture is primarily composed of machine-invocable “serv‐
ices” that are made available on a network.

2. The sizes (or boundaries) of services are an important design factor. These
boundaries include runtime, design-time, and people factors.

3. The software system, organization, and way of working are holistically optimized
to achieve a goal.

This is a pretty general set of design traits. For example, it doesn’t document organi‐
zational styles, specific tools, or architectural principles that should be used. There
also aren’t any formal patterns or practices defined. Instead, this gives us just enough
characteristics to be able to identify a microservices system when we see one.

The truth is, you can get away with calling almost any API-based system a microser‐
vices architecture if you try hard enough. But the real focus should be on the goal of
your system. We think that question of why you’d build microservices is much more
enlightening than the question of what they are. While there are lots of potential ben‐
efits to microservices, we believe the best reason to build software this way is to
reduce your coordination costs.

What Are Microservices? | 3

https://learning.oreilly.com/library/view/microservice-architecture/9781491956328
https://learning.oreilly.com/library/view/microservice-architecture/9781491956328

Reducing Coordination Costs
Companies around the world have had success implementing microservices architec‐
tures. Almost universally, the practitioners we’ve talked to have reported an increase
in speed of software delivery. We believe that improvement comes from the funda‐
mental benefit of the microservices style: a reduction in coordination costs.

It should be pointed out that there are many ways to increase speed in software engi‐
neering. Building software the microservices way is just one option. For example, you
could build a system quickly by cutting corners and incurring “technical debt” that
you’ll deal with later. Or, you could focus less on stability and safety and just get your
product out the door. In some situations and for some businesses these are reason‐
able approaches.

But systems developed for the financial, healthcare, and government sectors, among
others, are not allowed to compromise on safety for the sake of speed. And yet, com‐
petitive and market forces demand higher speed from these industries just like any
other. This is where a microservices system can shine. It provides an architectural
approach that allows you to increase speed without compromising safety. And it lets
you do that at scale.

The Coordination Cost Problem
Building complex software is hard work. In films and on TV, a brilliant programmer
can heroically engineer a world-changing product over the course of a sleepless week‐
end. In real life it takes lots of people and a whole lot of time to produce a quality
result. Multiple teams working on a complex project are typically implementing dif‐
ferent parts of said system, following independent roadmaps, at independent paces.
Periodically, these parts need to be integrated to resolve dependencies, at which point
the mostly autonomous teams need to coordinate their work (see Figure 1-1).

Imagine that Jane is the team lead in charge of the Accounting workstream. Her team
just finished a sprint and has a dependency on a component being developed by the
team in charge of the Shipment module, led by Tyrone. Since roadmaps are inde‐
pendent, it could be that Tyrone’s team is not actually done with their implementation
of the needed component, in the Shipment workstream. At this point Jane has one of
two choices: she can either wait for the component to be delivered (prioritizing safety
but sacrificing speed by putting her team on halt) and do a proper integration test, or
she can rely on an agreed interface contract between her team and Tyrone’s, assuming
that his team will deliver the component exactly as planned. In the latter case, Jane
would proceed without interruption, increasing her team’s speed, but potentially
compromising the overall safety of the system since integration testing didn’t occur at
the earliest possible stage and a “happy path” assumption was made.

4 | Chapter 1: Toward a Microservices Architecture

https://oreil.ly/PBMHU

Figure 1-1. Sample timeline of a complex project with coordination touchpoints

Any team lead in a complex, multiteam environment regularly faces this choice
between ignoring coordination costs and keeping momentum versus acknowledging
the need for coordination and slowing down. Typically we choose one or the other
using our intuition on risk versus benefits, but overall, in a sufficiently complex sys‐
tem, when these choices occur frequently enough there is a very pronounced tension
between speed and safety.

The tension is real; however, it is not related to our primal instincts and there is a way
to fix it. Since coordination costs cause the tension, what if we had a system specifi‐
cally designed in a way to minimize those coordination costs? What if instead of
choosing one way or the other, teams did not even face the choice most of the time?
You can have such a design, emphasizing the minimization of coordination, if you
have autonomous teams working on small batches of isolated work. And that is
exactly what microservices architecture is all about, in its essence.

Understanding that the fundamental force of building successful microservices archi‐
tectures is aiming for the minimization of coordination is extremely useful. It gives us
a universal litmus test. Building complex distributed systems such as a microservices
architecture isn’t easy, and when in doubt we should always ask ourselves, “Is this
decision I am facing going to reduce coordination costs for my teams or not?” The
right answer will be much more obvious when we view decisions from the perspec‐
tive of coordination costs.

Ultimately, microservices have become popular because they help businesses succeed.
Modern organizations are under incredible pressure to adapt, change, and improve
more often and more quickly. Investing in a technology architecture that is purpose‐
fully designed to change speed and change safety at the scale of a large organization

Reducing Coordination Costs | 5

makes a lot of sense. The microservices style enables companies operating in complex
domains to have the agility of a simpler, smaller company while continuing to harness
the power and reach of their actual size. It’s incredibly appealing and the growth in
adoption proves that—however, the benefits don’t come for free. It takes a lot of up-
front work, focus, and decision making to build a microservices architecture that can
unlock that value.

The Hard Parts
One of the biggest hurdles that first-time microservices adopters face is dealing with
the enormous scope and breadth of a microservices system. You might start by focus‐
ing on creating smaller, bounded services. But very soon you’ll find yourself having to
come up with the right infrastructure, data models, frameworks, team models, and
processes to support them. It’s a lot of ground to cover and dealing with all of that
scope can lead to some unique challenges. Here are the three big design problems
that microservices architects and engineers usually face:

Long feedback loops
One big challenge is that impactful decisions in a microservices system aren’t
easy to measure. From the decisions you make today problems may emerge, but
they may not show up until much later. For example, when you start out you
might decide to use a shared communication library to make it easier for your
services to talk to each other. Over time it may become clear that keeping that
library up to date across all of your microservices and teams turns out to be a
huge problem. The crux of the problem here is that it’s difficult to understand the
impact of the decision you’re making until problems arise, which makes it diffi‐
cult to evaluate options and choose among them.

Too many moving parts
At its heart, a microservices system is a complex adaptive system. This means
that each part of the system impacts the other parts in some way. When all those
parts come together an emergent system behavior is produced. If you’ve ever
introduced a new tool or a new process into an organization, you’ve probably
seen this firsthand. Some teams take to new stimuli and change immediately, oth‐
ers need help and support to adapt, but no matter what, you almost always end
up with consequences as to the way people work and the decisions that are made.
For example, technology teams who introduce Docker containerization tooling
inevitably end up adapting their development and release life cycle as a conse‐
quence of their adopting the container deployment model. Sometimes these con‐
sequences are planned, but often we need to deal with the unintended
consequences of the changes that are introduced. This complexity is what makes
microservices system design difficult. It’s difficult to predict the specific impacts
of the changes that are introduced, leading to a risk that we’ll do more harm than
good with a new architecture model.

6 | Chapter 1: Toward a Microservices Architecture

Analysis paralysis
When we compound the problem of long feedback loops for our decision with
the complex system we need to design, it’s easy to see why microservices architec‐
ture is a challenge. The decisions you need to make are both highly impactful and
difficult to measure. This can lead to endless speculation, discussion, and evalua‐
tion of architectural decisions because of the fear of making the wrong kind of
system. Instead of building a system that can achieve business outcomes, we end
up in a state of indecision, trying to model the endless permutations of our
choices. This condition is commonly known as analysis paralysis. It doesn’t help
that the web is full of horror stories, “bumper sticker” advice, and contradictory
best practices for building a microservices architecture.

Ultimately, the real challenge of building a microservices architecture is that of deal‐
ing with a big, complicated system that spans a huge scope. The good news is that this
is not a unique problem to solve. In this book, we’ll be bringing together and using a
set of practices and patterns that have evolved for this type of domain. We’ll also be
introducing and implementing tools that embody these ways of working and make
the work that happens in a microservices system easier, safer, cheaper, and faster.

Learning by Doing
So far, we’ve established that the microservices style can help you deliver software
faster without compromising on safety. But we’ve also identified that the path to a
good microservices architecture is difficult and fraught with challenging and complex
decisions. Many of the successful microservices implementers we’ve talked to have
built their systems through continual iteration and improvement. Frequently, they’ve
had to build architectures that failed before they unlocked an understanding of how
to build a system that works.

If you had unlimited time, you could build a great microservices architecture solely
through experimentation. You could adopt endless organizational models, try every
methodology, and build microservices of various sizes. As long as you could measure
your results, you’d continue to improve the system. With enough trials, you’d end up
with a system that works for you as well as a lot of experience building microservice
systems.

Chances are, though, that you don’t have the luxury of unlimited time. So, how do
you build the expertise you need to build better microservices?

To help address this challenge, we’ve developed a prescriptive microservices model.
We’ve made decisions about team design, process, architecture, infrastructure, and
even tools and technologies. We’ll cover a large scope of topic areas while building a
solution that brings those areas together. Our decisions are built on opinions based in
experiences building microservices systems for large organizations. If you follow our

Learning by Doing | 7

instructions, by the end of the book you’ll have built a simple, operational microser‐
vices system in a cloud-based architecture.

To help bring our microservices examples to life, we’ll be using the
backdrop of a fictional airline reservations system. It will be a vastly
simplified version of what a real reservations system would look
like. Our very basic airline reservations system will include two
functions: a read-only flight information service and a seat reserva‐
tion service.

Our goal is to guide you in building your first microservices implementation as
quickly as possible. In our experience, the act of building a real system is the best way
to gain a true understanding of the work involved and the key decisions. We don’t
expect you to agree with all of our decisions. In fact, questioning the decisions we’ve
made for you is a big part of the learning journey! We hope that the model we build
together is only the first of many microservices systems that you’ll build.

The Dreyfus Model of Skill Acquisition

Starting a learning journey by following instructions is a tried-and-
true path to gaining expertise. In Stuart and Hubert Dreyfus’s Five-
Stage Model of Adult Skill Acquisition, the first stage involves
following prescriptive guidance before proficiency and expertise
are established.

The “Up and Running” Microservices Model
The scope of a microservices architecture is quite large. Unfortunately, we can’t cover
the entire scope in this single book. However, we’ve made an effort to cover the topic
areas that are the most relevant to a microservices system and have the biggest impact
on success. Let’s take a quick look at what we’ll be covering in our “up and running”
microservices model.

Team design
We’ll kick off our build in Chapter 2 by tackling the people side of a microser‐
vices system. We’ll uncover the challenges of effective team design and the funda‐
mental factors that influence microservice coordination. We’ll also introduce the
teams we’ll be using within our example system along with a tool called Team
Topologies to help design them.

8 | Chapter 1: Toward a Microservices Architecture

https://oreil.ly/vs3ao
https://oreil.ly/vs3ao

Microservice design
After designing the teams, we’ll introduce the SEED(S) process in Chapter 3. This
is a design process that will help us create microservices that fulfill the needs of
users and consumers with actionable interfaces and behaviors. Then, in Chap‐
ter 4, we’ll take on the problem of designing the right boundaries for our example
microservices. We’ll also introduce some important Domain-Driven Design con‐
cepts and use a process called Event Storming to “rightsize” our services.

Data design
Data is one of the most difficult aspects of a microservices design. In Chapter 5,
we’ll take a look at the data factors you’ll need to consider in a microservices sys‐
tem. We’ll introduce the concept of data independence and lay the groundwork
for the data architecture in our example project.

Cloud platform
Our microservices implementation will be built on top of a cloud-based infra‐
structure. In Chapter 6, we’ll introduce and implement the principles of immuta‐
ble infrastructure and infrastructure as code (IaC) as the foundation for our
microservices infrastructure. We’ll also introduce AWS as our cloud platform and
build a GitHub Actions–based CI/CD pipeline. Then, in Chapter 7, we’ll use that
pipeline to design and develop an AWS-based microservices infrastructure that
will include networking, a Kubernetes cluster, and a GitOps deployment tool.

Microservices development
With our infrastructure platform in place, we’ll dive into the work of engineering
the microservices. We’ll start by covering the principles and tools you’ll need to
succeed in Chapter 8. Then in Chapter 9, we’ll implement two independent, het‐
erogeneous microservices for our example application.

Release and change
We’ll bring the whole solution together in Chapter 10, where we’ll deploy one of
the example microservices we’ve engineered onto the cloud-based platform we’ve
developed. To do this, we’ll use a set of technologies including DockerHub,
Kubernetes, Helm, and Argo CD. Finally, after release, we’ll take a retrospective
look at the system in Chapter 11.

The model we’ve developed is built on a set of five guiding princi‐
ples, including the twelve-factor app pattern. If you’re interested,
you can read about our model’s guiding principles at this book’s
GitHub repository.

Learning by Doing | 9

https://12factor.net
https://oreil.ly/MicroservicesUpandRunning
https://oreil.ly/MicroservicesUpandRunning

Hopefully this short overview gives you an idea of the scope of our model and exam‐
ple application. By the end of the book we’ll have implemented a full-fledged system.
To get there, we’ll need to make a lot of decisions. So, the first tool we’ll need is a way
of keeping track of the really important ones.

Decisions, Decisions…
When it comes to building software, decisions are a big deal. Professional software
engineers and architects get paid a lot for the decisions that they make and the prob‐
lems they solve. The quality of the software and the business outcomes they drive
depend on the quality of those decisions.

But decisions aren’t always easy to make. They also aren’t always correct. We make the
best decisions we can given the information, experience, and talent that we have.
When any of those variables change, our decisions should change too. Some deci‐
sions are correct at the time, but become outdated when technology, people, or situa‐
tions change. Some decisions were never good ones in the first place. In either case,
we need a way of capturing the decisions that matter so we can re-evaluate and
improve on them over time.

To address that need, we’re going to use a tool called an architecture decision record
(or ADR). We’re not sure who invented the term ADR or when it was first used, but
the idea of documenting design decisions has been around for a long time. The real
problem is that most people don’t take the time to do it. In our experience, ADRs are
an extremely useful tool and a good way of getting clarity on the decisions that need
to be made.

A good decision record needs to capture four important elements:

Context
What is the challenge? What is the problem that we are trying to solve? What are
the constraints? A decision record should give us a summary of these contextual
elements. That way we can understand the rationale for a decision and why it
may need to be updated.

Alternatives
A decision isn’t a decision unless there is a choice to be made. A good decision
record should help us to understand what the choices are. This helps us to better
understand the context and the “selection space” at the time the decision was
made.

Choice
At the heart of a decision is the choice. Every decision record needs to document
the choice that was made.

10 | Chapter 1: Toward a Microservices Architecture

Impact
Decisions have consequences and a decision record should document the impor‐
tant ones. What are the trade-offs? How will our decision choice impact the way
we work or other decisions that need to be made?

You can create decision records however you like. You can write them up as text files,
use a project management tool, or even track them in a spreadsheet. The format and
tooling is less important than the content. As long as you capture the areas we’ve
described you’ll have a good decision record.

For our example project, we’ll use an existing format called a lightweight architectural
decision record (LADR). The LADR format was created by Michael Nygard, and is a
nice concise way of documenting a decision record. Let’s get to know LADR by build‐
ing one together.

If you want to use something other than LADR, Joel Parker Hen‐
derson maintains a great list of ADR formats and templates.

Writing a Lightweight Architectural Decision Record
The first key decision we’ll record is the decision to keep a record of decisions. Put
more simply, we’ll create an ADR that says we intend to keep track of our decisions.
As we’ve mentioned, we’ll be using the LADR format. The nice thing about LADR is
that it’s designed to be lightweight. It lets us keep track of decisions in simple text files
that we can write quickly. Since we’re dealing with text files, we can even manage our
decision records in the same way we manage source code.

LADRs are written using a text format called Markdown, which provides an elegant
and simple way of writing documentation. What’s great about Markdown is that it’s
easy for humans to read in its raw form and most popular tools know how to render
it. For example, Confluence, GitLab, GitHub, and SharePoint can all process Mark‐
down and present it as a formatted, human-readable document.

To create our first Markdown-based LADR, open your favorite text editor and start
working on a new document. The first thing we’ll do is lay out the structure.

Decisions, Decisions… | 11

https://oreil.ly/_mVoC
https://oreil.ly/T3Tc-
https://oreil.ly/oRyx0

Add the following text to your LADR file:

OPM1: Use ADRS for decision tracking

Status
Accepted

Context

Decision

Consequences

These are the key elements of our decision record. The # characters preceding the
lines are Markdown tokens that will let the parser know that these lines are meant to
be headings. Notice that we’ve given this decision a title that corresponds to the deci‐
sion we’re making. We’ve also given the decision the slightly cryptic title: “OPM1.”
This is just a short form code that will help us label and understand which part of the
system the decision relates to. In this case, “OPM1” indicates that this is the first deci‐
sion we’re recording related to the operating model.

The Status header of our record lets us know what life-cycle stage this decision is in.
For example, if you’re drafting a new decision that you need to get agreement on, you
might start with a status of Proposed. Or, if you’re considering changing an existing
decision, you might change its status to Under Review. In our case, we’ve already
made the decision for you, so we’ve set the status to Accepted.

The Context section describes the problem, constraints, and background for the deci‐
sion being made. In our case, we want to capture the need to log important decisions
and why that’s important. Add the following text (or your own variation of it) to the
Context section of your record:

Context
A microservices architecture is complex and we'll need to make many
decisions. We'll need a way to keep track of the important decision
we make, so that we can revisit and re-evalute them in the future.
We'd prefer to use a lightweight, text-based solution so that we
don't have to install any new software tools.

With the context in place, we can move on to recording the actual decision we’ve
made. We can list some of the alternatives considered as well as our choice to use
LADR. Add the following to the Decision section to document this fact:

Decision
We've decided to use Michael Nygard's lightweight architectural
decision record (LADR) format. LADR is text based and is
lightweight enough to meet our needs. We'll keep each LADR record
in its own text file and manage the files like code.

We also considered the following alternative solutions:

12 | Chapter 1: Toward a Microservices Architecture

* Project management tooling (not selected, because we didn't want
 to install tools)
* Informal or "word of mouth" record keeping (not reliable)

All that’s left is to document the consequences. In our case, one of the key conse‐
quences is that we’ll need to spend time actually documenting our decisions and
managing the records. Let’s capture that as follows:

Consequences
* We'll need to write decision records for key decisions
* We'll need a source code management solution to manage decision record files

That’s all it takes to write an LADR. This is an incredibly useful way of capturing your
thinking and has the added benefit of forcing you to make rational, thoughtful deci‐
sions in the first place. As we build our example flights application, we’ll be keeping a
log of the key decisions we make. To save time, we won’t write out the entire decision
record. Instead we’ll highlight that a key decision has been made as in the following
note.

Key Decision: Use ADRs for Decision Tracking
Use ADRs to log the key decisions we’ve made in our system design and build.

You’ll be able to find a detailed version of each decision record at this book’s GitHub
repository.

Summary
In this chapter we introduced some foundational concepts for this book. We provided
a loose definition of a microservices system, including a set of three key traits. We
identified the reduction of coordination costs as the key microservices benefit. We
also explored how complexity and analysis paralysis present challenges to microser‐
vices adopters.

To help address these challenges, we introduced the “up and running” microservices
model—an opinionated, prescriptive implementation that will accelerate the learning
process for implementers. We covered the aspects of the model and the topics we’ll
discuss. Finally, we introduced the concept of the architectural decision record
(ADR) that we plan to use throughout the rest of the book.

With the overview out of the way, all that’s left is to build the system. We’ll kick things
off in Chapter 2 by tackling how microservices work is done with a special focus on
team coordination.

Summary | 13

https://github.com/implementing-microservices/ADRs
https://github.com/implementing-microservices/ADRs

CHAPTER 2

Designing a Microservices Operating Model

In this book, we’ll be building a microservices-based application. To do that, we’ll
design and build microservices as well as the infrastructure and tools you need to
support them. However, the truth is that success with microservices takes more than
writing code and deploying it. To really succeed, you need to have the right people,
the right ways of working, and the right principles in place to make the whole system
work. That’s why we want to start our journey by designing a general operating model
for our application.

An operating model is the set of people, processes, and tools that underlies your sys‐
tem. It shapes all the decision making and work that you do when you build software.
For example, an operating model can define the responsibilities of teams. It can also
define governance over decision making and work.

You can think of the operating model as the “operating system” for your solution. All
the work needed to build microservices happens on top of the team structures, pro‐
cesses, and boundaries you define. In practice, operating models can have a big scope
and can be very detailed. But for our build, we’ll reduce the scope and focus on the
most important parts of a microservices system—how the teams are designed and
how they work together.

That’s what we’ll be covering in this chapter: the relationship between teams and
microservices implementations. We’ll introduce a tool called Team Topologies and by
the end of the chapter we’ll have a team-based design that we can use as the founda‐
tion for the rest of our build.

You don’t need to actually assemble the people and teams we’ve
defined in order to follow along with our “up and running” micro‐
services build.

15

Let’s get started by taking a look at why teams and team design are so important in
the first place.

Why Teams and People Matter
The model we’re using in this book is mostly concerned with technology and tool
decisions. But technology alone won’t give you the value you need from a microser‐
vices system. Technology is important. Good technology choices make it easier for
you to do things that may have been prohibitively difficult. At its best, technology
opens doors and unlocks new opportunities. However, it’s useless on its own.

You can have the world’s best tools and platforms, but you’ll fail if you don’t have the
right culture and organization in which to use them. The goal we’re trying to reach in
our model is to put good technology in the hands of independent, high-functioning
teams. So we’ll need to start by considering the types of teams and structure that will
work best for the model we’re going to develop.

In a microservices system, culture and team design matters. In our research for this
book and in our own implementation experiences we’ve learned an important truth:
people and process are critical success factors. A microservices implementation is val‐
uable when it gives you the freedom to make changes easily and quickly. In practice,
however, change is a byproduct of your organization’s decision-making capability. If
you can’t make quality decisions quickly, you’ll have a difficult time getting value
from your microservices. It’d be like building a racing car with a very poor engine. No
matter how well the car is built, it’s never going to run the way it should.

The idea that team design and culture is important isn’t a new one. Mel Conway cap‐
tured the impact of team structure on system design eloquently in his now-famous
article, “How Do Committees Invent?” Mel Conway’s insightful observations
spawned an even more famous paraphrasing of his thesis, called “Conway’s Law”:

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure.

—Attributed to Fred Brooks

Conway tells us that the output of an organization reflects the way its people and
teams communicate. For example, consider a microservices team that must consult a
centralized team of database experts whenever they need to change a data model.
Chances are that the data model and data implementation will also be centralized in
the system that gets produced. The system ends up matching the organization and
coordination model.

The takeaway from all this is that the people in a microservices system matter. The
way that they make decisions, do their work, and communicate with each other has a
big impact on the system that gets produced. Generally speaking, there are three

16 | Chapter 2: Designing a Microservices Operating Model

https://oreil.ly/oRyx0

people factors that have the biggest impact on a microservices system: team size, team
skills, and interteam coordination. Let’s take a closer look at each of them, starting
with size.

Team Size
The “micro” in microservices implies that size matters and smaller is best. To be hon‐
est, that’s a bit of an oversimplification. But the truth remains: buliding smaller
deployable services is an important part of succeeding with microservices. It also
turns out that the size of the teams building those services matters a lot too.

If you have too many people on a team, they’ll need to spend more time communicat‐
ing with each other. That internal coordination will end up slowing the team down,
resulting in slower delivery of changes. If you have too few people, you won’t have
enough minds and hands to get the work done. “Rightsizing” teams is an important
part of your system design. While there isn’t a specific size that works for everyone in
all situations, a body of experience and studies on team sizes has evolved into
accepted practice.

Bill Gore, cofounder of the Gore-Tex company, W. L. Gore, limited the size of com‐
pany teams to keep them effective. To make that happen, he instituted a built-in size
limit: everyone on a team must have a personal relationship with one another. When
a team gets so big that its members don’t know each other, the unit has grown too
large.

Anthropologist Robert Dunbar, in his studies of the social behavior of chimpanzees,
observed that the group sizes of chimpanzees correlated to their brain size. By extrap‐
olating these findings to his understanding of the human brain, he established a set of
group sizes for people. The Dunbar number states that we can only comfortably
maintain 150 stable relationships, based on the size of our brains. Dunbar also deter‐
mined that humans could keep about 5 intimate, familial relationships and only
about 15 trusted friends.

Perhaps most famously, Amazon CEO Jeff Bezos gave us the “two pizza rule”. It states
that an Amazon team should be small enough that it can be fed with two pizzas.
Although the specific details about the size of the pizzas and the appetite of the team
members are unclear, a two-pizza team is probably going to land somewhere in the 5
to 15 person range that Dunbar describes and stands a good chance of maintaining
the personal relationship heuristic that Gore describes.

All of these stories point to a size limit based on the ability for people to communi‐
cate effectively. Our experiences and our research align with this intuitive concept. To
keep the rate of change high, we’ll need to limit the size of the teams in our system. In
our microservices model, we’re going to keep the size of teams to somewhere between
five to eight people.

Why Teams and People Matter | 17

https://oreil.ly/wduQE
https://oreil.ly/-DbyT
https://oreil.ly/ccT85

Key Decision: Team Size Should Be Limited
The teams that perform work in our system should have no more than eight people
each.

Keeping the team size down will help us limit the internal interaction needed. But it
will have a knock-on effect. Smaller team sizes usually mean more teams. So, we’ll
need to be careful in how we design the rest of the system. It’s no good to have small
teams if they have to spend all their time coordinating with each other. To avoid that,
we’ll need to enable independent and autonomous work as much as safely possible.

Another side effect of making our teams smaller is that it limits the number of spe‐
cialists we can have. With less people on the team, we’ll need to make sure we have
enough talent collectively to deliver a quality output. That’s why we’ll need to con‐
sider how we populate our teams from a skills perspective.

Team Skills
A team can only be as good as its members. If we want high-performing teams, we’ll
need to pay special attention to the way we decide who gets to be on a team. For
example, which roles and specializations will our teams need? How talented and
experienced should individual team members be? What is the right mix of skills and
experience?

The truth is that these are difficult questions for us to answer universally. That’s
because people and culture are often the most unique thing about the place where
you work. For example, a handful of companies spend a lot of money to have the top
1% of technology talent from around the world working for them. Another company
might mostly hire local talent with a focus on career growth and learning on the job
from a small number of experts. Good team design in these two companies will prob‐
ably look quite different.

We want this book to be focused on building a microservices implementation. So, we
won’t go very deep into organizational and culture design. The good news is that
there is a general principle we can adopt that seems to help microservices implement‐
ers universally. That’s the principle of the cross-functional team.

In a cross-functional team, people with different types of expertise (or functions)
work together toward the same goal. That expertise can span both technology and
business domains. For example, a cross-functional team could contain UX designers,
application developers, product owners, and business analysts.

18 | Chapter 2: Designing a Microservices Operating Model

Cross-functional teams have been around for a long time, dating
back to at least the 1950s at the Northwestern Mutual Life Insur‐
ance Company.

A big advantage of building a team this way is that you can make better decisions
faster. We’ve already established an upper limit on team size, by limiting membership
to eight people. A “rightsized” team with the right people on board can move at high
velocity with authority.

But who are the right people? When it came to team size, we had anecdotes, experi‐
ence, and academic studies to draw on. But for team profiles, it’s much more difficult
to find consistent stories. For example, when we’ve seen a large cloud vendor work on
microservices, they’ve used four to five experts with cross-domain knowledge, cou‐
pled with a single testing expert. Conversely, we’ve seen consulting companies use a
large mix of specialized engineers, product owners, project managers, and testing
experts on each team. The talent, experience, and culture of your organization will
inform the precise mix of people.

So, rather than dictate exactly which roles you’ll need on your teams, we’ll make two
general decisions for our model. First, teams should be cross-functional. Our experi‐
ence shows that microservices work better when teams can make good decisions on
their own. Cross-functional teams enable that. Second, teams should be comprised of
members who directly influence the output. In this way, we’ll pick people who we
know can add value to the team. We don’t need observers on the team or people who
are only tangentially related to the work and decisions that are being made.

Key Decision: Principles for Team Membership Should Be Defined
Teams should be cross-functional and consist only of members who can add value to
the team’s deliverable, service, or product.

With the right size and the right people, we should be able to build effective teams
that can get things done. As the number of teams grow, we’ll also need to consider
how teams coordinate with each other. That’s the last team property we need to
address.

Interteam Coordination
Building a team with the right size and filling it with the right people will help us cre‐
ate high-performing teams. But it’s the communication among teams, rather than
inside them, that can really bog down a microservices system. We highlighted the
problem of coordination costs in “The Coordination Cost Problem” on page 4. If we

Why Teams and People Matter | 19

can reduce the amount of coordination that takes place between teams, our microser‐
vices teams will be able to deliver changes faster.

It would be nice if our microservices teams could act completely autonomously and
independently. If teams were free to make their own design, development, testing,
and deployment decisions, there would be no “organizational friction” to slow things
down. In our experience this isn’t a practical method of operation.

That’s because coordination and collaboration are important for the success of an
organization. We might want our microservices teams to act independently, but we
also want them to create services that are valuable to customers, users, and the orga‐
nization. This means communication is required to establish shared goals, communi‐
cate change requests, deliver feedback, and resolve problems.

On top of this, when teams operate completely independently, there’s less opportunity
to share. Microservices teams working independently can pick the right tools for the
right job and build highly efficient systems. But that efficiency is localized to the
team. Sometimes, that means we lose out on system-level efficiency. For example, if all
our teams design and build their own cloud-based network architectures, we’ve lost
an opportunity to do that work once and share it.

It’s possible to build an organization that enables efficient team
independence and autonomy through self-organization. For exam‐
ple, microservices pioneer Fred George has described a method he
calls Programmer Anarchy, in which technology teams have full
autonomy (and responsibility) to form teams, choose work, and
design their own solutions. But in our experience most enterprise
organizations would have difficulty pulling this off consistently.

If we go too far towards team independence and autonomy, we’ll introduce system-
level inefficiencies and misalignment with organizational goals. If we introduce too
much coordination, we risk bogging the whole system down and losing the benefits
of highly changeable microservices. The challenge is to strike the right balance
between independent work and coordinated efforts. That takes some experimentation
and continuous tuning of your team design.

Most importantly, optimizing team coordination requires an active design effort. One
of the mistakes we’ve seen practitioners make is to focus solely on the technical archi‐
tecture. When that happens, the team design forms around the technology that’s been
created. It’s only then that the problems with the coordination model become obvi‐
ous. By that point, it’s often too costly or too difficult to make changes.

20 | Chapter 2: Designing a Microservices Operating Model

https://oreil.ly/C1N0f

To avoid this problem, we’ll address team coordination and team design as the first
step of our system design process. Some people call this an “inverse Conway maneu‐
ver,” because the communication structure we design will end up informing the sys‐
tem that gets created. Whatever you want to call it, we’ve found that starting with a
focus on team design and coordination can really help you succeed with your micro‐
services design. In fact, this point is so important that we’ll log it as a decision.

Key Decision: When to Design Teams and Coordination Models
Team and coordination design should start before the design of the system architec‐
ture or microservices. The team and coordination models must continually be upda‐
ted and improved for the life of the system.

We’ll cover this in the rest of this chapter. First, we’ll introduce a useful tool for
designing microservices team models called Team Topologies.

Introducing Team Topologies
Since we’re going to start our design work with a focus on teams, we’ll need a way of
cataloging and communicating our decisions. There are plenty of ways of document‐
ing team designs. For our model, we’ll use a design tool called Team Topologies.

Team Topologies is a design approach invented by Matthew Skelton and Manuel Pais.
We like using it because it provides a formal language for talking about team design,
with a special focus on the way teams work with each other.

We won’t be using every aspect of the Team Topologies approach in our design work.
Instead, we’ll be drawing on three elements: team types, team interaction modes, and
diagramming. With these parts, we’ll be able to build a simple, working design for our
microservices teams.

Next, we’ll look at different parts of the Team Topology approach, starting with the
types of teams we can define.

Team Types
One of the core concepts of Team Topologies is team types. These are archetypes or
categories that describe the basic nature of a team, from the perspective of its com‐
munication with the rest of an organization. There are four team types defined in
Team Topologies: stream-aligned, enabling, complicated-subsystem, and platform.
Let’s take a quick look at each of them:

Introducing Team Topologies | 21

https://teamtopologies.com

Stream-Aligned
A stream-aligned team owns and runs a deliverable piece of work. The key char‐
acteristic of this team is a continual delivery of something relevant to the busi‐
ness organization. The stream-aligned team embodies Amazon CTO Werner
Vogel’s comment on the responsibilities of Amazon teams: “You build it, you run
it.” Stream-aligned teams don’t disband after a release. Instead, they continue to
own and implement a “stream” of changes, improvements, and fixes to their busi‐
ness deliverable. For example, microservices teams are usually stream-aligned as
they continually release features to the services they own.

Enabling
An enabling team supports the work of other teams with a consulting engage‐
ment model. These teams are usually composed of specialists and subject matter
experts who can bridge gaps in expertise or capability. But they can also help
individual teams understand the bigger picture of the organization or industry
they are operating in. For example, an enabling architecture team can help
microservices teams understand emerging technical standards and conventions
in the organization.

Complicated-Subsystem
This type of team works on a domain or on subject matter that is difficult to
understand. Or at least, it’s difficult enough that there is a lack of available
resources in the organization. Some problem areas don’t scale well and can’t be
embedded in every team. For example, tuning software for cryptographic secu‐
rity requires a special kind of expertise and experience. Rather than trying to
scale that skill across all teams, most organizations create a complicated-
subsystem security team who can engage with individual teams as needed.

Platform
Like enabling teams, the platform team provides support to the rest of the orga‐
nization, with one important difference—platform teams deliver a self-service
enablement experience to their users. While the enabling and complicated-
subsystem teams are limited by the bandwidth of their people, a platform team
invests in building supporting tools and processes that can scale easily. This
requires more up-front investment and continual maintenance and support. The
platform becomes a product, whose users are the rest of the teams in the organi‐
zation. For example, operations teams can become platform teams when they
offer build and release tools to development teams for them to use.

With an understanding of these four team types, we can start communicating how we
want our teams to operate. To really communicate our team design, we will need one
more part of the model: the ways in which teams interact with each other, which we’ll
cover next.

22 | Chapter 2: Designing a Microservices Operating Model

https://oreil.ly/bIwkK

Interaction Modes
Our goal in designing teams for the microservices build is to reduce the amount of
coordination that needs to happen for work to get done. The Team Topology team
types help us identify the basic characteristics of a team. To really understand how
and where we can reduce coordination costs, we’ll need to articulate the way our
teams are coordinating with each other. That’s where the Team Topology interaction
modes come in. In their book, Skelton and Pais discuss three interaction modes,
which describe different levels of coordination:

Collaboration
This interaction mode requires both teams to work closely together. Collabora‐
tion provides opportunities for teams to learn, discover, and innovate. But it
requires high levels of coordination from each team and is difficult to scale. For
example, a security team might collaborate with a microservices team to develop
a more secure version of their software. The collaborative work might entail
designing, writing, and testing code together.

Facilitating
A facilitating interaction is similar to a collaborative one, but it is unidirectional.
Instead of teams working together to solve a shared problem, one team plays a
support role to help the other team deliver their desired outcome. An example of
a facilitating interaction would be when an infrastructure team helps a microser‐
vices team understand how to troubleshoot issues with the network architecture
they’ve been provided.

X-as-a-service
Sometimes team collaboration takes on a consumer-provider flavor. In this type
of interaction, one team provides a service to other teams in the organization
with minimal levels of coordination. This usually occurs when a team releases a
shared process, document, library, API, or platform. X-as-a-service interactions
tend to scale well because they require less coordination. They are also a natural
fit for platform teams, but other team types may incorporate this mode as well.
For example, an enabling architecture team might document a list of recom‐
mended software patterns and offer those to all microservices teams in a “pat‐
terns as a service” model.

There’s a lot more to Team Topologies then we’ve outlined here. Taken together, this
categorization of team types and interactions gives us a great palette of terms we can
use to paint a picture of what our microservices teams should look like, with particu‐
lar emphasis on when and how much our teams will need to coordinate. In the next
section, we’ll use the terms we’ve borrowed from Team Topology to design a micro‐
services team model.

Introducing Team Topologies | 23

Designing a Microservices Team Topology
The Team Topology approach gives us a language for talking about team coordina‐
tion. What makes it really special, is that it’s a language built for visual representa‐
tions. In this section, we’re going to create a design for our microservices teams that
communicates the teams we need and how they will work together. When we’re done,
we’ll have a diagram that highlights the main points of team coordination and
interaction.

To create a team design and Team Topology, we’ll follow this step-by-step approach:

1. Establish a system design team.
2. Create a microservices team template for future teams.
3. Define platform teams.
4. Add enabling and complicated-subsystem teams.
5. Add key consumer teams.

As we go through each of the steps, we’ll be documenting our team design and build‐
ing our Team Topology. For each step we’ll identify one or more teams, create and
populate a team design document, and draw the key interactions for that team. Let’s
get started by focusing on the system design team.

There isn’t a single Team Topology that is a good fit for everyone. It
would be impossible to account for your organization’s size, people,
skills, and needs. The topology we’ve created here is a consolidated
version of large enterprise-scale implementations that we’ve seen
work well.

Establish a System Design Team
A microservices system is a complex system with lots of parts and lots of people
doing work. The software that gets built emerges from the collective decision making
and work of all those people together. In our experience, getting everything to work
together the way you want isn’t easy. That’s why you’ll need to designate a group of
people who can shape the vision and behavior of the system. In our model, we’ll call
this group the system design team.

24 | Chapter 2: Designing a Microservices Operating Model

In our model, the system design team has three core reponsibilities:

Design team structures
The system design team is the first team we’re putting together. It’s also the team
that we expect to design the teams that will do the work of building the system.
That’s the work we’ll be doing in our subsequent team design steps. In effect,
we’re playing the role of the system design team together.

Establish standards, incentives, and “guardrails”
In addition to forming teams, the system design team should shape the decisions
that individual teams can make. This ensures that teams produce results that
align with our system goals. One way to do this is by enacting standards that dic‐
tate what teams can and can’t do. That’s the prescriptive approach we’ve taken for
many of the decisions in this book. In practice, too much standardization is diffi‐
cult to maintain and too restrictive for a healthy system. Good designers will
introduce incentives to get more of the behavior they want and “guardrails” that
act as lighter recommendations and references rather than outright rules.

Continually improve the system
Finally, the system design team needs to continually improve all the team
designs, standards, incentives, and guardrails that have been introduced. To do
that, they’ll need to establish a way of monitoring or measuring the system as a
whole so that they can make changes and introduce improvements.

It’s useful to document these team responsibilities so that we can clearly communicate
what each team does. In fact, we should document all of the key properties of our
teams to make it easier to understand and improve them as the system evolves. At a
minimum, we should cover the Team Topology type, the size of the team, and the
responsibilities we’ve defined earlier.

Let’s start by deciding on a Team Topology type. After the initial setup of team
designs and standards, we expect the system design team to focus on helping other
teams build microservices and supporting components. We expect most of their work
to be consulting based, facilitating delivery teams and helping them navigate the sys‐
tem. Although the system design team delivers a system, the work we want them to
do is characteristic of an enabling team type.

We also want the system design team to be small. It should consist of just a few senior
leaders, architects, and system designers who can quickly make decisions together for
the system as a whole. To that end, we’ll limit the size of the team to between three to
five people—even less than our general team size that we decided on earlier.

Designing a Microservices Team Topology | 25

Let’s capture these decisions and team properties by creating a lightweight design
document for the system design team. Using your favorite text or document editor,
create a file named system-design-team.md and populate it with the following content:

System Design Team

Team Type
Enabling

Team Size
3-5 People

Responsibilities
* Design team structures
* Establish standards and "guardrails"
* Continually improve the system

The nice thing about using a text file for our team documentation is that we can treat
it like code. Because of this, we can store the documentation in a code repository and
version it whenever we need to make changes. Alternatively, you can use a wiki,
document repository, or whatever works best in your company. We’ll leave it to you to
decide how you want to manage your team design files. You can find all of the exam‐
ples for our team designs in our GitHub repository.

At this point, we’d typically diagram the team visually and map out its interactions
with other teams in the system. This is the heart of our team design work and allows
us to visualize how teams will work together. For example, we can expect the system
design team to use a facilitating interaction model with microservices teams. But
since this is the first team we’ve defined, we don’t have anything to interact with. So
we’ll leave the diagramming work for later.

With the system design team document created, we can move on to documenting and
diagramming our microservices teams.

Building a Microservices Team Template
In the “up and running” model, every microservice is owned by a team. This single
team owns the decisions and work of designing, building, delivering, and maintain‐
ing a microservice. In practice, a single team may own multiple microservices. This is
fine, and avoids unnecessary growth of teams. The most important constraint is that
the responsibility for a microservice is not shared across multiple teams. Microser‐
vice ownership will be limited to an accountable and responsible team.

26 | Chapter 2: Designing a Microservices Operating Model

https://oreil.ly/Microservices_UpandRunning_team-designs

Key Decision: Microservice Ownership
Each microservice will be owned by a single team, who will design, build, and run it.
This team is responsible for the microservice for the lifetime of the service.

As your system matures, you’ll end up with lots of microservices. You’ll also likely
end up with lots of microservices teams. Since we expect to have multiple microser‐
vices teams operating in our system, we won’t design each of them individually.
Instead, we’ll define a microservices team template that can be applied to any new
teams we create. Think of this as creating a cookie cutter that we can use to “punch
out” some microservices teams later on when we need them. Or, if you have a pro‐
gramming background, you can think of this as defining a “class,” for which we’ll be
creating “instances” later.

To get started, we’ll do the same thing we did for our system design team—define
some essential team properties. Just like before, we’ll document the team type, team
size, and responsibilities. As we mentioned before, our microservices teams are
expected to own one or more microservices independently. That ownership includes
running the service and releasing a continuous stream of improvements, fixes, and
changes as needed.

With that characteristic, it makes sense to classify the microservices team as stream-
aligned. We’ll also stick to the team-sizing decision we made earlier in this chapter
and keep the team size between five to eight people. Let’s document all of these prop‐
erties like we did before. Create a file named microservice-team-template.md and pop‐
ulate it with the following content:

Microservices Team Template

Team Type
Stream-Aligned

Team Size
5-8 People

Responsibilities
* Designing and developing microservice(s)
* Testing, building, and delivering the microservice(s)
* Troubleshooting issues

Designing a Microservices Team Topology | 27

With the template definition documented, we can start diagramming our team inter‐
action model. To do that, open a drawing or diagramming tool and draw a horizontal
rectangle as shown in Figure 2-1. We have used yellow for this; each type of team
should have its own color.

Figure 2-1. A stream-aligned microservices team

If you don’t have a favorite diagramming tool, diagrams.net and
Lucidchart are good browser-based options that are free to get
started with. Of course, you’re also free to diagram the old-
fashioned way, with a pen and a napkin!

In the previous section we defined our system design team. Now that we have our
microservices team diagrammed, we can add the systems team into the picture. Draw
the system design team using a vertical rectangle, as shown in Figure 2-2.

Figure 2-2. The enabling system design team

Use a unique color (we have used violet) for the system design team to denote that it’s
an enabling team. We’ve placed it vertically and to the left of the microservices team
to show an interaction between the two teams. In this case, we expect the system
design team to facilitate the microservices teams. To keep things simple, we aren’t
going to model the specific details of the interaction mode. Highlighting that the
teams will need to interact is enough now.

Our color choices for the team types in this chapter are based on
the illustrations shown on the Team Topologies website.

In practice, as your system evolves, you’ll need to replace this generic “Microservices
team” box with the actual names of your teams and the services they are working on.

28 | Chapter 2: Designing a Microservices Operating Model

https://www.diagrams.net
https://www.lucidchart.com
https://oreil.ly/dgEUz

Over time, you may also need to capture the interactions that must take place
between your microservices teams. For example, if one microservice needs to invoke
another service, chances are there will be some coordination work that is worth
capturing.

We use a particular color to denote that our microservices team is stream-aligned.
We’ll be updating this diagram as we go through the team design steps, so keep your
drawing tool handy for later on. You may also want to save the diagram so you don’t
lose any work.

Now that we have our first two teams modeled, let’s take a look at the cloud platform
team.

Platform Teams
Platform teams are an important part of a microservices system. Most of the micro‐
services work is done by independent, stream-aligned teams. Without support, how‐
ever, they’ll need to figure out how to solve a lot of development, testing, and
implementation problems on their own. Our facilitating system design team can
enable some of their decision making, but the microservices teams will still need to
deal with the complexities of an entire technology stack and architecture.

That’s where platform team types can help. There are a lot of common components in
a microservices system. A platform team can make those common components avail‐
able for microservices to use “as a service.” The service model improves the scalability
of platform components, reducing the coordination problems that usually occur
when shared components are centralized.

In our model, we’ve decided to instantiate a cloud platform team that offers a net‐
work, application, and deployment infrastructure to the rest of the organization as a
service. We’ll get into the details of what this offering looks like in Chapter 7, when
we dive into infrastructure design. The key point for now is that the teams in our sys‐
tem will be able to create new environments on demand using the infrastructure serv‐
ices that our platform team provides.

With those details understood, we can document our cloud platform team in a file
called cloud-platform-team.md with the following team properties:

Cloud Platform Team

Team Type
Platform

Team Size
5-8 People

Responsibilities
* Design and develop a network infrastructure

Designing a Microservices Team Topology | 29

* Design and develop an application infrastructure
* Provide tools for building a new environment
* Update network and application infrastructure when required

Notice that one of the responsibilities of our cloud platform team is to update the
infrastructure that is being offered. This is a key part of a platform team’s responsibil‐
ity. They need to treat the users of the platform as if they are customers. In this rela‐
tionship, the platform offering needs to be continually improved to meet their
customer’s requirements and expectations.

As we’ve done before, we’ll add the cloud platform team to the Team Topology dia‐
gram that we’ve been working on. But this time we need to model a platform team. To
do that, draw a horizontal rectangle (again, using a unique color; we’ve used light
blue) below the microservices teams and connected to the system design team, as
shown in Figure 2-3.

Figure 2-3. The cloud platform team offering a service

Note that we’ve also drawn a small black arrow between the platform and microser‐
vices teams. This is to show that the platform team is implementing the x-as-a-service
model for its interaction with the microservices team. Our diagram also shows that
the system design team will be enabling the work of the platform team. This will
ensure that the platform fits the goals and vision for the overall system.

For our “up and running” model, we’ve only defined a single instance of a platform
team. But, in practice, you’ll probably need to roll out multiple platform teams to
keep the teams to a manageable size. When that happens, you’ll also need to be con‐
sider how multiple platform teams will coordinate together to offer services to the
rest of the organization.

30 | Chapter 2: Designing a Microservices Operating Model

Enabling and Complicated-Subsystem Teams
With the three teams we’ve designed, we have enough people in place to be able to
deliver a microservices system. Beyond these core capabilities, there may be addi‐
tional capabilities that we want a team to own. That may be because there is an
important set of skills that we want to provide enablement for. Or, because there is a
complicated system feature that requires a dedicated team.

In our microservices model, we’ve decided to create a specialized release team. This
additional team owns the responsibility of releasing (or deploying) microservices into
a production-like environment. While a microservices team could deploy its own
services directly into a production environment, in our experience this isn’t always
what happens.

That’s because in most organizations there is usually an additional testing and accept‐
ance check that needs to happen before a service can go live. Instead of deploying
directly into production, microservices teams deliver a built and tested container.
That container is then automatically deployed by a release team who coordinates the
work of tests, approvals, and deployment of the change.

The release team embodies the complicated-subsystem team type. It contains special‐
ist knowledge of the release, approval, and deployment process and collaborates with
stream-aligned teams to make that work happen. To document the design of our
release team, create a file called release-team.md with the following properties:

Release Team

Team Type
Complicated-Subsystem

Team Size
5-8 People

Responsibilities
* Releasing microservices to production
* Coordinating approvals for releases

Next, we’ll add the release team to the developing picture of our Team Topology.
Complicated-subsystem teams are modeled with yet another specific color.

Designing a Microservices Team Topology | 31

So, open your Team Topology diagram and add a square (we’ve colored it red) near
the end of the microservices team’s box, as shown in Figure 2-4.

Figure 2-4. The release team

As we can see from our emerging topology, one of the trade-offs to the release team
approach is the coordination costs it brings. At scale, this can become a big problem.
For example, if you want to perform daily releases across multiple microservices, the
release team will struggle to coordinate all of that activity. If you find yourself in that
situation, you’ll need to change the team design and shift the responsibilities for
deployment to the individual microservices teams.

The release team is the final team at the core of our microservices model. But to fin‐
ish our design, we need to consider the teams that will have to use our microservices.
We’ll cover that next.

Consumer Teams
Microservices are only useful if they are used. So, it’s worthwhile identifying the con‐
sumers of our microservices and how they’ll interact with our system teams. In some
architectures, that could include mobile application development teams, web devel‐
opment teams, or even third-party organizations. In our model, the main consumer
of our microservices system is the API team.

The API team is responsible for exposing our microservices to other development
teams as an application programming interface (API). For example, a mobile applica‐
tion development team would interact with the API released by this team and never
call our microservices directly.

We’ll get into the details of the API and the architecture later in the book. For now, it’s
worth detailing the properties of our API team and its responsibilities. We can do that
by creating a file named api-team.md and populating it as follows:

32 | Chapter 2: Designing a Microservices Operating Model

API Team

Team Type
Stream-Aligned

Team Size
5-8 People

Responsibilities
* Design, develop, and maintain APIs at the boundary of the system
* Connect API to internal microservices

Just like the microservices team, the API team is a stream-aligned team. That’s
because it needs to continually deliver changes to the API that reflect business needs
and consumer demands. A special nuance of the API team is that, because the API
needs to call microservices to function, it is dependent on the microservices team.

We can model these interaction properties in our Team Topology model by adding
another rectangle at the top of our diagram to represent the API team. It should be of
the same color as the microservices team (we’ve used yellow), as it is also a stream-
aligned team. To reflect the dependency between our microservices and API teams,
we’ll again use a black arrow to show an x-as-a-service engagement model. This indi‐
cates that the microservices team will need to make sure their services are invocable
and usable in a self-service fashion.

When you’re finished, the diagram should look something like Figure 2-5.

Figure 2-5. The finished Team Topology with the API team

With this final team defined an in the picture, our topology looks a lot like the fin‐
ished product we showed you at the start of this section. With the topology defined,
we can see where the main coordination points are where the work is being done.
Overall, our model enables a fairly independent, autonomous way of working. How‐
ever, we’ll need to invest some time and effort into building a cloud platform as a ser‐
vice to make our model work.

With our basic Team Topology defined, we can see how this work ties back to the
goal of our chapter—building an operating model.

Designing a Microservices Team Topology | 33

Summary
Taken together, the decisions, team definitions, and topologies we’ve just created
form our microservices operating model. With it, we’ve defined the teams that need
to be created, their characteristics and responsibilities, and the way we expect our
teams to work together. It’s an important design step and will influence the rest of our
microservices work. In fact, every decision we make from this point on will be heavily
influenced by the operating model we’ve just established.

In truth, we didn’t go very deep with our operating model design. In practice, it’s
worthwhile drawing out more than one Team Topology diagram to reflect different
types of interaction modes. For example, the toubleshooting problems with our sys‐
tem would likely require a different engagement model from the one we’ve shown.
Similarly, we haven’t diagrammed the interactions required to change the deliverables
that the cloud platform, system design, and release teams provide.

In addition to the initial design, the operating model design should be continually
improved. One of the nice things about capturing our team definitions and topolo‐
gies as documents is that we can treat them like code. So we can version and manage
changes as the system evolves. You may even want to add additional design assets to
your collection. For example, you could define service-level agreements for platform
teams and skill inventories for your stream-aligned teams.

Ultimately, our goal in this chapter was to create a foundation for the rest of our
design and development work. Our lightweight approach to the Team Topology and
team designs does just that. With our operating model in hand, we can move on to
designing the actual microservices. That’s what we’ll cover in Chapter 3.

34 | Chapter 2: Designing a Microservices Operating Model

CHAPTER 3

Designing Microservices:
The SEED(S) Process

If you recall, in Chapter 1, we stated that the main benefit of adopting microservices
architecture is the ability to increase development speed without compromising
safety of a system, at scale. This is an extremely important benefit for organizations
tackling significantly complex problems. Note though that this certainly happens as a
result of a conscious design, not by accident. In all but the simplest cases, it is impos‐
sible to iterate toward a successful microservices architecture without an effective and
explicit, end-to-end system design.

In this chapter, we introduce an evolutionary process for designing microservices.
This methodology was first formulated by one of the authors at a healthcare startup
he cofounded, and later successfully implemented on numerous projects at other
companies. The flexible approach has proven equally as effective for smaller organi‐
zations tackling complex problems; for eaxmple, a pioneering startup revolutionizing
the vast healthcare industry and a large organization with thousands of software engi‐
neers across hundreds of teams.

Key Decision: Use a Standard Process for Service Design
Use a standard, repeatable process to achieve consistently high-quality, customer-
centric design for the services in your system.

The microservices design system described in this chapter is a top-down, multistep
methodology, and a collection of reusable processes, where each later step evolves
from a previous one. Due to its evolutionary nature, we call the system Seven Essen‐
tial Evolutions of Design for Services or SEED(S). We find the tongue-in-cheek name

35

fitting, given that the analyses performed with this methodology often prove to be the
essential seeds from which a beautiful, complex microservices system emerges. Just as
a beautiful, flourishing garden starts with planting of some key seeds, the SEED(S)
analysis and design process is an essential first step of your microservices implemen‐
tation that facilitates the later, coding part.

Introducing the Seven Essential Evolutions of Design for
Services: The SEED(S) Method
As James Lewis and Martin Fowler point out in their seminal article about microser‐
vices, one of the main traits of the microservices architecture is componentization of
a system via services. By “services,” they mean software components that are inde‐
pendently deployable and accessible over standard network protocols, such as a web
service request or a remote procedure call. By exposing system components as serv‐
ices, among other things, we commit to defining explicit public interfaces for them.
Increasing the flexibility and usability of these interfaces through good design can
have a profound impact on the robustness of the system’s architecture and on devel‐
oper productivity.

The SEED(S) process provides a repeatable, reliable, and battle-tested methodology
for designing service interfaces that are user-friendly and robust.

It should also be noted that, as a generic approach, the SEED(S) methodology is use‐
ful beyond just microservices and can be effective in the design of any number of ser‐
vice types, including RESTful and GraphQL APIs created for frontend UIs. This wide
range of applicability should not be surprising. After all, from a technical perspective,
a microservice is also a kind of API, just developed with a specific type of boundaries
in mind—those that minimize coordination needs.

Without further ado, the seven steps of the SEED(S) process are:

1. Identifying actors
2. Identifying jobs that actors have to do
3. Discovering interaction patterns with sequence diagrams
4. Deriving high-level actions and queries based on jobs to be done (JTBDs) and

the interaction patterns
5. Describing each query and action as a specification, with an open standard (such

as the OpenAPI Specification [OAS] or GraphQL schemas)
6. Getting feedback on the API specification
7. Implementing microservices

36 | Chapter 3: Designing Microservices: The SEED(S) Process

https://oreil.ly/DVxRp
https://oreil.ly/DVxRp

Let’s explore each of these steps in greater detail and see how we can master using
them for service design.

Identifying Actors
In addition to being an evolutionary methodology, SEED(S) takes a distinctly
customer-centric approach, viewing as products the services it is used to design. By
now the “APIs are products” mantra is not particularly novel; we have been shouting
it from all possible mountaintops for years. The good thing is that a product-oriented
perspective on APIs and services allows us to reuse a wealth of techniques from the
business world, where it is nothing new; in fact, the science and art of product man‐
agement significantly predates that of APIs and even the internet itself. Many people
track product management as a field back to the 1930s with Procter & Gamble and
Neil H. McElroy’s attempts to improve the sales of P&G’s Camay brand of soap. In the
ensuing decades product management has evolved significantly, and there are a lot of
lessons learned that we can reuse in the much more nascent API/services manage‐
ment space. If APIs are products, we should be able to use similar techniques to
design APIs as what we use in product management.

When designing a product, and consequently an API or a service, we have to under‐
stand the “customer”; who is the service designed for? Typically, in the API and ser‐
vice management space, we don’t call these personas “customers” but rather the less
commerce-oriented denomination of “actor,” removing any accidental, unintended
connotation of a financial transaction or interest being present between the service
consumer and a publisher.

Usage of “actors” in the first modeling step of SEED(S) methodology is inspired by
the interaction design’s heritage of using “user personas” for a similar need. The
notion of personas, as an interaction design tool, was introduced by Alan Cooper in
his 1998 book, The Inmates Are Running the Asylum (Sams Publishing), and has
gained significant adoption since. To be completely transparent, at this point per‐
sonas have also received their share of criticism (which methodology has not?), and
some product teams passionately advocate using real user data instead. Discussing
the pros and cons of personas in product management is far, far beyond the scope of
this book. Actors are inspired by, but are not identical to, user personas. The purpose
of actors is to aid in the modeling exercise at the stage in the design process when
actual user data is typically limited.

The main motivation for starting modeling with the definition of actors is to aid in
scoping and prioritization. Typical plagues of API and service design in our industry
are overabstraction and lack of clarity regarding user needs. Too many APIs are sim‐
ply exposures of some database tables over HTTP or an attempt to provide direct net‐
worked access into application internals, via remote procedure calls (RPCs). Such
approaches often struggle in delivering for customer needs and achieving business

Identifying Actors | 37

https://oreil.ly/y8CHg
https://oreil.ly/y8CHg
https://oreil.ly/lunbc
https://oreil.ly/yYLlg
https://learning.oreilly.com/library/view/inmates-are-running/0672326140
https://oreil.ly/g1SYg

goals. It should not be surprising. If we don’t even ask, “Who will be using this API?”
and “What are their needs?” how can we possibly design solutions that solve for their
needs? And yet too many APIs and services are designed exactly this way: using a ser‐
vice publisher’s goals, rather than that of the consumer. SEED(S) addresses this
upside-down problem from the very first step, by identifying the actors first.

Key Decision: Scope Service Design Using Key Actors
Start service design by identifying key actors in your domain, to achieve customer-
centric scoping of the capabilities represented by the services.

There are several fundamental rules for identifying the right set of actors for your
goals:

1. Much like with Cooper’s user personas, each actor must be specific, more so than
precise. By this we mean that identifying the boundaries of what key traits differ‐
entiate various actors of our design is more important than identifying an excru‐
ciating level of detail for who the actors are. We ought to always remember that
we are in the process of modeling and so any modeling exercise is by definition
imprecise: it’s not that we cannot capture the details, rather that we don’t care
about every single detail and are trying to capture the prioritized view of the real‐
ity relevant to us.

2. Overlapping or too-broad actor definitions are usually red flags. Actors also must
be defined in context. Having a company-wide “portfolio” of actors that are
reused for each application design is more than an indication of trouble—it’s an
“all alarms on, call 911” sure sign that the process has derailed and has been
compromised.

3. As models, actor definitions first and foremost represent the needs, pain points,
and behaviors inherent to each actor archetype. These needs and behaviors that
distinguish one actor type from another are relevant, and there should be very
limited overlap.

4. Less is more—you should use as few distinct actors as possible to describe your
problem area, but no fewer than necessary. In most cases, if you have more than
five actors for a service, it may be either an indication of prioritization gone awry,
or service boundaries that are too broad.

38 | Chapter 3: Designing Microservices: The SEED(S) Process

Example Actors in Our Sample Project
Following are some of the possible actors relevant to the sample project we intro‐
duced in Chapter 1; an airline’s online reservation system, or, more specifically, its
flight reservation subsystem:

Frequent flyer
Emma travels for work, has elite loyalty status with the airline, manages her
travel through her work’s reservation system, and uses a number of connected
apps to stay on top of her busy schedule. Due to her loyalty status, she is eligible
for many perks. Often planning trips on short notice, when traveling with family,
she typically uses loyalty miles.

Family vacationer
Riley and their spouse are mostly traveling for vacations with their kid(s). They
usually plan trips well in advance, and travel infrequently.

Airline customer service agent
Sean is an experienced customer service agent assisting travelers with booking,
rebooking, and resolving issues during travel and after through phone and online
chat.

Once we have identified actors for our design effort, we can analyze the jobs that they
have to do using our system. Let’s explore what we mean by this in the next section.

Identifying Jobs That Actors Have to Do
Once we identify a target class of customers (actors, in our case), we need to spend a
significant amount of our time understanding the jobs they have to get done, and
only then create a solution that best addresses their needs. This is a critical point
often misunderstood or ignored in the design of services and APIs, so let us try to
explain the rationale behind its importance.

Any effective API or service design methodology, including SEED(S), is based on a
fundamental premise we mentioned earlier: that APIs and microservices are types of
products, and in their design we can successfully employ the rich product manage‐
ment toolset that has been developed over many decades. We already applied one
such tool to our modeling process: the identification of actors, in the manner of user
personas from interaction design. In this second step we will dive even deeper into
product design, so it may be worth reiterating: why do we believe APIs are products?
After all, a technical capability that is exposed over a network, using standard proto‐
cols, i.e., what we call an “API,” doesn’t necessarily have an obvious resemblance to
hand soaps, winter jackets, smartphones, and other physical products that we are
more accustomed to.

Identifying Jobs That Actors Have to Do | 39

1 Quoted in Clayton M. Christensen et al., “What Customers Want from Your Products,” Harvard Business
School, 2016, https://oreil.ly/NKolz.

Well, what is a general definition of a product, anyway? There is no one, true defini‐
tion that we are aware of, so we might as well use the one Wikipedia references:

We define a product as anything that can be offered to a market for attention, acquisi‐
tion, use or consumption that might satisfy a want or need. Products include more
than just tangible objects, such as cars, computers or mobile phones. Broadly defined,
“products” also include services, events, persons, places, organizations and ideas, or
mixes of these.

—Kotler et al., Principles of Marketing, 7th edition (Pearson)

Services, whether web APIs or microservices, do satisfy this definition: producers
offer services to their respective consumer(s), they satisfy the needs of their consum‐
ers, and this supply/demand can create a “market.”

Consumers of APIs are typically frontend (web, mobile) or third-party (partner)
applications, while consumers of microservices are various parts of the system itself,
but that’s a distinction largely irrelevant to their design process. We will dive into
defining differences between APIs and microservices later in this chapter.

So if APIs and microservices are products, how do we create better ones? The identi‐
fication of actors is the first step, but what comes next? They must solve a customer’s
problem. Alas, the unfortunate reality is that too many products are designed from
the perspective of a solution provider obsessing about what they have to offer rather
than concentrating on the problems customers need to solve. Probably the most suc‐
cinct explanation of this problem comes from the famous words of Harvard Business
School marketing professor Theodore Levitt: “People don’t want to buy a quarter-
inch drill. They want a quarter-inch hole!”1 Indeed, if you are a product company
producing drills, you need to realize that the real job customers are trying to get done
may be hanging a picture on their walls, not shopping for the most perfect general-
purpose drill. If you fail to realize this, continuing your pursuit of perfecting a drill,
you will eventually be outmaneuvered by an inventor who comes up with a simpler,
alternative solution to getting quarter-inch holes in customer walls. It may be a chem‐
ical reaction of sorts or something else—we wouldn’t know—but it will happen.

If you look at the history of technological advancement, it’s the problems that are
timeless; solutions change and evolve all the time. Case in point—nobody uses mag‐
netic tapes or floppy disks to save data anymore, but the job of needing to save and
transport data has not gone anywhere, even if it is all cloud-based now. Innovators
must concentrate more on solving problems, and less on perfecting the tools that are
typically transient.

40 | Chapter 3: Designing Microservices: The SEED(S) Process

https://oreil.ly/NKolz
https://oreil.ly/blWDL

Harvard Business School professor Clayton Christensen names this observation the
“theory of jobs to be done,” explaining that:

[Customers] often buy things because they find themselves with a problem they would
like to solve.

—Clayton Christensen, The Innovator’s Solution (Harvard Business Review Press)

In the Harvard Business School article quoted previously, “What Customers Want
from Your Products,” Christensen and his coauthors further explain that product
designs are successful and customers find them desirable when “the job, not the cus‐
tomer, is the fundamental unit of analysis.”

Key Decision: Use Jobs as the Unit of Analysis
Use jobs that key actors have to get done, in your domain, as the unit of analysis for
collecting requirements.

Using Job Story Format to Capture JTBDs
For each of the actors we identify, we need to discover top JTBDs for that actor. For
the sake of uniformity, as well as to make sure key data points are well-documented,
we capture JTBDs in a standard format. The SEED(S) process uses the Job Stories for‐
mat as defined by Paul Adams: “when <a circumstance>, I want to <motivation>, so I
can <goal>” (see Figure 3-1).

Figure 3-1. Structure of a Job Story format

A Job Story centers around circumstances, the actor’s motivations for a job to be
done, and the goal that they are trying to achieve.

Please note that in Adams’s original format, Job Stories are written
in first person. In SEED(S), as you will see further in this chapter,
we prefer to write Job Stories in third person, highlighting who the
actual actor for the Job Story is.

If you are familiar with User Stories from Scrum or other Agile methodologies, you
may have noticed that the Job Story looks almost identical. However, as Alan Klement
explains in his blog post, “Replacing the User Story with the Job Story”, there are cru‐
cial differences between the two. User Stories revolve around a user persona; they

Identifying Jobs That Actors Have to Do | 41

https://oreil.ly/VJQui
https://oreil.ly/PT6-v
https://oreil.ly/UGXy_

start with “as a <persona>,” while Job Stories disregard the persona and instead
emphasize the circumstance.

This is important and aligned with Christensen’s “the job, not the customer, is the
fundamental unit of analysis.” It is also spot-on, because in the context of describing a
specific job, persona does not matter anymore. If I need to hang a painting on a wall,
it doesn’t really matter whether I am a licensed contractor or a novice homeowner, I
will need a quarter-inch hole in the wall (or several). It is the context, the circum‐
stance in which we have a motivation to achieve a goal that matters, not who we are.
Long story short, we identify actors to scope the list of jobs, but at the point of
describing each job for that actor, we need to identify circumstances and not just
repeat 10 times “as a frequent flyer…”

Key Decision: Use the Standard Job Story Format
Use a standard format for capturing JTBDs (known as Job Story) to uniformly cap‐
ture circumstances, motivations, and goals for all your jobs.

Example JTBDs in Our Sample Project
Let’s pick some JTBDs for a family vacationer actor:

1. When Riley is planning a flight for their family vacation, they want to be able to
filter available flights by multiple criteria, including: four adjacent seats available
on the flight, the number of connections, connections that go through airports
that have facilities friendly to young children, etc., so that their family can fly with
maximum comfort.

2. When Riley is planning a quick, unplanned family getaway for a long weekend,
they want to get suggestions for interesting available trips that are affordable and
a short flight so they can have a list of choices they can consider.

And now, let’s look at some jobs for a frequent flyer actor:

1. When Emma’s plans change and she is unable to travel on a previously booked
flight, she wants to easily reschedule her flight, so she can get a flight that works
for her new plans.

2. When Emma prefers an available seat other than the one she has been currently
assigned, she wants to select the alternative seat, so she can enjoy her flight more.

42 | Chapter 3: Designing Microservices: The SEED(S) Process

Finally, this is what JTBDs may look like for a customer service agent:

1. When a customer calls Sean, he wants to have a servicing ticket open pre-filled
with customer information, so he can start tracking the progress towards the res‐
olution of the customer need.

2. When a customer is asking Sean to find them a convenient flight for their trip, he
wants to be able to find a fitting flight using a flexible set of filtering criteria, so he
can meet the customer need and book a flight.

When possible, it is always a good idea to derive the Job Stories from user research.
The simple, nontechnical, and consistent format is very helpful for capturing the
research in a consistent way.

Job Stories provide a great format for conversations with subject matter experts and
actual customers, but they are not convenient for deriving actual technical require‐
ments. Rather, we need to translate them into a more developer-friendly format,
which is what the next few sections of the SEED(S) process are all about.

Discovering Interaction Patterns with Sequence Diagrams
Job Stories are typically written by product managers from the business-value per‐
spective and rarely correspond to our target services in any direct way. To proceed
with a good design, we need to understand the service interaction patterns of our
subdomain, i.e., the one that these services belong to. For complex interactions, a lin‐
ear list of Job Stories will not be able to sufficiently support the design effort. Instead,
you will want to draw an interaction diagram, explaining the sequence of events
within your model.

In the spirit of reusing existing, familiar standards, SEED(S) recommends employing
Unified Modeling Language (UML) sequence diagrams for this task. You can use any
other diagramming approach to express your model, since the whole purpose here is
to communicate the intent and the model. However, if you do wish to use UML
sequence diagrams, then we highly recommend using one of the Markdown-based
diagramming formats, such as PlantUML.

Discovering Interaction Patterns with Sequence Diagrams | 43

http://plantuml.com

We recommend this kind of approach because modeling in a microservices team is a
team activity. Using a text-based format instead of a graphical file will allow team
members to:

• Keep modeling separate from everyone’s personal choice of editor. PlantUML
and other similar formats can be edited in many different editors. As an example,
PlantUML is supported in Atlassian’s Confluence, a knowledge-management
software used by many software teams. There are also free online editors you can
use, such as LiveUML and PlantText.

• Easily and effectively version-control sources of the diagrams. Text files are easy
to diff, merge, and review in pull requests, none of which would be true for a
binary graphic file.

• Conveniently integrate modeling into the release process. The diagrams become
code and anything you can do with the code, you can now do with your diagrams
as well; if you also version-control them in a system like Git, for example.

Key Decision: Use PlantUML Sequence Diagrams
to Discover Interaction Patterns

To discover interaction patterns in SEED(S) methodology, we choose to use UML
sequence diagrams expressed in a textual (Markdown) format such as PlantUML.

At this point in our design, we are in the phase of coming up with a technical model
for the requirements gathered in the physical world. The Job Stories and actors repre‐
sent the requirements of the physical world. They do not generally map to technical
interactions one-to-one. As such, in your interaction model the events do not neces‐
sarily have to occur between the actors described in the first step of the SEED(S) pro‐
cess. Neither do they have to correspond to the jobs directly. Rather, your interaction
diagrams may go a level deeper and show how the user-centric requirements translate
into interactions between services at a technical level.

For instance, a very simple diagram describing interactions related to the JTBDs we
already identified earlier in this chapter, may read something like the following:

@startuml

actor Agent
participant "Agent Servicing" as AS
participant "Reservations API" as rAPI
participant "reservationCRUD" as rCRUD

AS -> rAPI: checkRes(reservationId)
rAPI -> rCRUD: reserve(data)

44 | Chapter 3: Designing Microservices: The SEED(S) Process

https://liveuml.com
https://oreil.ly/VpjNq

2 Bertrand Meyer, Object-Oriented Software Construction, 2nd ed. (New York: Prentice Hall, 2000).

rAPI -> rCRUD: cancel(reservationId)

@enduml

In LiveUML, this would render as in Figure 3-2.

Figure 3-2. A rendered PlantUML of the sample UML sequence

Here, Agent Servicing is a user interface (web or mobile app) that agents can use
directly, Reservations API is a REST or GraphQL API that the app invokes, and reser‐
vationCRUD is one of the microservices that fuels said API.

Once we have the sequence diagrams of the interactions, we can capture the technical
requirements for a microservice, or an API, in the form of a set of actions and queries
described using a standard syntax. Let’s explore in the next section what those are and
how they look.

Deriving Actions and Queries from JTBDs
Job Stories provide a great format for having fluid conversations with subject matter
experts and acquiring insights into customers’ needs. They may, however, be trouble‐
some starting points for actually designing API specifications. Once we understand
service interaction patterns and have had a chance to visualize those, we can trans‐
form jobs into more technically oriented interface contracts and greatly simplify our
design process. Following Bertrand Meyer’s command query separation (CQS) prin‐
ciple,2 in SEED(S) we model a system’s interface contracts as collections of two dis‐
tinct types of interactions: the actions (“commands” in CQS) and the queries.

Deriving Actions and Queries from JTBDs | 45

Key Decision: Separate Service Endpoints into Commands and Queries
Use the CQS principle to model the action side of the services separate from the
query side, and document each with their own standard format.

In SEED(S), queries are lookups with defined inputs and outputs. They should be
clearly formulated contracts between a client and a server: what input a client sends
and what response they expect. They are distinctly different from actions, in that
queries do not modify the system state (they “have no side effects”).

Actions, in contrast, are requests that cause some sort of state modification—they not
only do have side effects, but their whole purpose is to cause side effects. Much like
queries, actions also have well-defined contracts—for inputs, expected outcomes, and
expected responses.

Similar to Job Stories, we recommend using a standard format for capturing queries
and actions. The template for queries looks something like this:

• An expressive description of a query
— Input: list of input variables
— Response: list of output data elements

Likewise, the standardized format for actions would look like the following:

• An expressive description of an action
— Input: list of input variables
— Expected outcome: description of the induced side effect
— Response (optional): list of data elements in the response (if any)

Please note that Job Stories do not always produce exactly one query or action. A Job
Story can be translated into multiple queries and actions, and a resulting query or
action may combine multiple Job Stories as its source. SEED(S) is a process of model‐
ing, design, and discovery, not a robotic process that is ripe for removal of the human
judgment factor.

46 | Chapter 3: Designing Microservices: The SEED(S) Process

Example Queries and Actions for Our Sample Project
Let’s see some examples of our existing Job Stories translated into a bunch of queries
and actions.

Queries
One of our Job Stories described a family vacationer actor (Riley) who wants to find a
flight that matches the travel comfort requirements of their family, by indicating
detailed preferences such as: number of adjacent seats, maximum number of connec‐
tions, etc. To satisfy the needs of such a job, we need a query contract that allows indi‐
cation of all such preferences as inputs to the search query. Therefore, our query
definition may look like the following:

Query 1: Flight Search
• Input: departure_date, return_date, origin_airport, destination_airport,
number_of_passengers, baby_friendly_connections, adjacent_seats,
max_connections, minimum_connection_time, max_connection_time,
order_criteria [object], customer_id (optional; to check loyalty privileges)

• Response: list of flights satisfying the criteria

Another one of our Job Stories described a circumstance in which a frequent travel‐
er’s plans suddenly change, and they are unable to travel on a previously scheduled
date/flight. This actor needs to reschedule their existing booking. To achieve this task,
we can imagine that at minimum we will need to know:

• The unique reservation identifier of the previous booking so that we can grab
origin and destination airports, as well as any other preferences, so that we can
automatically set those for the new search without asking the traveler to re-enter
them

• A new departure date and return date that works for the traveler

Once we run the search, we will need to receive a list of flights that matches the input
criteria for the new dates, so that we can present it to the customer and let them
choose which flight they would like to rebook their travel ton.

Based on this analysis, we can conclude that the “rebooking” query specification
could look like the following:

Query 2: Lookup of Alternative Flights for a Date Change
• Input: reservation_id, new_departure_date, new_return_date
• Response: list of alternative flights

Deriving Actions and Queries from JTBDs | 47

Actions
Using an analysis similar to the one we used for deriving queries from Job Stories,
you can produce actions that are required for rebooking and seat change jobs:

Travel Rebooking
• Input: original_reservation_id, new_flight_id, seat_ids[]
• Expected outcome: new flight booked or error returned; if new flight is success‐

fully booked, old one is canceled
• Response: success code or a detailed error object

Seat Change
• Input: reservation_id, customer_id, requested_seat_ids[]
• Expected outcome: new seat reserved if the seat is available and the traveler is

qualified; old seat canceled if the new seat ends up being successfully reserved
• Response: success code, or a detailed error object

In some sophisticated cases, you may find that the actions and queries approach of
defining interface contracts may not be sufficient. In these cases, to capture the more
complex requirements, we highly recommend using Matt McLarty’s Microservice
Design Canvas. The design canvas and “actions and queries analysis” are substitutable
techniques in the same phase of the SEED(S) process. The canvas is a more powerful
tool that we do not cover in this book, but it is well worth getting acquainted with.

Once we have a set of actions and queries, or a Microservice Design Canvas, we can
translate those into a formal interface specification.

Describing Each Query and Action as a Specification with
an Open Standard
As a general rule, it is important to formally describe the interface contract of an API
or a microservice before we start implementing it in code. Such codified contracts
serve as a mutually agreed-upon understanding between a service producer and con‐
sumers, or API client developers. The contracts are also easily convertible into user-
friendly documentation and interactive playgrounds. Contracts implemented using
open standards such as the Open API Spec and GraphQL are widely supported by a
rich set of tooling that allows easy rendering of documentation, streamlined creation
of developer portals, etc.

In this section we will take the definition of an action that we described in the previ‐
ous SEED(S) phase and design a RESTful endpoint for it, using the Open API Specifi‐
cation (OAS).

48 | Chapter 3: Designing Microservices: The SEED(S) Process

https://oreil.ly/lLRpj
https://oreil.ly/tIxEi
https://oreil.ly/tIxEi
https://www.openapis.org
https://graphql.org
https://oreil.ly/JoiGg
https://oreil.ly/JoiGg

The OAS describes RESTful APIs in a standard, tech stack–agnostic manner. It is gov‐
erned by OpenAPI Initiative, a Linux Foundation Collaborative Project. At the time
of writing, the latest version of OAS is version 3.0.2.

Microservices interconnections do not have to be RESTful APIs. Other popular
choices include GraphQL, gRPC, and asynchronous event communications. At the
time of writing, using JSON-, ProtoBuf-, or Avro-encoded messages on Kafka
Streams seems to be a popular choice. It does not matter which communication style
you choose; any one of them will assume exchange of messages and the format of
those messages should be well-documented and part of the exchange “contract.” For
each of those styles you can apply the SEED(S) methodology in a way appropriate for
the particular style. Since RESTful APIs are probably easiest and still the most ubiqui‐
tous, we demonstrate the approach using a RESTful design, but the methodology
works with others, as well.

You can use any tooling to edit and author your OASs. If you are looking for sugges‐
tions, however, an open source setup that is available on most platforms, and seems
to work well is the VS Code editor with the Open API Designer plug-in. Once you
have the plug-in installed and a descriptor YAML file open inside the active tab, press
CTRL+ALT+P on Windows or CMD+ALT+P on macOS and choose the appropriate
preview command to see the rendering of the specification, as shown in Figure 3-3.

Figure 3-3. Selecting OAS Preview in VS Code

Example OAS for an Action in Our Sample Project
A simple version of the OAS for the rebooking action we described earlier in this
chapter may look something like the following:

openapi: 3.0.0
info:
 title: Airline Reservations Management API
 description: |
 API for Airline Management System
 version: 1.0.1
servers:
 - url: http://api.example.com/v1
 description: Production Server
paths:
 /reservations/{reservation_id}:
 put:

Describing Each Query and Action as a Specification with an Open Standard | 49

https://oreil.ly/c9U2V
https://oreil.ly/C1c2h
https://grpc.io
https://code.visualstudio.com
https://oreil.ly/LySwF

 # @see https://swagger.io/docs/specification/describing-parameters
 summary: Book or re-book a reservation
 description: |
 Example request:
        ```
          PUT http://api.example.com/v1/reservations/d2783fc5-0fee
        ```
 parameters:
 - name: reservation_id
 in: path
 required: true
 description: Unique identifier of the reservation being created or
 changed
 schema:
 type : string
 example: d2783fc5-0fee

 requestBody:
 required: true
 content:
 application/json:
 schema:
 type: object
 properties:
 outbound:
 type: object
 properties:
 flight_num:
 type: string
 example: "AA 253"
 flight_date:
 type: string
 example: "2019-12-31T08:01:00"
 seats:
 type: array
 items:
 type: string
 returning:
 type: object
 properties:
 flight_num:
 type: string
 example: "AA 254"
 flight_date:
 type: string
 example: "2020-01-07T14:16:00"
 seats:
 type: array
 items:
 type: string
 example: [
 {

50 | Chapter 3: Designing Microservices: The SEED(S) Process

 outbound: {
 flight_num: "AA 253",
 flight_date: "2019-12-31T08:01:00",
 seats: [
 "9C"
]
 },
 returning: {
 flight_num: "AA 254",
 flight_date: "2020-01-07T14:16:00",
 seats: [
 "10A"
]
 }
 }
]

 responses:
 '200': # success response
 description: Successful Reservation
 content:
 application/json:
 schema:
 type: object
 properties:
 reservation_id:
 type: string
 description: some additional description
 '403':
 description: seat(s) unavailable. Booking failed.
 content:
 application/json:
 schema:
 type: string
 description: detailed information

The rendered output with the VS Code plug-in should look something like
Figure 3-4.

Describing Each Query and Action as a Specification with an Open Standard | 51

Figure 3-4. Rendering of a sample OAS document

Producing a formal API contract is a huge milestone for the design of APIs and
microservices. Some may even consider it a job well done at this point. However,
good API designs cannot end at this stage. We wish things were that simple, but there
is actually an additional, critical activity that still needs to be completed. The next
step in the SEED(S) process captures this activity.

52 | Chapter 3: Designing Microservices: The SEED(S) Process

Getting Feedback on the API Specification
The initial version of the API and service design as captured by an OAS-based
description, or some other standard, is an important milestone, but there is more
modeling work that is necessary for a well-designed API.

We need to show the draft design of the endpoints to the client developers who will
be asked to use these APIs and services, and collect their feedback. If the previous
steps involved active brainstorming and work, this is the stage of careful listening and
reflection. It is an incredibly important step for designing APIs, if you care to design
the kind of APIs and microservices that will stand the test of time and which your
clients will love to use.

Key Decision: Collect Feedback on Your Service Designs
Service design is not done until it is presented to the target audience for the service
and feedback is collected and applied to the initial designs.

Generally, you need to keep in mind two groups of customers when designing serv‐
ices and APIs:

• End users of the system. Your APIs enable the user experiences for them.
• Client developers who will code against your services (APIs or microservices). They

build end users’ experiences, such as web or mobile applications.

At the beginning of the SEED(S) process, we interview the end users to collect and
understand the Job Stories relevant to them. However, later in the process we start
receiving feedback from the client developers. This can happen as early as the interac‐
tions design phase, and then again once the OAS is produced, before coding. This
second group, API client developers, must be interviewed to test the usability of the
designs, to avoid coding something that may end up being rejected by them due to
poor usability.

Both of the research activities are critical. The first study makes sure we build the
right thing. The latter one makes sure we build it the right way!

Implementing Microservices
The last step in the SEED(S) methodology is actually implementing microservices. It
is intentionally done at the very end of the process. Coding is one of the most expen‐
sive activities any software engineering team can undertake. Recoding a functionality
that was initially designed based on wrong assumptions is a horrible, time-
consuming, and expensive task. This is why we engage in a carefully thought-out

Getting Feedback on the API Specification | 53

process such as SEED(S) before we jump into coding microservices. Overall, it saves
time and delivers better outcomes.

Before we wrap up this chapter, we need to clarify an important detail. Throughout
this chapter, we have been saying “APIs and microservices” and we started by men‐
tioning that the SEED(S) methodology can be equally successfully applied to both the
design process of APIs as well as that of microservices. This is in part true because
APIs and microservices have a lot of similarities. But how are they different? Are
microservices just small APIs? In the next section, we will try to shed some light onto
this important question.

Microservices Versus APIs
APIs and microservices do indeed have a lot in common. Microservices are capabili‐
ties exposed via standard network protocols, most commonly HTTP. But capabilities
exposed as HTTP endpoints had been known as web APIs, way before the coining of
the term microservices. So are the two essentially the same thing? Are microservices
just a new flavor of APIs—smaller APIs? More importantly, do we even need conven‐
tional APIs once we start writing microservices, or do the smaller APIs (microser‐
vices) replace the bigger (conventional) APIs? We have often seen these questions
cause a lot of confusion on teams trying to adopt microservices architecture.

With some frequency we have encountered developers referring to any small, focused
APIs as “microservices.” In such an approach microservices have the same role as
APIs had before them, so they do indeed replace the APIs of old. In our experience,
this is not an ideal approach for successful microservices thinking, and we offer an
alternative, albeit opinionated, definition of what separates microservices from legacy
APIs. Our approach builds on the experience of some notable experts in the space,
and is rooted in our own experiences with successful microservices projects and
teams.

Microservices Are Not Just Smaller APIs

Microservices are not just smaller replacements for the APIs of the
old days. Microservices provide the implementation of your sys‐
tem, while APIs should still be the outward-facing interface of a
system.

We think that if microservices replace anything, the things they replace are the modu‐
lar components you used to build your systems with. If before you would build a
large system by linking (statically or dynamically) various submodules together, in a
microservices architecture the building blocks are networked services we call “micro‐
services.” This approach is depicted in Figure 3-5.

54 | Chapter 3: Designing Microservices: The SEED(S) Process

Figure 3-5. Relationship between microservices and APIs

Note that a similar approach—of separating APIs into “internal ones, the ones you
build with”; and “external ones, the ones that are optimized for consumption by fron‐
tends”—has been described by Phil Calçado as the Backend for Frontend pattern
when he was at SoundCloud, and by Daniel Jacobson during his time at Netflix. Dan‐
iel Jacobson explained how at Netflix they separated APIs into Experience (frontend)
and Ephemeral (backend) APIs.

Key Decision: Web APIs Are Layered on Top of Microservices
Differentiate between web APIs that represent the public interface of your subsystem
and microservices that represent the implementation of the same system. Avoid
thinking of microservices as “just small APIs.”

There is no one, true way of organizing microservices and connecting them up with
“frontend” APIs. This is the part where we live up to the promise of providing
unabashedly opinionated guidance in this book. Our opinions are rooted in what we
have witnessed to have worked well, but we also acknowledge that other strategies
may have worked for other practitioners.

In our experience, the ideal separation of duties happens when all of the business
logic (capabilities) is implemented by microservices, while APIs act as a thin layer of
orchestration in front of those microservices. Additionally, we recommend that teams
try to avoid microservices directly “invoking” each other. Instead, for the sake of
loose coupling, it’s best if any orchestrating workflow is implemented in the API layer,
in front of microservices, without microservices knowing anything about each other.

Microservices Versus APIs | 55

https://oreil.ly/ef8jV
https://oreil.ly/CxTka

Note that there is no 1:1 relationship between an API and the
microservices that implement the corresponding capability. These
two assets are parts of fundamentally different layers of your
architecture.

We believe that such a “microservices should be unaware of each other and be orches‐
trated externally” approach is where the Unix philosophy of building a system as a
collection of composable tools resonates well with microservices architecture princi‐
ples. One of the most powerful aspects of the Unix philosophy is that you can com‐
bine Unix tools (e.g., GNU tools) in a variety of ways using input and output piping
on the command line or in shell scripts. However, in order to achieve this, it’s critical
that various Unix tools act the same way for any input—they should not care who
“calls” them or where their output goes. Components cannot explicitly know about
each other for them to become composable. Loose coupling is what makes the whole
thing work, not just that the tools are small-ish and focused. The same holds true for
microservices.

Keep Microservices Unaware of Each Other

Avoid microservices directly “knowing” about each other and
directly calling each other via synchronous interfaces. Instead, try
to orchestrate processes involving multiple microservices in the
API layer. If this is not possible, consider using asynchronous inter‐
faces between microservices where an upstream microservice pub‐
lishes data to an event log (e.g., Kafka) and a downstream
microservice can subscribe to that event log without the upstream
microservice having tight coupling with the subscriber(s).

Summary
In this chapter, we set up a critical foundation for understanding the process of
designing robust microservices. By establishing an effective and repeatable methodol‐
ogy, the SEED(S) method, we acquired a powerful understanding of many aspects of
what traits make projects successful in their microservices journey and learned how
to adapt these traits for our own circumstances.

In the following chapters we will leverage the insights gained from an understanding
of SEED(S). In Chapters 4 and 5 we will dive deeper into the design process for
microservices, and in Chapter 9 we go through the code implementing several micro‐
services of our sample project, reusing, demonstrating, and expanding efforts started
in this chapter.

56 | Chapter 3: Designing Microservices: The SEED(S) Process

https://oreil.ly/GVjJV

CHAPTER 4

Rightsizing Your Microservices:
Finding Service Boundaries

One of the most challenging aspects of building a successful microservices system is
the identification of proper microservice boundaries. It makes intuitive sense that
breaking up a large codebase into smaller, simpler, more loosely coupled parts
improves maintainability, but how do we decide where and how to split the code into
parts to achieve those desired properties? What rules do we use to know where one
service ends and another one starts? Answering these fundamental questions is chal‐
lenging. A lot of teams new to microservices stumble at them. Drawing the microser‐
vice boundaries incorrectly can significantly diminish the benefits of using
microservices, or in some cases even derail the entire effort. It is then not surprising
that the most frequent, most pressing question microservices practitioners ask is:
how can a bigger application be properly sliced into a collection of microservices?

In this chapter, we look deep into the leading methodology for the effective analysis,
modeling, and decomposition of large domains (Domain-Driven Design), explain the
efficiency benefits of using Event Storming for domain analysis, and close by intro‐
ducing the Universal Sizing Formula, a unique guidance for the effective sizing of
microservices.

Why Boundaries Matter, When They Matter, and How to
Find Them
Right in the title of the architectural pattern, we have the word micro—the architec‐
ture we are designing is that of “micro” services! But how “micro” should our services
be? We are obviously not measuring the physical length of something and assuming
that micro means one-millionth of a meter (i.e., of the base unit of length in the Inter‐
national System of Units). So what does micro mean for our purposes? How are we

57

supposed to slice up our larger problem into smaller services to achieve the promised
benefits of “micro” services? Maybe we could print our source code on paper, glue
everything together, and measure the literal length of that? Or jokes aside, should we
go by the number of lines in our source code—keeping that number small to ensure
each of our microservices is also small enough? What is “enough,” however? Maybe
we just arbitrarily declare that each microservice must have no greater than 500 lines
of code? We could also draw boundaries at the familiar, functional edges of our
source code and say that each granular capability represented by a function in the
source code of our system is a microservice. This way we could build our entire appli‐
cation with, say, serverless functions, declaring each such function to be a microser‐
vice. Clean and easy! Right? Maybe not.

In practice, each of these simplistic approaches has indeed been tried and they all
have significant drawbacks. While source lines of code (SLOC) has historically
enjoyed some usage as a measure of effort/complexity, it has since been widely
acknowledged to be a poor measurement for determining the complexity or the true
size of any code and one that can be easily manipulated. Therefore, even if our goal
were to create “small” services with the hope of keeping them simple, lines of code
would be a poor measurement.

Drawing boundaries at functional edges is even more tempting. And it has become
even more tempting with the increase in popularity of serverless functions such as
Amazon Web Services’ Lambda functions. Building on top of the productivity and
wide adoption of AWS Lambdas, many teams have rushed into declaring those func‐
tions “microservices.” There are a number of significant problems if you go down this
road, the most important of which are:

Drawing boundaries based on technical needs is an anti-pattern
Per Lewis and Fowler, microservices should be “organized around business capa‐
bilities,” not technical needs. Similarly, Parnas, in an article from 1972, recom‐
mends decomposing systems based on modular encapsulation of design changes
over time. Neither approach necessarily aligns strongly with the boundaries of
serverless functions.

Too much granularity, too soon
An explosive level of granularity early in the microservices project life cycle can
introduce crushing levels of complexity that will stop the microservices effort in
its tracks, even before it has a chance to take off and succeed.

In Chapter 1 we stated the primary goal of a microservices architecture: it is primarily
about minimization of coordination costs, in a complex, multiteam environment, to
achieve harmony between speed and safety, at scale. Therefore, services should be
designed in a way that minimizes coordination needs between the teams working on
different microservices. However, if we break code up into functions in a way that
does not necessarily lead to minimized coordination, we will end up with incorrectly

58 | Chapter 4: Rightsizing Your Microservices: Finding Service Boundaries

https://oreil.ly/mRUrv
https://oreil.ly/1AcI0

sized microservices. Just assuming that any way of organizing code into serverless
functions will reduce coordination is misguided.

Earlier we stated that an important reason for avoiding a size-based or functions-
aligned approach when splitting an application into microservices is the danger of
premature optimization—having too many services that are too small too early in
your microservices journey. Early adopters of microservices, such as Netflix, Sound‐
Cloud, Amazon, and others, eventually found themselves having a lot of microser‐
vices! That, however, does not mean that these companies started with hundreds of
very granular microservices on day one. Rather, a large number of microservices is
what they optimized for after years of development, after having achieved the opera‐
tional maturity capable of handling the level of complexity associated with the high
granularity of microservices.

Avoid Creating Too Many Microservices Too Early

The sizing of services in a microservices architecture is most cer‐
tainly a journey that should unfold in time. A sure way to sabotage
the entire effort is to attempt designing an overly granular system
early in that journey.
Whether you are working on a greenfield project or decomposing
an existing monolith, the approach should absolutely be to start
with only a handful of services and slowly increase the number of
microservices over time. If this leads to some of your microservices
initially being larger than in their target state, it is totally OK. You
can split them up later.

Even if we are starting with just a few microservices, taking it slow, we need some
reliable methodology to determine how to size microservices. Next, we will explore
best practices successfully used in the industry.

Domain-Driven Design and Microservice Boundaries
At the onset of figuring out microservices design best practices, Sam Newman intro‐
duced some foundational ground rules in his book Building Microservices (O’Reilly).
He suggested that when drawing service boundaries, we should strive for such a
design that the resulting services are:

Domain-Driven Design and Microservice Boundaries | 59

https://oreil.ly/r5vYU
https://oreil.ly/r5vYU
http://shop.oreilly.com/product/0636920033158.do

Loosely coupled
Services should be fairly unaware and independent of each other, so that a code
modification in one of them doesn’t result in ripple effects in others. We’ll also
probably want to limit the number of different types of runtime calls from one
service to another since, beyond the potential performance problem, chatty com‐
munications can also lead to a tight coupling of components. Taking our “coordi‐
nation minimization” approach, the benefit of the loose coupling of the services
is quite obvious.

Highly cohesive
Features present in a service should be highly related, while unrelated features
should be encapsulated elsewhere. This way, if you need to change a logical unit
of functionality, you should be able to change it in one place, minimizing time to
releasing that change (an important metric). In contrast, if we had to change the
code in a number of services, we would have to release lots of different services at
the same time to deliver that change. That would require significant levels of
coordination, especially if those services are “owned” by multiple teams, and it
would directly compromise our goal of minimizing coordination costs.

Aligned with business capabilities
Since most requests for the modification or extension of functionality are driven
by business needs, if our boundaries are closely aligned with the boundaries of
business capabilities, it would naturally follow that the first and second design
requirements, above, are more easily satisfied. During the days of monolith
architectures, software engineers often tried to standardize on “canonical data
models.” However, the practice demonstrated, over and over again, that detailed
data models for modeling reality do not last for long—they change quite often
and standardizing on them leads to frequent rework. Instead, what is more dura‐
ble is a set of business capabilities that your subsystems provide. An accounting
module will always be able to provide the desired set of capabilities to your larger
system, regardless of how its inner workings may evolve over time.

These design principles have proven to be very useful and received wide adoption
among microservices practitioners. However, they are fairly high-level, aspirational
principles and arguably do not provide the specific service-sizing guidance needed by
day-to-day practitioners. In search of a more practical methodology, many turned to
Domain-Driven Design.

The software design methodology known as Domain-Driven Design (DDD) signifi‐
cantly predates microservices architecture. It was introduced by Eric Evans in 2003,
in his seminal book of the same name, Domain-Driven Design: Tackling Complexity in
the Heart of Software (Addison-Wesley). The main premise of the methodology is the
assertion that, when analyzing complex systems, we should avoid seeking a single

60 | Chapter 4: Rightsizing Your Microservices: Finding Service Boundaries

https://learning.oreilly.com/library/view/domain-driven-design-tackling/0321125215
https://learning.oreilly.com/library/view/domain-driven-design-tackling/0321125215

unified domain model representing the entire system. Rather, as Evans said in his
book:

Multiple models coexist on big projects, and this works fine in many cases. Different
models apply in different contexts.

Once Evans established that a complex system is fundamentally a collection of multi‐
ple domain models, he made the critical additional step of introducing the notion of
bounded context. Specifically, he stated that:

A Bounded Context defines the range of applicability of each model.

Bounded contexts allow implementation and runtime execution of different parts of
the larger system to occur without corrupting the independent domain models
present in that system. After defining bounded contexts, Eric went on to also help‐
fully provide a formula for identifying the optimal edges of a bounded context by
establishing the concept of Ubiquitous Language.

To understand the meaning of Ubiquitous Language, it is important to observe that a
well-defined domain model first and foremost provides a common vocabulary of
defined terms and notions, a common language for describing the domain, that
subject-matter experts and engineers develop together in close collaboration, balanc‐
ing the business requirements and implementation considerations. This common
language, or shared vocabulary, is what in DDD we call Ubiquitous Language. The
importance of this observation lies in acknowledging that same words may carry dif‐
ferent meanings in different bounded contexts. A classic example of this is shown in
Figure 4-1. The term account carries significantly different meaning in the identity
and access management, customer management, and financial accounting contexts of
an online reservation system.

Figure 4-1. Depending on the domain where it appears, “account” can have different
meanings

Indeed, for an identity and access management context, an account is a set of creden‐
tials used for authentication and authorization. For a customer management-
bounded context, an account is a set of demographic and contact attributes, while for
a financial accounting context, it’s probably payment information and a list of past

Domain-Driven Design and Microservice Boundaries | 61

transactions. We can see that the same basic English word is used with significantly
different meaning in different contexts, and it is OK because we only need to agree on
the ubiquitous meaning of the terms (the Ubiquitous Language) within the bounded
context of a specific domain model. According to DDD, by observing edges across
which terms change their meaning, we can identify the boundaries of the contexts.

In DDD, not all terms that come to mind when discussing a domain model make into
the corresponding Ubiquitous Language. Concepts in a bounded context that are
core to the context’s primary purpose are part of the team’s Ubiquitous Language, all
others should be left out. These core concepts can be discovered from the set of
JTBDs that you create for the bounded context. As an example, let’s look at
Figure 4-2.

Figure 4-2. Using Job Story syntax to identify key terms of a Ubiquitous Language

In this example, we are using the Job Story format that we introduced in Chapter 3
and applying it to a job from the identity and access control bounded context. We can
see that key nouns, highlighted in Figure 4-2, correspond to the terms in the related
Ubiquitous Language. We highly recommend the technique of using key nouns from
well-written Job Stories in the identification of the vocabulary terms relevant to your
Ubiquitous Language.

Now that we have discussed some key concepts of DDD, let’s also look at something
that can be very useful in designing microservice interactions properly: context map‐
ping. We will explore key aspects of context mapping in the next section.

Context Mapping
In DDD, we do not attempt to describe a complex system with a single domain
model. Rather, we design multiple independent models that coexist in the system.
These subdomains typically communicate with each other using published interface
descriptions. The representation of various domains in a larger system and the way
they collaborate with each other is called a context map. Consequently, the act of

62 | Chapter 4: Rightsizing Your Microservices: Finding Service Boundaries

identifying and describing said collaborations is known as context mapping, as shown
in Figure 4-3.

Figure 4-3. Context mapping

DDD identifies several major types of collaboration interactions when mapping
bounded contexts. The most basic type is known as a shared kernel. It occurs when
two domains are developed largely independently and, almost by accident, they end
up overlapping on some subset of each other’s domains (see Figure 4-4). Two parties
may agree to collaborate on this shared kernel, which may also include shared code
and data model, as well as the domain description.

Figure 4-4. Shared kernel

While tempting on the surface of things (after all, the desire for collaboration is one
of the most human of instincts), the shared kernel is a problematic pattern, especially
when used for microservices architectures. By definition, a shared kernel immediately
requires a high degree of coordination between two independent teams to even jump-
start the relationship, and keeps requiring coordination for any further modifications.
Sprinkling your microservices architecture with shared kernels will introduce many
points of tight coordination. In cases when you do have to use a shared kernel in a
microservices ecosystem, it’s advised that one team is designated as the primary
owner/curator, and everybody else is a contributor.

Alternatively, two bounded contexts can engage in what DDD calls an Upstream–
Downstream kind of relationship. In this type of relationship, the Upstream acts as
the provider of some capability, and the Downstream is the consumer of said capabil‐
ity. Since domain definitions and implementations do not overlap, this type of rela‐
tionship is more loosely coupled than a shared kernel (see Figure 4-5).

Figure 4-5. Upstream–Downstream relationship

Domain-Driven Design and Microservice Boundaries | 63

Depending on the type of coordination and coupling, an Upstream–Downstream
mapping can be introduced in several forms:

Customer–Supplier
In a customer–supplier scenario, Upstream (supplier) provides functionality to
the Downstream (customer). As long as the provided functionality is valuable,
everybody is happy; however, Upstream carries the overhead of backwards com‐
patibility. When Upstream modifies their service, they need to ensure that they
do not break anything for the customer. More dramatically, the Downstream
(customer) carries the risk of the Upstream intentionally or unintentionally
breaking something for it, or ignoring the customer’s future needs.

Conformist
An extreme case of the risks for a customer–supplier relationship is the conform‐
ist relationship. It’s a variation on Upstream–Downstream, when the Upstream
explicitly does not or cannot care about the needs of its Downstream. It’s a use-
at-your-own-risk kind of relationship. The Upstream provides some valuable
capability that the Downstream is interested in using, but given that the
Upstream will not cater to its needs, the Downstream needs to constantly con‐
form to the changes in the Upstream.

Conformist relationships often occur in large organizations and systems when a
much larger subsystem is used by a smaller one. Imagine developing a small, new
capability inside an airline reservation system and needing to use, say, an enterprise
payments system. Such a large enterprise system is unlikely to give the time of day to
some small, new initiative, but you also cannot just reimplement a whole payments
system on your own. Either you will have to become a conformist, or another viable
solution may be to separate ways. The latter doesn’t always mean that you will imple‐
ment similar functionality yourself. Something like a payments system is complex
enough that no small team should implement it as a side job of another goal, but you
might be able go outside the confines of your enterprise and use a commercially
available payments vendor instead, if your company allows it.

In addition to becoming a conformist or going separate ways, the Downstream has a
few more DDD-sanctioned ways of protecting itself from the negligence of its
Upstream: an anti-corruption layer and using Upstreams that provide open host
interfaces.

Anti-corruption layer
In this scenario, the Downstream creates a translation layer called an anti-
corruption layer (ACL) between its and the Upstream’s Ubiquitous Languages, to
guard itself from future breaking changes in the Upstream’s interface. Creating an
ACL is an effective, sometimes necessary, measure of protection, but teams
should keep in mind that in the long term this can be quite expensive for the
Downstream to maintain (see Figure 4-6).

64 | Chapter 4: Rightsizing Your Microservices: Finding Service Boundaries

Figure 4-6. Anti-corruption layer

Open host service
When the Upstream knows that multiple Downstreams may be using its capabili‐
ties, instead of trying to coordinate the needs of its many current and future con‐
sumers, it should instead define and publish a standard interface, which all
consumers will need to adopt. in DDD, such Upstreams are known as open host
services. By providing an open, easy protocol for all authorized parties to inte‐
grate with, and maintaining said protocol’s backwards compatibility or providing
clear and safe versioning for it, the open host can scale its operations without
much drama. Practically all public services (APIs) use this approach. For exam‐
ple, when you are using the APIs of a public cloud provider (AWS, Google,
Azure, etc.), they usually don’t know or cater to you specifically as they have mil‐
lions of customers, but they are able to provide and evolve a useful service by
operating as an open host (see Figure 4-7).

Figure 4-7. Open host service

In addition to relation types between domains, context mappings can also differenti‐
ate based on the integration types used between bounded contexts.

Synchronous Versus Asynchronous Integrations
Integration interfaces between bounded contexts can be synchronous or asynchro‐
nous, as shown in Figure 4-8. None of the integration patterns fundamentally assume
one or the other style.

Common patterns for synchronous integrations between contexts are RESTful APIs
deployed over HTTP, gRPC services using binary formats such as protobuf, and more
recently services using GraphQL interfaces.

On the asynchronous side, publish–subscribe types of interactions lead the way. In
this interaction pattern, the Upstream can generate events, and Downstream services
have workers able and interested in processing those, as depicted in Figure 4-8.

Domain-Driven Design and Microservice Boundaries | 65

Figure 4-8. Synchronous and asynchronous integrations

Publish–subscribe interactions are more complex to implement and debug, but they
can provide a superior level of scalability, resilience, and flexibility, in that: multiple
receivers, even if implemented with heterogeneous tech stack, can subscribe to the
same events using a uniform approach and implementation.

To wrap up the discussion of Domain-Driven Design’s key concepts, we should
explore the concept of an aggregate. We discuss it in the next section.

A DDD Aggregate
In DDD, an aggregate is a collection of related domain objects that can be viewed as a
single unit by external consumers. Those external consumers only reference a single
entity in the aggregate, and that entity is known in DDD as an aggregate root. Aggre‐
gates allow domains to hide internal complexities of a domain, and expose only infor‐
mation and capabilities (interface) that are “interesting” to an external consumer. For
instance, in the Upstream–Downstream mappings that we discussed earlier, the
Downstream does not have to, and typically will not want to, know about every single
domain object within the Upstream. Instead, it will view the Upstream as an aggre‐
gate, or a collection of aggregates.

We will see the notion of an aggregate resurface, in the next section when we discuss
Event Storming—a powerful methodology that can greatly streamline the process of
domain-driven analysis and turn it into a much faster and more fun exercise.

Introduction to Event Storming
Domain-Driven Design is a powerful methodology for analyzing both the whole-
system-level (called “strategic” in DDD) as well as the in-depth (called “tactical”)
composition of your large, complex systems. We have also seen that DDD analysis
can help us identify fairly autonomous subcomponents, loosely coupled across boun‐
ded contexts of their respective domains.

It’s very easy to jump to the conclusion that in order to fully learn how to properly
size microservices, we just need to become really good in domain-driven analysis; if

66 | Chapter 4: Rightsizing Your Microservices: Finding Service Boundaries

we make our entire company also learn and fall in love with it (because DDD is cer‐
tainly a team sport), we’ll be on our way to success!

In the early days of microservices architectures, DDD was so universally proclaimed
as the one true way to size microservices that the rise of microservices gave a huge
boost to the practice of DDD, as well—or at least more people became aware of it,
and referenced it. Suddenly, many speakers were talking about DDD at all kinds of
software conferences, and a lot of teams started claiming that they were employing it
in their daily work. Alas, a close look easily uncovered that the reality was somewhat
different and that DDD had become one of those “much-talked-about-less-practiced”
things.

Don’t get us wrong: there were people using DDD way before microservices, and
there are plenty using it now as well, but speaking specifically of using it as a tool for
sizing microservices, it was more hype and vaporware than reality.

There are two primary reasons why more people talked about DDD than practiced it
in earnest: it is complex and it is expensive. Practicing DDD requires quite a lot of
knowledge and experience. Eric Evans’s original book on the subject is a hefty 520
pages long, and you would need to read at least a few more books to really get it, not
to mention gain some experience actually implementing it on a number of projects.
There simply were not enough people with the skills and experience and the learning
curve was steep.

To exacerbate the problem, as we mentioned, DDD is a team sport, and a time-
consuming one at that. It’s not enough to have a handful of technologists well-versed
in DDD; you also need to sell your business, product, design, etc., teams on partici‐
pating in long and intense domain-design sessions, not to mention explain to them at
least the basics of what you are trying to achieve. Now, in the grand scheme of things,
is it worth it? Very likely, yes: especially for large, risky, expensive systems, DDD can
have many benefits. However, if you are just looking to move quickly and size some
microservices, and you have already cashed in your political capital at work, selling
everybody on the new thing called microservices—good luck also asking a whole
bunch of busy people to give you enough time to size your services right! It was just
not happening—too expensive and too time-consuming.

And then suddenly a fellow by the name of Alberto Brandolini, who had invested
decades in understanding better ways for teams to collaborate, found a shortcut! He
proposed a fun, lightweight, and inexpensive process called Event Storming, which is
heavily based and inspired by the concepts of DDD but can help you find bounded
contexts in a matter of hours instead of weeks or months. The introduction of Event
Storming was a breakthrough for inexpensive applicability of DDD specifically for
the sake of service sizing. Of course, it’s not a full replacement, and it won’t give you
all the benefits of formal DDD (otherwise it would be magic). But as far as the dis‐
covery of bounded contexts goes, with good approximation—it is indeed magical!

Introduction to Event Storming | 67

https://oreil.ly/TiPOb

Event Storming is a highly efficient exercise that helps identify bounded contexts of a
domain in a streamlined, fun, and efficient manner, typically much faster than with
more traditional, full DDD. It is a pragmatic approach that lowers the cost of DDD
analysis enough to make it viable in situations in which DDD would not be afforda‐
ble otherwise. Let’s see how this “magic” of Event Storming is actually executed.

Key Decision: Use Event Storming Instead of Formal DDD
Use the more lightweight Event Storming process instead of formal DDD to discover
the main aggregates in your subdomain and identify edges of the various bounded
contexts present in your system.

The Event-Storming Process
The beauty of Event Storming is in its ingenious simplicity. In physical spaces (prefer‐
red, when possible), all you need to hold a session of Event Storming is a very long
wall (the longer the better), a bunch of supplies, mostly stickies and Sharpies, and
four to five hours of time from well-represented members of your team. For a suc‐
cessful Event Storming session, it is critical that participants are not only engineers.
Broad participation from such groups as product, design, and business stakeholders
makes a significant difference. You can also host virtual Event Storming sessions
using digital collaboration tools that can mimic the physical process described here.

The process of hosting physical Event Storming sessions starts by purchasing the sup‐
plies. To make things easier, we’ve created an Amazon shopping list that we use for
Event Storming sessions (see Figure 4-9). It is comprised of:

• A large number of stickies of different colors, most importantly, orange and blue,
and then several other colors for various object types. You need a lot of those.
(Stores never had enough for me, so I got in the habit of buying online.)

• A roll of 1/2-inch white artist tape.
• A long roll of paper (e.g., IKEA Mala Drawing Paper) that we are going to hang

on the wall using the artist tape. Go ahead and create multiple “lanes.”
• At least as many Sharpies as the number of session participants. Everybody needs

to have their own!
• Did we already mention a long, unobstructed wall that we can tape the roll of

paper to?

68 | Chapter 4: Rightsizing Your Microservices: Finding Service Boundaries

https://oreil.ly/T7Y0i

Figure 4-9. Required supplies for an Event Storming session

During Event Storming sessions, broad participation, e.g., from subject-matter
experts, product owners, and interaction designers, is very valuable. Event Storming
sessions are short enough (just several hours rather than analysis requiring days or
weeks) that, considering the value of their outcomes, the clarity they bring for all rep‐
resented groups and the time they save in the long term, they are time well-invested
for all participants. An Event Storming session that is limited to just software engi‐
neers is mostly useless, since it happens in a bubble and cannot lead to the cross-
functional conversations necessary for desired outcomes.

Once we have the supplies, the large room with a wide-open wall with a roll of paper
we have taped to it, and all the required people, we (the facilitator) ask everybody to
grab a bunch of orange stickies and a personal Sharpie. Then we give them a simple
assignment: to write the key events of the domain being analyzed as orange sticky
notes (one event per one note), expressed in a verb in the past tense, and place the
notes along a timeline on the paper taped to the wall to create a “lane” of time, as
shown in Figure 4-10.

Introduction to Event Storming | 69

Figure 4-10. An event timeline with sticky notes

Participants should not obsess about the exact sequence of events, and at this stage
there should be no coordination of events among participants. The only thing they
are asked is to individually think of as many events as possible and put the events
they think occur earlier in time to the left, and put the later events more to the right.
It is not their job to weed out duplicates. At least, not yet. This phase of the assign‐
ment usually takes 30 minutes to an hour, depending on the size of the problem and
the number of participants. Usually, you want to see at least 100 event sticky notes
generated before you can call it a success.

In the second phase of the exercise, the group is asked to look at the resulting set of
notes on the wall, and with the help of the facilitator, to start arranging them into a
more coherent timeline, identifying and removing duplicates. Given enough time, it
is very helpful for the participants to start creating a “storyline,” walking through the
events in an order that creates something like a “user journey.” In this phase, the team
may have some questions or confusion; we don’t try to solve these issues, but rather
capture them as “hotspots”—differently colored sticky notes (typically purple) that
have the questions on them. Hotspots will need to be answered offline, in follow-ups.
This phase can likewise take 30 to 60 minutes.

In the third stage, we create what in Event Storming is known as a reverse narrative.
Basically, we walk the timeline backward, from the end to the start, and identify com‐
mands; things that caused the events. We use sticky notes of a different color (typi‐
cally blue) for the commands. At this stage your storyboard may look something like
Figure 4-11.

70 | Chapter 4: Rightsizing Your Microservices: Finding Service Boundaries

Figure 4-11. Introducing commands to the Event Storming timeline

Be aware that a lot of commands will have one-to-one relationship with an event. It
will feel redundant, like the same thing worded in the past versus present. Indeed, if
you look at the previous figure, the first two commands are like that. It often confuses
people new to Event Storming. Just ignore it! We don’t pass judgment during Event
Storming, and while some commands may be 1:1 with events, some will not be. For
example, the “Submit payment authorization” command triggers a whole bunch of
events. Just capture what you know/think happens in real life and don’t worry about
making things “pretty” or “neat.” The real world you are modeling is also usually
messy.

In the next phase, we acknowledge that commands do not produce events directly.
Rather, special types of domain entities accept commands and produce events. In
Event Storming, these entities are called aggregates (yes, the name is inspired by the
similar notion in DDD). What we do in this stage is rearrange our commands and
events, breaking the timeline when needed, such that the commands that go to the
same aggregate are grouped around that aggregate and the events “fired” by that
aggregate are also moved to it. You can see an example of this stage of Event Storming
in Figure 4-12.

Introduction to Event Storming | 71

Figure 4-12. Aggregates on an Event Storming timeline

This phase of the exercise can take 15 to 25 minutes. Once we are done with it, you
should discover that our wall now looks less like a timeline of events and more like a
cluster of events and commands grouped around aggregates.

Guess what? These clusters are the bounded contexts we were looking for.

The only thing left is to classify various contexts by the level of their priority (similar
to “root,” “supportive,” and “generic” in DDD). To do this, we create a matrix of boun‐
ded context/subdomains and rank them across two properties: difficulty and compet‐
itive edge. In each category, we use T-shirt sizes <S, M, or L> to rank accordingly. In
the end, the decision making as to when to invest effort is based on the following
guidelines:

1. Large competitive advantage/large effort: these are the contexts to design and
implement in-house and spend most time on.

2. Small advantage/large effort: buy!
3. Small advantage/small effort: great assignments to trainees.
4. Other combinations are a coin toss and require a judgment call.

This last phase, the “competitive analysis,” is not part of Brandoli‐
ni’s original Event Storming process, and was proposed by Greg
Young for prioritizing domains in DDD in general. We find it to be
a useful and fun exercise when done with an adequate level of
humor.

72 | Chapter 4: Rightsizing Your Microservices: Finding Service Boundaries

The entire process is very interactive, requires the involvement of all participants, and
usually ends up being fun. It will require experienced facilitator to keep things mov‐
ing smoothly, but the good news is that being a good facilitator doesn’t take the same
effort as becoming a rocket scientist (or DDD expert). After reading this book and
facilitating some mock sessions for practice, you can easily become a world-class
Event Storming facilitator!

As a facilitator, it is a good idea to watch the time and have a plan for your session.
For a four-hour session rough allocation of time would look like:

• Phase 1 (~30 min): Discover domain events
• Phase 2 (~45 min): Enforce the timeline
• Phase 3 (~60 min): Reverse narrative and Command Identification
• Phase 4 (~30 min): Identify aggregates/bounded contexts
• Phase 5 (~15 min): Competitive analysis

And if you noticed that these times do not add up to 4 hours, keep in mind that you
will want to give people some breaks in the middle, as well as leave yourself time to
prepare the space and provide guidance in the beginning.

Introducing the Universal Sizing Formula
Bounded contexts are a fantastic starting point for rightsizing microservices. We have
to be cautious, however, to not assume that microservice boundaries are synonymous
with the bounded contexts from DDD or Event Storming. They are not. As a matter
of fact, microservice boundaries cannot be assumed to be constant over time. They
evolve over time and tend to follow an increasing granularity of microservices as the
organizations and applications they are part of mature. For example, Adrian Cockroft
noted that this was definitely a repeating trend that they had observed during his time
at Netflix.

Nobody Gets Microservice Boundaries Perfectly at the Outset

In successful cases of microservices adoption, teams do not start
with hundreds of microservices. They start with a much smaller
number, closely aligned with bounded contexts. As time goes by,
teams split microservices when they run into coordination depen‐
dencies that they need to eliminate. This also means that teams are
not expected to get service boundaries “right” out of the gate.
Instead, boundaries evolve over time, with a general direction of
increased granularity.

Introducing the Universal Sizing Formula | 73

https://oreil.ly/AzK4h
https://oreil.ly/LXK8F
https://oreil.ly/LXK8F

It is worth noting that it’s typically easier to split a service than to merge several serv‐
ices back together, or to move a capability from one service to another. This is
another reason why we recommend starting with a coarse-grained design and waiting
until we learn more about the domain and have enough complexity before we split
and increase service granularity.

We have found that there are three principles that work well together when thinking
about the granularity of microservices. We call these principles the Universal Sizing
Formula for microservices.

The Universal Sizing Formula
To achieve a reasonable sizing of microservices, you should:

• Start with just a few microservices, possibly using bounded contexts.
• Keep splitting as your application and services grow, being guided by the needs of

coordination avoidance.
• Be on the right trajectory for decreasing coordination. This is vastly more impor‐

tant than the current state of how “perfectly” you get service sizing.

Summary
In this chapter we addressed a critical question of how to properly size microservices
head-on. We looked at Domain-Driven Design, a popular methodology for modeling
decomposition in complex systems; explained the process of conducting a highly effi‐
cient domain analysis with the Event Storming methodology, and introduced the
Universal Sizing Formula, which offers unique guidance for effective sizing of
microservices.

In the following chapters we will go deeper into implementation, showing how to
manage data in a loosely coupled, componentized microservices environment. We
also will walk you through a sample implementation for our demo project: an online
reservation system.

74 | Chapter 4: Rightsizing Your Microservices: Finding Service Boundaries

CHAPTER 5

Dealing with the Data

In this chapter, we’ll cover why microservices need to “own their own data” and what
it means for your architecture. We will discuss when and how to use the the most
important patterns for microservices data management: delegates, data lakes, Sagas,
Event Sourcing, and command query responsibility segregation (CQRS). While dis‐
cussing these important topics, we will also try to demonstrate them on practical
examples using our sample project.

When it comes to practical microservices development, one of the early challenges
that almost everyone hits is dealing with the data. If it wasn’t for the many challenges
of data management in this space, turning complex, monolithic implementations into
loosely coupled, “bite-sized,” manageable microservices would be fairly easy.

The design considerations for logical and physical models in microservices imple‐
mentation are not the same as for designing data tables for the conventional, N-tier,
monolithic applications. In this chapter we will see why the differences arise, which
patterns the microservices practitioners commonly use, and what techniques should
be employed to tackle the additional complexities we face when implementing micro‐
services systems.

Independent Deployability and Data Sharing
In Chapter 4, we mentioned that Sam Newman suggests microservices should gener‐
ally be:

• Loosely coupled from each other; this also means independently deployable
• Highly cohesive vis-à-vis capabilities inside the microservices

75

http://shop.oreilly.com/product/0636920033158.do

When services are loosely coupled, a change to one service should not result in a
change to another one. You may remember that the main benefit of a microservices
architecture is increased speed, in harmony with safety and quality, at scale. And this
benefit is achieved by eliminating, or at least decreasing, coordination needs between
microservices. One critical, specific aspect of this loose coupling is what we call inde‐
pendent deployability—being able to make a change to one microservice, and deploy
it, without the need to change or deploy any other parts of the system, any other
microservices. This is really important and becomes vividly obvious if we visualize
what a typical deployment pipeline looks like in a microservices architecture. In
Figure 5-1, you can see a simplified graphic representation of deployment pipelines
for multiple microservices going through several environments, on their way to
production.

Figure 5-1. Example multi-environment release pipeline for microservices

The process of releasing code through a deployment pipeline becomes significantly
more complex and fragile if a deployment of one microservice triggers ripple effects
of having to also redeploy other parts of the application. Such interdependencies can
compromise both the speed and safety of the entire system. Alternatively, if we can
ensure that we can always deploy each microservice independently, without having to
worry about the ripple effects, we can keep our deployments nimble and safe.

There can be a number of reasons why you may not be able to make a deployment of
your microservices independent, but in the context of data management, the most
common offender is co-ownership of a data space by multiple microservices. Such
co-ownership can compromise their loose coupling and our ability to independently
deploy code.

We will start exploring techniques for avoiding data co-ownership across microser‐
vices by discussing the notion of microservice-embedded data in the following sec‐
tions.

76 | Chapter 5: Dealing with the Data

Microservices Embed Their Data
In monolith architectures, sharing of data is a common practice. In typical legacy sys‐
tems, even in the more modular, service-oriented architecture (SOA) ones, code com‐
ponents co-own data across multiple services as a regular practice. It is actually very
much expected—shared data is a primary pattern of integrating various modularized
parts of a larger system. Sometimes when we speak of a “monolith,” people imagine
that it has no modularization, that it is indeed just one big thing that is not divided
into any kind of components. That is not true. Developers have long known that
dividing a large codebase into smaller ones is highly beneficial for code organization
and manageability. But a key shortcoming, before microservices, was that the mod‐
ules that the monoliths were divided into were not independently deployable. That
made them not loosely coupled, in relation to coordination costs! Case in point: it
was primarily due to data coupling that SOA designs never achieved independent
deployability and consequently the ability to both go fast and go safely at greater
scale.

Let’s look at an example of how a problem may occur. Say that multiple microservices
share ownership of a customer table in a database, as depicted in Figure 5-2, in “Data
Embedding and the Data Delegate Pattern” on page 79. By “ownership” we mean that
different microservices read and modify data from the shared table.

Imagine that a flight-search microservice needs to change a field type of one of the
columns in the shared table. If the developers of this microservice just go ahead and
do it, let’s say from integer to float or something like that, the change could break the
reservations or flight-tracking microservices, since they also access the same table
and may rely on that field to have values of a certain type. To avoid introducing bugs,
when we change the data model because of the needs of the flight-search microser‐
vice, we will also need to accordingly change the code of the reservations microser‐
vice or potentially others as well. And we’ll have to redeploy all of the changed
microservices in one concerted effort. Ripple effects due to a changing data layer are
very common when multiple components co-own data, and they can cause signifi‐
cant coupling of various services, which would be a problem for independent
deployability.

Sharing data spaces is a primary killer of independent development and independent
deployability, in monoliths. By contrast, in a microservices architecture, independent
deployability is emphasized as a core value and consequently, data sharing is prohibi‐
ted—microservices are never allowed co-own responsibility for a data space in a data‐
base. It should be very clear which microservice owns any dataset in the database, or
as we commonly state the principle: microservices must own (embed) their data.

Microservices Embed Their Data | 77

While embedding their own data is a universal rule for microservices, there are some
important nuances to this principle that are critical to understand clearly. In the next
section we will discuss one such consideration in greater detail.

Embedding Data Should Not Lead to an Explosion in the Number of
Database Clusters
When building complex applications, we can often end up with different kinds of
databases. Datasets in those databases (e.g., “tables” for relational databases) should
never have multiple microservices as co-owners. When you build big systems, you
could eventually have hundreds of microservices. Does it then mean that we have to
deploy hundreds of distinct clusters of Cassandra, Postgres, Redis, or MySQL? Teams
implementing microservices need clarity on how far they should take the notion of
“microservices must embed their data.” Databases are themselves complex software
systems; they’re not deployed on just one server, rather most databases are deployed
on multiple servers for redundancy, reliability, and scalability—possibly dozens of
servers across different geographic regions. When we introduce the concept of data
embedding, teams will wonder if they need to create massive database clusters for
each microservice they create.

This could turn into a major problem. If a massive number of database clusters (one
or more per microservice) was required by a microservices architecture, then it
would be the most expensive architectural style in our industry’s history (or close to
it). Fortunately, this is absolutely not the case. Data independence doesn’t mean that
each microservice has to deploy its own, distinct cluster of scalable, redundant, and
complex database installations.

Key Decision: Microservices Can Share Physical Database Clusters
Microservices can and should share physical installations of database clusters. As long
as services never share the same logical table space and never modify the same data,
sharing physical installations is OK, in practice.

Independence of data management is more about not crossing the streams than any‐
thing else. It’s about the ability to take your microservices and deploy with another
database installation if you need to. But you don’t have to deploy each service with a
different database cluster out of the gate. Cost is an important consideration and so is
simplicity. As long as multiple microservices are not accessing (most importantly:
modifying) the same data space, the data independence requirement is intact.

78 | Chapter 5: Dealing with the Data

Data Embedding and the Data Delegate Pattern
Let’s look at an example in the context of our online reservation system. In the begin‐
ning we will look at the case in which the system is built with a conventional mono‐
lithic, N-tier architecture. Now, such an application would still be divided into
different, smaller modules. These modules could even be deployed as networked
services. And they could definitely be small enough to be called “micro.” That does
not necessarily mean they are microservices, however. They can only be considered
microservices if these components were modularized with the elimination of coordi‐
nation as the goal and, more specifically, if they are loosely coupled and independ‐
ently deployable. If services are split arbitrarily and not loosely coupled, we can’t call
such a system an example of a microservices architecture.

In our scenario, depicted in Figure 5-2, we have three services all requiring data from
the “flights” table: flight search, reservations management, and flight tracking.

Figure 5-2. Example of a monolithic data management, characterized by data sharing

Clearly, based on our earlier analysis in this chapter, this data design is problematic
for a microservices architecture, because three services are sharing the data space and
thus are compromising independent deployability.

How can we fix this situation? This particular case is actually quite easy to resolve,
and we can employ the simple technique of hiding shared data behind a delegate ser‐
vice, visualized in Figure 5-3.

Microservices Embed Their Data | 79

Figure 5-3. A simple graphic representation of data hiding via a delegate

Essentially, what we do here is declare the flight inventory service to be the authorita‐
tive service for all things related to flight information. Further, any service that
requires information about flights or needs to update information about flights is
required to invoke an appropriate endpoint in the flight inventory service. If we
implement a sufficiently flexible flight lookup API call in the flight inventory service,
the former flight search service just becomes part of the functionality of the new
flight inventory service. More importantly, this allows us to stop accessing the flights
table directly from the reservations and flight tracking services. Any information they
need about a flight they can obtain through the flight inventory service, going
forward.

For example, when the reservations system needs to know if there are enough seats
left on a flight, it will send a corresponding query to the flight inventory service
instead of querying the flights table directly in the database. Or when the flight track‐
ing service needs to know or update the location of the plane in a flight, it will again
do so via the flight inventory service, not by accessing and modifying the flights table
directly. This way the flight inventory service can be the delegate that hides data
behind itself, encapsulates the data, and wraps around the data. This will stop multi‐
ple services from sharing the same data table.

Please note that in this pattern, when several services need access to the same data, we
don’t have to necessarily convert one of them into a delegate. In the previous solution
we converted the flight search service into an inventory service and made it encapsu‐
late the flights table. We could have instead introduced a new service. For example,
we could introduce a new service called flight inventory and have the flight search
microservice refer to it, just like reservations and tracking services do.

The approach of introducing a delegate is very elegant and will work in many differ‐
ent cases. Unfortunately, not all data-sharing needs can be addressed this way. It
would be extremely naive to think that the pattern we just discussed works for all

80 | Chapter 5: Dealing with the Data

scenarios. There are use cases where the required functionality legitimately needs to
access or modify data across the boundaries of microservices. Examples of such needs
are found in the analytics, data audit, and machine learning contexts, among others.
Traditional approaches to database transactions also require locking in on shared
data.

Fortunately, there are reasonable solutions for those other use cases as well, solutions
that are also capable of avoiding data sharing. To understand the solutions in this
space, let’s first explore various data access patterns we commonly encounter.

Using Data Duplication to Solve for Independence
When we need read-only access to distributed data with no modification require‐
ments, as in the contexts of enterprise analytics, machine learning, audits, etc., a com‐
mon solution is to copy datasets from all concerned microservices into a shared
space. The shared space is usually called a data lake. Please note that we are copying
data, not moving it! Data lakes are read-only, query-able data sinks. Microservices
still remain the authoritative sources of the corresponding datasets and act as the pri‐
mary owners of the data. They just stream relevant data into the data lake where it
accumulates and becomes ready for querying. For the sake of data integrity and
clarity of data lineage, it’s important that we never operationally update such data in
an aggregate index like a data lake. Data lakes may never be treated as the databases of
record. They are reference data stores. We can see a generic graphic representation of
this setup in Figure 5-4.

Figure 5-4. Streaming data from microservices into data lakes

Once data is streamed from the system of record (SOR) data stores (such as microser‐
vices into data sinks), the aggregate data is indexed in a way that is optimized for
query-ability. Streaming data from SORs into data lakes is usually done using a relia‐
ble messaging infrastructure. IBM MQ and RabbitMQ have been used for many years
in this context; Kafka seems to be the current most popular solution, while Apache
Pulsar is probably the most prominent and interesting new entrant in the space.

Data lakes and shared data indexes can solve for many read-only use cases. But what
should we do when distributed data is not read-only? In the next section we explore a
solution for the cases when we need to modify data in a coordinated fashion across

Microservices Embed Their Data | 81

https://kafka.apache.org
https://pulsar.apache.org
https://pulsar.apache.org

the datasets owned by multiple microservices. We will discuss how to implement dis‐
tributed transactions in a microservices ecosystem.

Distributed Transactions and Surviving Failures
Let’s consider an example from our online reservations sample project. Specifically,
let’s explore what happens when somebody books a seat on a flight and to fulfill the
booking we need to execute a distributed transaction. This is a coordinated update
across multiple microservices that are in charge of things like using loyalty miles for
payment, securing a seat, and sending an itinerary to the customer’s email. Such
transactions span multiple microservices: payments (with loyalty points) processing,
reservations, and notifications, to be specific. Most importantly, we would typically
want all three steps to happen or none of them to happen. For instance, let’s say we
suddenly find out that the requested seat is no longer available. Perhaps when we
started the process of deducting the miles for the payment, the seat was available, but
by the time we finished the process, somebody had already reserved that seat. Obvi‐
ously we can’t reserve this seat twice, so we must consider what to do in that situation.
In a busy-enough system, such race conditions and failures are inevitable, so when
they do occur, we need to roll back the entire process. We clearly need to refund the
loyalty points, at the very least. Let’s understand how we would coordinate such a dis‐
tributed transaction.

In conventional monolithic applications, a process like the one we described would
be safely managed using database transactions. More specifically, this can be done
with database transactions that are said to exhibit the ACID characteristics of safety,
even in the event of failures. ACID stands for atomicity, consistency, isolation, and
durability. These are defined as follows:

Atomicity
The steps in a transaction are “all or nothing”; either all of them get executed, or
none of them.

Consistency
Any transaction should bring the system from one valid state into another valid
state.

Isolation
Parallel execution of various transactions should result in the same state as if the
transactions were executed sequentially.

Durability
Once a transaction is committed (fully executed), data won’t be lost despite any
possible failures.

82 | Chapter 5: Dealing with the Data

Microservices simplify building systems safely at scale. It is critical to clarify, however,
that this doesn’t mean you can somehow prevent a failure from ever occurring. Com‐
pletely avoiding failures, whether with microservices or by any other means, is an
impossible task. Failures will always be present in a sufficiently complex system. What
we need to do is account for them and create the means for auto-recovery. In conven‐
tional data management, ACID transactions are a great example of such thinking.
Systems implementing ACID transactions assume that failures of all kinds happen all
the time, so we design our data storage systems in a way to make them resilient to the
failures.

Unfortunately, ACID transactions are not a viable solution for distributed systems in
which functionality is spread across multiple microservices deployed across a net‐
work independently. ACID transactions typically rely on usage of exclusive locks.
Given that microservices embed their data and do not allow code to manipulate data
in another microservice, such locks would be either impossible or very expensive for
a microservices system to implement. Instead, we need to use patterns that work bet‐
ter in distributed architectures. In the next section we introduce a popular solution of
this type called saga transactions.

Distributed transactions with sagas
Sagas were first described by Hector Garcia-Molina in 1987, long before modern dis‐
tributed systems were a thing, and were later popularized by Clement Vasters’s 2012
blog post as an effective solution for distributed systems.

With sagas, every step of a transaction not only performs the required action for that
step, but it also defines a compensating action that should execute if we need to roll
back the transaction due to a later failure. A pointer (e.g., discovery information on a
queue) to this compensating action is registered on a routing slip and passed along to
the next step. If one of the later steps fails, it kicks off execution of all compensating
actions on the routing slip, thus “undoing” the modifications and bringing the system
to a reasonably compensated state.

Sagas Are Not Directly Equivalent to ACID Transactions

Sagas do not promise that when a distributed transaction is rolled
back, the system will necessarily get back to the initial state. Rather,
the system should get to a reasonable state that reflects an accepta‐
ble level of undoing of the partially completed transaction.

To understand what we mean by “reasonable state,” let’s look at our initial example of
a seat reservation, as depicted in Figure 5-5.

Microservices Embed Their Data | 83

https://oreil.ly/B1OTU
https://oreil.ly/bIRr3
https://oreil.ly/f5cLI
https://oreil.ly/f5cLI

Figure 5-5. A transaction distributed across multiple microservices

If a reservation booking attempt fails, for whatever reason, it will be cancelled, but we
will also invoke the compensating action of the previous steps: notification and pay‐
ment. The compensating action of a payment refunds money to the customer.
Depending on the type of payment, a refund may not get processed immediately; so
the system may not return to its initial state immediately, but eventually the customer
will get all their money. That said, it will be visible that two payment actions cancelled
(compensated) each other, rather than the customer not noticing any trace of transac‐
tion reversal at all, which would have been the goal with ACID transactions.

In case of a notification things can become even messier. We may not be able to liter‐
ally recall an email or a text message that was sent, so the compensating transaction
may involve sending a new message notifying the customer that the previous message
should be disregarded and booking was actually unsuccessful. In some circumstan‐
ces, it can be a reasonable solution (if not, we will see later in the chapter how to
avoid it with proper sequencing), but doesn’t bring the system back to the initial state:
a customer will see two messages, instead of not seeing any.

These two examples hopefully gave a clear understanding of some of the ways in
which compensating transactions, in sagas, are different from the conventional ACID
transactions.

The Sequence of Events in a Saga Is Meaningful

Note that the sequence of events in a saga does matter and should
be constructed carefully. It usually pays off to move steps that are
harder to compensate for toward the end of the transaction. For
instance, if business rules allow it, moving a notification to the very
end of the process may save us from having to send a lot of correc‐
tion messages. This way, by the time the transaction gets to sending
alerts, we will know that the previous steps have succeeded.

84 | Chapter 5: Dealing with the Data

1 Greg Young, “CQRS and Event Sourcing,” Code on the Beach 2014, https://oreil.ly/5-d5u.

Delegate services, data lakes, and sagas are powerful patterns. They can solve many
data isolation challenges in microservices architectures, but not all of them. In the
next section we will discuss a powerful duo of design patterns: Event Sourcing and
CQRS. These can pretty much address everything else remaining, providing a com‐
plete toolset for data management in a microservices environment.

Event Sourcing and CQRS
Up to this point we have discussed some ways to avoid data sharing when using tradi‐
tional, relational data modeling. We showed how you can solve some of the data-
sharing challenges, but eventually, for advanced scenarios, we will run into cases
where relational modeling itself falls short of allowing the desired levels of data isola‐
tion and loose coupling. A very common example is when teams need to create a
“join” across datasets owned by different microservices. At its core, relational data
modeling is rooted in such foundational principles as data normalization, data reuse,
and cross-referencing common data elements; i.e., it is fundamentally biased toward
favoring data sharing.

Event Sourcing
Sometimes, rather than trying to go around the predisposition for relational model‐
ing, we should switch to a completely different way of modeling data. A data model‐
ing approach that allows avoidance of data sharing, and thus has become popular in
microservices, is known as Event Sourcing.

One of the earliest known mentions of Event Sourcing is in Martin Fowler’s 2005 arti‐
cle. In 2014, Greg Young gave a seminal conference talk1 about Event Sourcing that
jump-started a new, strong wave of popularity for the design pattern. Greg has been
an important voice and one of the key advocates in this space. We owe him a lot of
gratitude for the advancement of Event Sourcing (and its relationship with CQRS,
another important pattern that we will discuss later in this chapter). In Greg’s own
words, Event Sourcing is an approach to data modeling that is all about storing events
rather than the states of the domain objects of a system:

Event Sourcing is all about storing facts and any time you have “state” (structural mod‐
els)—they are first-level derivative off of your facts. And they are transient.

Event Sourcing and CQRS | 85

https://oreil.ly/5-d5u
https://oreil.ly/BHKl9
https://oreil.ly/BHKl9

In this context, by “facts,” Young means the representative values of event occur‐
rences. An example could be “the price of an economy seat on the LAX–IAD flight
increased by $200.”

Event Sourcing in accounting and chess
Unless you have prior experience with Event Sourcing, this may feel odd. Most people
who haven’t worked on systems dealing with high-frequency trading platforms or
haven’t had a ton of advanced experience with microservices probably do not have
any experience with Event Sourcing. That said, we can easily find examples of Event-
Sourcing systems in real life. If you’ve ever seen an accounting journal, it is a classic
event store. Accountants record individual transactions, and the balance is a result of
summing up all transactions. Accountants are not allowed to record “state”; i.e., they
just write down the resulting balance after each transaction, without capturing the
transactions themselves. Similarly, if you have played chess and have recorded a chess
game, you would not write down the position of each piece on the board after each
move. Instead you are recording moves individually, and after each move the state of
the board is a result of the sum of all moves that have happened.

For instance, consider the record of the first seven moves of the historical game 6
between many-times world chess champion Gary Kasparov and the IBM supercom‐
puter Deep Blue, in 1997. Represented in algebraic notation, looks like the following:

1. e4 c6
2. d4 d5
3. Nc3 dxe4
4. Nxe4 Nd7
5. Ng5 Ngf6
6. Bd3 e6
7. N1f3 h6

The corresponding state after the initial seven moves is depicted in Figure 5-6.

We can completely re-create the state of a chess game, such as that between Kasparov
and Deep Blue, if we have the event log of all moves. This is an analog equivalent of
Event Sourcing from real life.

86 | Chapter 5: Dealing with the Data

https://oreil.ly/txpy7

Figure 5-6. Deep Blue versus Kasparov (source: Wikipedia)

Event Sourcing versus relational modeling
In conventional data systems such as relational databases, or even the more contem‐
porary NoSQL and document databases, we usually store a state of something; for
instance, the current price of an economy seat on a flight. In Event Sourcing, we oper‐
ate with a completely different approach. In Event Sourcing we do not store current
state, rather we store facts; the incremental changes of the data. The current state of
the system is a derivative, a value that is calculated from the sequence of changes
(events).

Event Sourcing and CQRS | 87

https://oreil.ly/-chbm

Let’s look at an example. A relational data model describing the customer manage‐
ment system for a flight reservations system may look like the diagram in Figure 5-7.

Figure 5-7. Example of a relational data model

We can see that the data model could consist of a table storing customers’ contact
information, which has one-to-many relationships with customer accounts and pay‐
ment methods. In turn, each customer account (e.g., business versus personal
accounts) record can point to multiple completed trips, open reservations, and pref‐
erences related to the account. While the details may vary, this is the kind of data
model most software engineers would design using conventional databases.

Using Event Sourcing, we can design the same data model as a sequence of events,
shown in Figure 5-8. Here you can see a representation of events that led to the same
state of the system as described in the state-oriented model earlier: first, the customer
contact information was collected, then a personal account was opened, which was
followed by entering a personal payment method. After several reservations, and
completed trips, this customer apparently decided to also open a business account;
they added payment information and started booking trips with this new account.
Along the way several preferences were also added and updated, bringing the system
to the same state as in Figure 5-7, except here we can see the exact sequence of “facts”
that led to the current state, as opposed to just looking at the result in the state-
oriented representation.

So the sequence of events on the diagram gives you the same state that we had in the
relational data model. It is equivalent to what we had there, except this looks very,
very different. For instance, you may notice it looks much more uniform. There are
significantly fewer opinionated decisions to be made about the various entity types
and their relationships with each other. Event Sourcing in some ways is much simpler
in that you just have a variety of business events that happen and then you can calcu‐
late the current state as a derivative of these events.

88 | Chapter 5: Dealing with the Data

Figure 5-8. Example of an event-sourced data model

Not only is Event Sourcing more straightforward andpredictable, in Event Sourcing
there are no referential relationships between various entities. If we wanted to do a
brute force data segregation here, all we would need to do is say each type of event is
owned by a different microservice, and voila, we could do that and avoid data shar‐
ing. For instance, we could have a microservice that is a customer demographics
microservice and “customer info entered” would be an event that very naturally
belongs to that system of record.

What does an event look like?
Now that we hopefully have a good intuition about Event Sourcing and how it works,
let’s dig a little bit deeper into what data modeling and data management looks like in
Event Sourcing. It’s an approach of capturing the sequence of events. The state is just
something you calculate off of these events—a state is a function of events. OK, this
sounds a bit mathematical, but what does an event even look like? Well, events are
very simple. If we look at the “shape” of an event data structure, all it needs to have
are three parts.

First, the event needs some kind of unique identifier. You could for instance use a
universally unique identifier (UUID), since they are globally unique, and this unique‐
ness obviously helps in distributed systems. It also needs to have an event type, so we
don’t mistake different event types. And then there’s just data, whatever data is rele‐
vant for that event type:

{
 "eventId" : "afb2d89d-2789-451f-857d-80442c8cd9a1",
 "eventType" : "priceIncreased",
 "data" : {
 "amount" : 120.99,
 "currency" : "USD"
 }
}

Event Sourcing and CQRS | 89

Design decisions of a technical nature are fairly straightforward when working with
events. Most work goes into properly describing domain-relevant fields of the events,
based on the business logic. There’s much less of the kind of subjective, technical
table-shape and relationship crafting that we engage in with the relational approach.

Calculating current state with projections
What happens when we actually need to calculate the point-in-time (e.g., current)
state of something? We run what in Event Sourcing is called projections. Projections
give us state based on events, and they’re also fairly simple. To run a projection, we
need a projection function. A projection function takes the current state and a new
event to calculate the new state.

For instance, a priceUp projection function, for an airline ticket price, may look like
the following:

function priceUp(state, event) {
 state.increasePrice(event.amount)
}

It would be equivalent to an UPDATE prices SET price=… SQL query in a relational
model. If we also had a corresponding price decrease projection function and we
wanted to calculate price (state) at some point, we could run a projection by calling
the projection functions for all relevant events, like the following:

function priceUp(state, event) {
 state.increasePrice(event.amount)
}

function priceDown(state, event) {
 state.decreasePrice(event.amount)
}

let price = priceUp(priceUp(priceDown(s,e),e),e);

If you have ever worked with functional programming, you may notice that the cur‐
rent state is the left fold of the events that occurred until the current time. Note that
through using Event Sourcing you can calculate not just the current state but the state
as of any point in time. This capability opens up endless possibilities for sophisticated
analytics, where you can ask questions like, “OK, I know what the state of the entity is
now, but what was the state at a date in the past that I am interested in?” This flexibil‐
ity can become one of the powerful benefits of using Event Sourcing, if you frequently
need to answer such questions.

90 | Chapter 5: Dealing with the Data

Improving Performance with Rolling Snapshots
One thing to note here is that projections can be computationally expensive. If a
value is a current state and it’s the result of a sequence of thousands of state changes,
like a bank account balance, whenever you need the value of a current balance, would
you want to calculate it from scratch? You could argue that such an approach is slow
and it can waste time and computational resources. It also cannot be as instantaneous
as just retrieving the current state. You would be correct in that; however, we can
optimize for speed and it doesn’t necessarily require a change in the approach.
Instead of recalculating everything from the beginning—for example, the opening of
a bank account—we can keep saving intermediary values, along the way, and later we
can quickly calculate the state from the last snapshot. That would significantly speed
up calculations.

Depending on the event store implementation, it is common to snapshot intermedi‐
ary values at various time points. How to choose the appropriate moment of snap‐
shotting may depend on your application’s domain. For instance, in a banking system,
you may snapshot account balances on the last day of every month, so that if you
need the balance on January 15, 2020, you will already have it from December 31,
2019, and will just need to calculate the projection for two weeks, rather than the
entire life of the bank account.

In Event Sourcing, the saved projections are usually called rolling snapshots. The
specifics of how you implement rolling snapshots and projections may depend on the
context of your application. For instance, when we used monthly rolling snapshots
for the banking application example earlier, it made a lot of sense because this
approach closely aligns with what happens in real life anyway. Banks calculate various
types of balances at the end of the month, quarter, and year; this is known as “closing
the books.” You should always try to find natural time points in your own domains
and align your snapshots with them.

Later in this chapter we will see that with a pattern called Command Query Responsi‐
bility Segregation (CQRS), we can do much more than just cache states in rolling
snapshots.

Having acquired an understanding and appreciation of Event Sourcing, let’s learn
more about how to implement it. What would the event store itself look like? And
how would we go about implementing one? We will answer these questions in the
next section.

Event Sourcing and CQRS | 91

Event Store
Event stores can be relatively simple systems. You can use a variety of data storage
systems to implement one. Simple files on the filesystem, Amazon Simple Storage
Service (S3) buckets, or any database storage that can reliably store a sequence of data
entries can all do the job. The interface of an event store needs to support three basic
functions:

• The ability to store new events and assign the correct sequence so we can retrieve
events in the order they were saved

• The capability to notify event subscribers who are building projections about
new events they care about and enable the Competing Consumers pattern

• The ability to get N number of events after event X for a specific event type, for
reconciliation flows; i.e., recalculation in case projection is lost, compromised, or
doubted

So, at its essence, the basic interface of an event store is comprised of just two
functions:

save(x)
getNAfterX()

In addition, there is a kind of robust notification system that allows consumers to
subscribe to events. By “robust” we mean conformation to the Competing Consumers
pattern. This pattern is important because whatever system is building a projection
off of your events will likely want to have multiple instances of a client “listening” to
the events, both for redundancy and scalability’s sake. Our notifier must reasonably
accommodate only-once delivery to a single instance of a listener, to avoid accidental
event duplication leading to data corruption. There are two approaches you can
employ here:

1. Use a message queue implementation that already provides such guarantees to its
consumers; e.g., Apache Kafka.

2. Allow consumers to register HTTP endpoints as callbacks. Invoke the callback
endpoint for each new event and let a load balancer on the consumer side handle
the distribution of work.

Neither approach is inherently better. One is push-based and the other is pull-based,
and depending on what you are doing, you may prefer one over the other.

92 | Chapter 5: Dealing with the Data

https://oreil.ly/WZ9Ss
https://kafka.apache.org

Check Out a Sample Implementation

During the writing of this book, we published an opinionated ref‐
erence implementation of a skeleton event store on GitHub that
you can check out, take for a test drive, or contribute to.

To implement robust projections, Event Sourcing systems often use a complementary
pattern known as CQRS. In the next section we will explore the ideas behind it and
try to understand its essence.

Command Query Responsibility Segregation
Projections for advanced event-sourced systems are typically built using the Com‐
mand Query Responsibility Segregation (CQRS) pattern. The idea of CQRS is that
the way we query systems and the way we store data do not have to be the same.
When we were talking about the event store and how simple it can be, one thing we
skipped over was that the simple interface of save(x) and getNAfterX() functions is
not going to allow us to run elaborate queries over that data. For instance, it won’t
allow us to run queries asking for all reservations in which a passenger has updated
their seat in the last 24 hours. Those kind of queries are not implemented against the
event store, to keep the event store simple and focused. Event Sourcing should only
solve the problem of authoritatively and reliably storing an event log. For advanced
queries, every time an event occurs, we let another system, subscribed to the event
store, know about it and that system can then start building the indices that are opti‐
mized for querying the data any way they need. The idea behind CQRS is that you
should not try to solve data storage, data ownership, and data queryability issues with
the same system. These concerns should be solved for independently.

The big win with using Event Sourcing and CQRS is that they allow us to design very
granular, loosely coupled components. With Event Sourcing, we can create microser‐
vices so tiny that they just manage one type of event or run a single report. Targeted
use of Event Sourcing and CQRS can take us to the next level of autonomous granu‐
larity in microservices architectures. As such, they play a crucial role in the architec‐
tural style.

Event Sourcing and CQRS Should Not Be Abused as a Cure-All Solution

Be careful not to overuse Event Sourcing and CQRS. You should
only use them when necessary, since they can complicate your
implementation. They should not be used as the one and only data
modeling approach for your entire system. There are still many use
cases in which the conventional, relational model is much simpler
and should be utilized.

Event Sourcing and CQRS | 93

https://oreil.ly/LPD8y
https://oreil.ly/LPD8y

2 Eric Brewer, “CAP Twelve Years Later,” InfoQ, 2012, https://oreil.ly/Pg1pO, and Coda Hale, “You Can’t Sacri‐
fice Partition,” 2010, https://oreil.ly/nHBoN.

Event Sourcing and CQRS can help you avoid data sharing between microservices in
sophisticated cases where you require data joins across service boundaries, but they
come with a cost of complexity. Always consider other, simpler approaches, such as
the delegate service we described in this chapter, before you resort to Event Sourcing,
for a particular microservice.

Now that we have acquired a solid, foundational understanding of Event Sourcing
and CQRS, let’s also address where else these patterns can and should be used,
beyond just helping with loose data coupling for the data-embedding needs of
microservices.

Event Sourcing and CQRS Beyond Microservices
Event Sourcing and CQRS can certainly be invaluable in avoiding data sharing and
achieving loose coupling of microservices. Their benefit is not limited to loose cou‐
pling or even microservices architectures, however. Event Sourcing and CQRS are
powerful data modeling tools that can benefit a variety of systems.

Consider Event Sourcing and CQRS in relation to the consistency, availability, and
partition tolerance (CAP) theorem. This theorem was famously formulated as a con‐
jecture by Eric Brewer in his 2000 keynote at the Symposium on Principles of Dis‐
tributed Computing. The theorem, in its original form, stated that any distributed
shared-data system can only have two out of three desirable properties:

Consistency
Having a single view of the latest state of the data

Availability
Ability to always read or update data

Partition tolerance
Getting accurate data even in the face of network partitions

Over time, it was clarified that not all combinations of CAP are valid.2 For a dis‐
tributed system we have to account for partition tolerance because network partitions
cannot be avoided, and the choice becomes a sacrifice between consistency or availa‐
bility. But what do we do if we really need both? It sounds childish to insist on want‐
ing everything if a mathematically proven theorem (which CAP became eventually)
tells you that you cannot have it all.

But there is a catch! The CAP theorem tells us that a single system, with data sharing
cannot violate the theorem. However, what if, using CQRS, we employ multiple sys‐

94 | Chapter 5: Dealing with the Data

https://oreil.ly/Pg1pO
https://oreil.ly/nHBoN
https://oreil.ly/hiQMB

tems and minimize data sharing? In such a case, we can prioritize consistency in the
event store and prioritize availability in the query indices. Certainly, that means what‐
ever system we use for query indices may get consistency wrong, but they are not
authoritative sources, so we can always re-index from the event store, if need be. In a
way, this allows us to, indeed, have the best of both worlds.

The second major benefit of the Event Sourcing and CQRS approach is related to
auditability. When we use a relational data model, we do in-place updates. For
instance, if we decide that the customer’s address or phone number is wrong we will
update it in the corresponding table. But what happens if the customer later disputes
their record? With a relational model, we may have lost the history and find ourselves
helpless. With Event Sourcing, we have a perfect history of every change safely pre‐
served and we can see what the value of customer data was at any time in the past, as
well as how and when it got updated.

Some readers may point out that even when they use relational modeling, it doesn’t
necessarily mean that they lose the history of data. They may be logging every change
in some file, or systems like Splunk or ELK. So, how is logging different from Event
Sourcing? Are we just talking about good old logging here, branding it with some
new buzz name? The answer is absolutely not. It all comes down to: which system is
the source of truth in our architecture? Who do I “trust” if my log disagrees with my
current state? In Event Sourcing, the “state” is calculated from the events, so the
answer is self-evident. For Splunk logs that is not the case, so your source of truth is
most likely your relational model, even if you occasionally double-check it from the
logs to hunt down some bugs. When your reliable log of events is your source of
truth, you are using Event Sourcing as your data modeling approach. Otherwise, you
are not, no matter how many logs you may be generating.

Summary
In this chapter we discussed a fundamental concept of microservices architectures:
data isolation and the principle of embedding data into corresponding microservices.
We also explored how this principle, while necessary for loose coupling and inde‐
pendent deployability, can lead us to significant data management challenges if we
approach them with conventional data modeling solutions, the ones designed for
monolithic N-tier applications. Further, we looked into a complete toolset of solu‐
tions to the described challenges in the form of powerful, tried-and-true patterns that
address those challenges head-on. Last but not least, we introduced a new approach
to data modeling, which is distinctly different from conventional, relational
modeling. We explained the benefits and appropriate usage contexts of Event Sourc‐
ing and CQRS, even beyond microservices needs.

Armed with this powerful, foundational knowledge, we can now dive deep into the
implementation of our sample project. We will first start by setting up an automated,

Summary | 95

https://oreil.ly/C3oY-
https://oreil.ly/80teW

containerized infrastructure and deployment pipelines for the project. This step is
crucial for tackling the operational complexities of a microservices-based project.
Then we will share detailed guidance on creating a productive and repeatable devel‐
oper workspace—a critical foundation for creating an enjoyable developer experience
in a heterogeneous environment. Finally, we will try to implement code for a couple
of microservices of our sample project, leveraging all of the insights we have learned
so far.

96 | Chapter 5: Dealing with the Data

CHAPTER 6

Building an Infrastructure Pipeline

In this chapter, we’ll establish the foundation for our infrastructure work. We’ll start
by setting up an Amazon Web Services (AWS) account. Following that, we’ll set up a
tool called a continuous integration and continuous delivery (CI/CD) pipeline to
automate infrastructure changes. With these tools, we’ll be able to define and provi‐
sion microservices infrastructures throughout the book.

Earlier, in Chapter 2, we established a platform team responsible for delivering the
microservices infrastructure. We decided that this team would offer the infrastructure
as a service. That meant that other teams should be able to use the infrastructure in a
self-service manner, without having to coordinate heavily with the platform team.
Enabling the “as a service” model requires some up-front investment. That’s what the
tools in this chapter will help address.

In order to reduce the work that our microservices teams need to do, we’ll need to
make it easy for teams to move their code from local workstations onto a hosted
infrastructure. So we’ll need to lower the barrier for teams to be able to provision
environments and deploy their services into a hosted system. We’ll need to make it
cheap and easy to create a new environment and provide the right kit to make relea‐
ses safe and easy.

In practice, achieving those goals is difficult if you don’t have a good way of improv‐
ing the way you make changes to the infrastructure itself. If we can reduce the effort
cost of building and changing the infrastructure, we’ll be able to deliver new environ‐
ments more easily and put more focus on improving the infrastructure to meet our
system goals.

Thankfully, we don’t have to invent a solution for infrastructure changes by ourselves.
We have the luxury of being able to draw on the principles and philosophies of
DevOps. In particular, using the DevOps practices of infrastructure as code (IaC), CI,

97

and CD will help us achieve our objectives. We’ll be able to make infrastructure
changes faster, cheaper, and safe, and scale the work of building environments across
our microservices teams.

DevOps and Microservices

The goal of DevOps is the pursuit of improvements to the way that
software is developed, released, and supported. Working towards
that goal can span the domains of organizational design, culture,
process, and tooling. The microservices style of architecture shares
a similar overall goal, but adds the additional characteristic of
bounded services and independent deployment and management.
Microservices and DevOps go hand in hand—in fact, it would be
extremely challenging to build applications in the microservices
style without adopting DevOps practices.

Adopting DevOps practices means that we get to take advantage of a bountiful eco‐
system of tools for code management, build management, and releases. Using these
tools will greatly reduce the time it takes to get our infrastructure solution up and
running. By the end of this chapter, we’ll have set up a cloud-based toolchain that we
can use to build a microservices infrastructure. We’ll have an IaC repository, a starter
file for the infrastructure code, a pipeline for testing and building (see Figure 6-1),
and a cloud foundation that we can build environments within.

Figure 6-1. The target pipeline

But before we start building the pipeline, let’s take a look at the DevOps-based princi‐
ples and practices we’ve used to inform the design.

DevOps Principles and Practices
Building software in the DevOps way helps you reduce the time it takes to make
changes to your applications, without introducing additional risk. When you do it
right, it gives you both change speed and change safety at the same time.

That’s exactly the benefit we want to provide with our infrastructure toolchain. If we
can improve the speed and safety of infrastructure changes, we can do more of them.
We’ll also be able to make more improvements more often and offer a better platform
service to our microservices teams.

98 | Chapter 6: Building an Infrastructure Pipeline

To make this happen, we’ll use three concepts from the DevOps world in our infra‐
structure platform:

• Immutable infrastructure
• IaC
• CI and CD

Let’s take a look at each of these ideas in more detail to understand how they’ll help
us, starting with the principle of immutable infrastructure.

Immutable Infrastructure
An object is immutable if it can’t be changed after it’s created. The only way to update
an immutable object is to destroy it and create a new one. Things that are immutable
contain behavior and structures that are easier to predict and reproduce because they
don’t change. For example, in programming, an immutable data type would let you
assign a value when it’s created but never let you change it. If you created a data type
called x with a value of 10, you could be sure that it will always be 10 forever more.
This predictability can make activities like testing and replication of these objects
easier.

The immutable infrastructure principle is an application of this immutability prop‐
erty on infrastructure components. Suppose we were to set up and install a network
load balancer with a set of defined routes. If we apply the immutability principle, the
network routes we’ve defined can’t be changed without destroying the load balancer
and making a new one.

The main advantage of applying immutability here is to create predictable and easily
reproducible infrastructures. In traditional systems, human operators need to do a lot
of manual work to get things running. They patch systems, alter configurations, and
stop and start processes. Servers and devices are kept continually running and the
operator shapes the environment so that the application can run. When there are
multiple environments and servers, the operator needs to shape them all.

But, over time, as more changes are applied (often inconsistently), the state of these
systems drift. It becomes increasingly difficult to keep all of the servers running in the
same state. Introducing new servers or making changes to environment states
becomes a problem because of this variability and unpredictability. This unpredicta‐
bility means that more expertise and manual effort is required, which slows down
delivery and makes it difficult to offer the infrastructure platform in a self-service
tool as we outlined in our operating model.

That’s where immutable infrastructure comes in. By adopting the principle of immut‐
ability, we can create an infrastructure that is highly predictable and easy to replicate.

DevOps Principles and Practices | 99

This lends itself very well to the model we’re targeting. So, let’s make that our first key
decision for our infrastructure foundation.

Key Decision: Apply the Principle of Immutable Infrastructure
Infrastructure components must not be changed after they’ve been created. Changes
must be made by re-creating the component (and any dependent components) with
the new or altered properties.

The decision we’ve just made comes with a trade-off: the cost of destroying and re-
creating configurations. So we’ll need to make some additional decisions to make this
process easier. Otherwise, we’ll end up never making infrastructure changes because
it will be too difficult and too costly. The first decision we’ll make is one we’ve alluded
to earlier in the book. We’ll build our platform in the cloud.

Key Decision: Implement the Infrastructure in the Cloud
Infrastructure components will be deployed and managed in a cloud platform.

This decision to build our microservices infrastructure in the cloud is an important
enabler for our immutable infrastructure. Without it, the cost of physical hardware
acquisition, server management, and software procurement would bury us in com‐
plexity and cost. But in the cloud, the infrastructure components are virtual. With
virtuality, we can treat the infrastructure the same way we treat software. It gives us
the freedom to create and destroy servers and devices in the same way as we might do
with a software component or an object in a object-oriented system.

Immutable infrastructure will help us avoid server drift and improve our ability to
replicate and instantiate new environments with a production-like state. However,
we’ll still need a way of defining all of our infrastructure with a manageable set of
configurations. That’s where the principle of IaC can help.

Infrastructure as Code
IaC is based on a single powerful constraint: all infrastructure changes must be repre‐
sented as a set of machine-readable files (or code). Teams that apply this contraint can
point to a group of files that define the target state for their infrastructure, and can re-
create an environment by reapplying the code that created it. Managing the infra‐
structure code becomes a way of managing the infrastructure state. Ultimately
adopting the principle of IaC means we can manage changes to our environments by
managing the way we write, test and deploy our infrastructure code.

100 | Chapter 6: Building an Infrastructure Pipeline

IaC is also very important for enabling our immutable infrastructure. Immutability
requires us to manage definitions for objects so they can be changed through re-
creation. There are plenty of ways to do that, but IaC lets us treat infrastructure the
way we treat applications. With IaC, creating and changing components is similar to
running a program. We’ll get to apply our know-how from the application develop‐
ment world to the infrastructure.

IaC is a good fit for the system we’re trying to build, so let’s formalize this decision
with an ADR.

Key Decision: Adopt IaC
All infrastructure changes should be made in managed code files. Changes should not
be made manually by human operators outside of the code.

To get going with an IaC approach, we’ll need a tool that will allow us to define the
changes we want to make as machine-readable code files. That tool will also need to
interpret our IaC files and apply them to a target environment. Years ago, we might
have had to build this tooling ourselves, but now there are lots of tools available that
can do this work for us. For our example project, we’re going to use HashiCorp’s Ter‐
raform to define our changes and apply them to our cloud-based environment.

An introduction to Terraform
Terraform is a popular tool for teams that are employing IaC principles and manag‐
ing their infrastructure in an automated, repeatable way. We’ve had success using Ter‐
raform in our own projects and our straw poll of practitioners showed that it’s a
popular choice among other implementers as well. In this model, we’ve chosen to use
Terraform as the tool for infrastructure changes, so let’s start by documenting that
decision.

Key Decision: Use Terraform for Infrastructure Changes
We’ll use HashiCorp’s Terraform tool to manage and apply changes to the platform
infrastructure.

Terraform isn’t the only tool that can help us with infrastructure changes and there
are plenty of popular alternatives available for use. We’ve chosen to use Terraform
because it applies a declarative approach to infrastructure management. So we get to
declare a target state for the infrastructure and Terraform will do the hard work of
making it happen. That’s quite different from traditional configuration management
approaches where we need to instruct the tool with step-by-step imperatives.

DevOps Principles and Practices | 101

Terraform also embraces the principle of immutable infrastructure that we decided to
adopt earlier. In practice, this enables us to write Terraform code that describes a
desired state for an infrastructure component. When we apply our code, Terraform
will do the hard work of destroying it and re-creating it in its new form. That includes
dealing with any dependent objects and destroying and re-creating those as well.

To make that magic happen, Terraform needs to keep track of states. It needs to track
the current state of the environment so that it can come up with a plan to produce the
end state that we’ve defined. That state needs to be managed carefully and needs to be
shared by everyone using the tool. Effective management of a Terraform solution
means managing the state, configuration files, and quality, safety, and maintainability
of the entire solution (just like we would for a software application).

If you want to learn more about Terraform, a good place to start is
their documentation.

Continuous Integration and Continuous Delivery
Immutability and IaC make our infrastructure changes more predictable. But, those
predictable changes may not always be safe. For example, what happens if a small
change to a network inadvertently brings down a load balancer in production? Or
what if a change intended only for the development environment accidentally makes
its way to production and causes an outage?

One way to mitigate these risks is to do a lot of checking (and double-checking) for
every change. But the problem with this approach is that it slows down our rate of
change because of all the validation work we’d need to do. It can also lead to the late
discovery of problems that we should have found a lot earlier in our infrastructure
design and development work. We end up spending a lot of time in a testing phase
where we need to fix a large batch of problems that could fundamentally alter our
infrastructure plan.

A more efficient approach is to apply the DevOps software practices of continuous
integration and continuous delivery (CI/CD). Instead of scheduling a big testing
effort right before making a production change, we’ll continuously integrate our
changes into our repository. We’ll also continuously test that our changes work and
automatically deliver them. The goal is to get into a rhythm of releasing small, test‐
able changes instead of a big batch.

102 | Chapter 6: Building an Infrastructure Pipeline

https://oreil.ly/qaMM5

Understanding CI/CD

If you want to understand CI/CD and learn how to implement it
effectively, we recommend the books Continuous Integration by
Paul M. Duvall, and Continuous Delivery by Jez Humble and David
Farley (both Addison-Wesley).

CI/CD practices rely heavily on tooling. Tools allows teams to run higher volumes of
tests against their code in a more efficient way. There’s usually lots of different tools
required to automate the integrateion and testing of software and infrastructure.
That’s why we’ll be using a special kind of tool called a pipeline. A pipeline tool lets
you define and manage the steps of a CI/CD process. That way, any code changes that
we make can automatically be integrated and delivered in the same way, every time.
Let’s formalize our decision to use a CI/CD pipeline in this project.

Key Decision: Apply System Changes with a CI/CD Pipeline
All changes must be applied through an automated pipeline and/or tool. There should
be no changes introduced through instructions in command line or operator
consoles.

We’ll be using a pipeline for all changes—not just infrastructure ones. In this chapter,
we’ll focus on the pipeline for our infrastructure changes. Later, in Chapter 10, we’ll
define a CI/CD pipeline for the microservices. There are plenty of pipeline tool
options available, so we have another decision to make on tool choice. For our model,
we’ve decided to use GitHub Actions as our CI/CD pipeline tool.

Key Decision: Use GitHub Actions for CI/CD Pipelines
Teams should use GitHub Actions to implement CI/CD pipelines for infrastructure
and microservices.

At the time of this writing, GitHub Actions is a relatively new product and is not as
feature rich as more established options like Jenkins and GitLab. We chose GitHub
Actions because we plan to use GitHub to manage our code. Being able to use a single
tool for code management and CI/CD is attractive. That’s doubly true for this book,
where we’re constrained by the limits of the printed page.

By the end of this chapter, we will have built a CI/CD pipeline in GitHub Actions.
We’ll also configure the pipeline to handle Terraform code and make changes to a
cloud-hosted environment. In Chapter 7, we will use our pipeline to provision a

DevOps Principles and Practices | 103

microservices infrastructure. But the first step is to install some tools and set up a
working environment.

Setting Up the IaC Environment
When you write application code, you need a development environment with tools
that let you write, manage, test, and run your code. The same is true for infrastruc‐
ture code. In this section, we’ll set up both a local environment and a cloud-hosted
environment. We’ll be using these environments to write, test, and publish infrastruc‐
ture code.

Set Up GitHub
The first thing we’ll need is a way to manage and release our code. We’ll be using Git
for code management and GitHub as a host. There are plenty of great options avail‐
able for Git hosting, GitLab being one of the most popular alternatives. We’ve chosen
to use GitHub for our model because it’s become a very popular place to share code.
That’s useful for our implementation, because we’ll be sharing a lot of code and con‐
figuration with you as we build our example application.

Key Decision: Use GitHub for Code Management
All code will be managed using the Git version control system and hosted in GitHub.

In order to work with our examples, you’ll need to register for a GitHub account and
you’ll also need a local copy of a Git client. Git is an incredibly popular source control
tool, so chances are that you already have it installed in your machine and you are
familiar with how to use it. If you don’t already have the Git client installed, visit the
Git downloads page and follow the instructions to download the appropriate version.

If Git is new to you, we recommend that you start with the “Git
Basics” chapter in Scott Chacon and Ben Straub’s Pro Git, which
they’ve graciously made available for free online. You can also visit
GitHub’s “Git Handbook” if you’re just looking for a quick over‐
view of what Git is and why it’s useful.

In addition to the Git client, you’ll need a GitHub account so you can manage your
code and configure your own CI/CD pipelines. If you don’t have a GitHub account
already, you can register for a free account.

We’ll be using Git and GitHub to manage our microservices code. But, applying our
principle of IaC, we’ll also be using these tools to manage infrastructure code. That

104 | Chapter 6: Building an Infrastructure Pipeline

https://oreil.ly/5Vlcy
https://oreil.ly/5Vlcy
https://oreil.ly/CK29D
https://oreil.ly/raKSF
https://oreil.ly/WcXv-

code will be written in a special language called HCL that Terraform will be able to
understand. Let’s move on to installing the Terraform client.

Install Terraform
As we mentioned earlier, we’ll be using Terraform to manage and apply our infra‐
structure code declaratively. Our plan is to automatically run the Terraform client in
an automated CI/CD pipeline. Since that pipeline will be hosted in GitHub, you don’t
actually need to install Terraform on your workstation. However, in our experience
you’ll need a local installation to test code before you commit it to the pipeline. So, it’s
worthwhile installing Terraform in your local environment.

At the time of writing, Terraform is available to run on the following platforms:

• OS/X
• FreeBSD
• Linux
• OpenBSD
• Solaris
• Windows

Visit the Terraform site to download the client of your choice and install it on your
machine. We used version 0.12.20 for all of the examples in this book. We’ll leave it to
you to follow the instructions for the platform you’ve chosen.

Once you have completed the installation, run the following command to make sure
Terraform is set up correctly:

$ terraform version

You should get back something that looks like the following, depending on the ver‐
sion you’ve installed:

Terraform v0.12.20

We’ll be using Terraform to manage infrastructure resources in a cloud platform. In
our model, those resources will be hosted in AWS. Let’s take a look at how and why
we’ll be using AWS and what we need to do to get started with it.

Setting Up the IaC Environment | 105

https://www.terraform.io

Configuring Amazon Web Services
Earlier, we made a decision to use a cloud-hosted infrastructure. But we didn’t decide
on which cloud platform to use. Today, there are three cloud platforms that most
microservices practitioners use: Microsoft Azure, Google Cloud Platform (GCP), and
AWS. We’ve had success using all of these with our own implementations and have
even worked with companies who’ve embraced all three.

For our model and sample application we’ve decided to build for a single cloud pro‐
vider. That will make our implementation simpler and faster to implement. In that
vein, we’ve decided to use AWS and its services for our examples, primarily because it
had the biggest userbase at the time of writing. However, all of the big three cloud
vendors offer similar services, so you’ll be able to adapt our model to all of them with
a bit of work.

Key Decision: Host Microservices in AWS
We’ll use AWS as the cloud platform for microservices.

Since we’ve decided to use AWS, you will need to have an AWS account to follow
along with our examples. If you don’t have one already, you can register. Keep in
mind that you’ll need a credit card to activate your account.

Keep an Eye on Your Billing

Although AWS offers a free account tier, the examples in this book
use resources that aren’t included in the scope of free services. We’ll
give you instructions for tearing down any resources that we create,
but it will be up to you to make sure those resources are destroyed.

In addition to setting up an initial account, you’ll also need to set up an “operator”
account so that the tools we’re setting up will have access to your AWS instance.

Setting Up an AWS Operations Account
By the end of this chapter, we’ll have a pipeline that can deploy infrastructure into
AWS automatically. Sticking to our principles of infeastructure as code and immuta‐
bility, we should never have to manage our AWS infrastructure by making changes
directly through the browser. But, to start off with, we’ll need to perform a few steps
manually to get our system up and running. The first step will be to configure a set of
credentials and permissions to allow our tools to work with our AWS objects.

In AWS, users, groups, and permissions are all managed within the Identity and
Access Management (IAM) service. We’ll need to create a special user that represents

106 | Chapter 6: Building an Infrastructure Pipeline

https://aws.amazon.com

our tooling and define a set of permissions for what our tools can do. We’ll use this
user identity whenever we are making calls from our CI/CD pipeline platform. As we
mentioned earlier, we’ll be using Terraform as our primary IaC tool. Follow the steps
in this section to create a Terraform user in AWS that will allow us to make the kinds
of changes we’ll need for our microservices environment.

Log in to your AWS management console with your root user credentials. Once
you’ve logged in, you should be presented with a list of AWS services. Find and select
the IAM service—it’s usually found in the Security, Identity & Compliance section
(see Figure 6-2).

Figure 6-2. Select IAM

Select the Users link from the IAM navigation menu on the lefthand side of the
screen. Click the Add user button to start the IAM user creation process, as shown in
Figure 6-3.

Configuring Amazon Web Services | 107

https://oreil.ly/8LpnE

Figure 6-3. Add user button

Enter ops-account in the User name field. We also want to use this account to acccess
the CLI and API, so select “Programmatic access” as the AWS “Access type,” as in
Figure 6-4.

Figure 6-4. Enter user details

When you’ve done that, click the Next: Permissions button.

Our operator account will need a lot of permissions to do work in AWS on our
behalf. For now, however, we’re only going to attach a single set of permissions, pack‐
aged together in an AWS policy called IAMFullAccess.

108 | Chapter 6: Building an Infrastructure Pipeline

To add this policy, select “Attach existing policies directly” from the set of options at
the top. Search for a policy called IAMFullAccess and select it by ticking its checkbox,
as shown in Figure 6-5.

Figure 6-5. Attach the IAMFullAccess policy

When that’s done, click the Next: Tags button. We won’t be creating any tags, so click
the Next: Review button to review our user’s details (see Figure 6-6).

Figure 6-6. Review user details

Configuring Amazon Web Services | 109

If everything looks OK to you, click the Create user button. You should now see a
screen that looks something like Figure 6-7.

Figure 6-7. User created

Before we do anything else, we’ll need to make a note of our new user’s keys. Click the
Show link and copy and paste both the “Access key ID” and the “Secret access key”
into a temporary file. We’ll use both of these later in this section with our automated
pipeline. Be careful with this key material as it will give whoever has it an opportunity
to create resources in your AWS environment—at your expense.

Make sure you take note of the access key ID and the secret access
key that were generated before you leave this screen. You’ll need
them later in this chapter.

We have now created a user called ops-account with permission to make IAM
changes. That gives us all that we need to transition from using the browser-based
console over to the AWS CLI application that we installed earlier. The first thing we’ll
need to do is configure the CLI to use the ops user we’ve just created.

Configure the AWS CLI
There are three ways to manage major cloud provider configurations: a web browser,
web-based APIs, and a CLI. We’ve already used a web browser to create our operator
account and later we’ll be using Terraform to configure changes via the AWS APIs.
But, we’ll need to make some more changes before Terraform can make AWS API
calls on our behalf. For that we’ll use the AWS CLI.

Using the CLI makes it a lot easier for us to describe the changes you need to make.
It’s also less prone to the changes that user interfaces (UIs) go through. But to use the
CLI, the first thing we’ll need to do is install it into our local working environment.

110 | Chapter 6: Building an Infrastructure Pipeline

Navigate to the AWS CLI download page and follow the instructions there to install
the CLI onto your local system.

Once it’s ready, the first thing we’ll do is configure the CLI so it can access our
instance. Run the aws configure command as shown in Example 6-1. You can
replace the default region name with an AWS region that is closer to you; a full list of
AWS regions is available at AWS.

Example 6-1. Configure the AWS CLI

$ aws configure
AWS Access Key ID [****************AMCK]: AMIB3IIUDHKPENIBWUVGR
AWS Secret Access Key [****************t+ND]: /xd5QWmsqRsM1Lj4ISUmKoqV7/...
Default region name [None]: eu-west-2
Default output format [None]: json

You can test that you’ve configured the CLI correctly by listing the user accounts that
have been created. Run the iam list-users command to test your setup:

$ aws iam list-users
{
 "Users": [
 {
 "Path": "/",
 "UserName": "admin",
 "UserId": "AYURIGDYE7PXW3QCYYEWM",
 "Arn": "arn:aws:iam::842218941332:user/admin",
 "CreateDate": "2019-03-21T14:01:03+00:00"
 },
 {
 "Path": "/",
 "UserName": "ops-account",
 "UserId": "AYUR4IGBHKZTE3YVBO2OB",
 "Arn": "arn:aws:iam::842218941332:user/ops-account",
 "CreateDate": "2020-07-06T15:15:31+00:00"
 }
]
}

If you’ve done everything correctly, you should see a list of your AWS user accounts.
That indicates that AWS CLI is working properly and has access to your instance.
Now, we can set up the permissions our operations account will need.

Configuring Amazon Web Services | 111

https://aws.amazon.com/cli
https://oreil.ly/UrX_t

Setting Up AWS Permissions
When we created our ops-account user we attached an IAM policy to it that only
gives it permission to modify IAM settings. But our ops account will need a lot more
permissions than that to manage the AWS resources we’ll need for our infrastructure
build. In this section, we’ll use the AWS command-line tool to create and attach addi‐
tional permission policies to the ops account.

The first thing we’ll do is make the ops-account user part of a new group called Ops-
Accounts. That way we’ll be able to assign new users to the group if we want them to
have the same permissions. Use the following command to create a new group called
Ops-Accounts:

$ aws iam create-group --group-name Ops-Accounts

If this is successful, the AWS CLI will display the group that has been created:

{

 "Group": {
 "Path": "/",
 "GroupName": "Ops-Accounts",
 "GroupId": "AGPA4IGBHKZTGWGQWW67X",
 "Arn": "arn:aws:iam::842218941332:group/Ops-Accounts",
 "CreateDate": "2020-07-06T15:29:14+00:00"
 }
}

Now, we just need to add our user to the new group. Use the following command to
do that:

$ aws iam add-user-to-group --user-name ops-account --group-name Ops-Accounts

If it works, you’ll get no response from the CLI. In this case, no news is good news.

Next, we need to attach a set of permissions to our Ops-Account group. Those per‐
missions will automatically be applied to our operations users, since we’ve made it
part of the group. The permissions we’ll be attaching will let our user create and
change AWS resources. In practice, you’d likely need to change the permissions for
your Ops user as you go through the process of designing your infrastructure. In this
book, we’ve already done the design work ahead of time, so we know exactly which
policies need to be attached.

Run the following command to attach all the policies we’ll need to the Ops-Accounts
group:

$ aws iam attach-group-policy --group-name Ops-Accounts\
 --policy-arn arn:aws:iam::aws:policy/IAMFullAccess &&\
aws iam attach-group-policy --group-name Ops-Accounts\
 --policy-arn arn:aws:iam::aws:policy/AmazonEC2FullAccess &&\
aws iam attach-group-policy --group-name Ops-Accounts\

112 | Chapter 6: Building an Infrastructure Pipeline

 --policy-arn arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess &&\
aws iam attach-group-policy --group-name Ops-Accounts\
 --policy-arn arn:aws:iam::aws:policy/AmazonEKSClusterPolicy &&\
aws iam attach-group-policy --group-name Ops-Accounts\
 --policy-arn arn:aws:iam::aws:policy/AmazonEKSServicePolicy &&\
aws iam attach-group-policy --group-name Ops-Accounts\
 --policy-arn arn:aws:iam::aws:policy/AmazonVPCFullAccess &&\
aws iam attach-group-policy --group-name Ops-Accounts\
 --policy-arn arn:aws:iam::aws:policy/AmazonRoute53FullAccess &&\
aws iam attach-group-policy --group-name Ops-Accounts\
 --policy-arn arn:aws:iam::aws:policy/AmazonS3FullAccess

A scripted copy of this command is available at this book’s GitHub
site.

In addition to the out-of-the-box policies that AWS provides, we’ll also need some
special permissions to work with the AWS Elastic Kubernetes Service (EKS). We’ll be
introducing EKS properly in the next chapter, but for now we need to get the permis‐
sions sorted out. There isn’t an existing policy that we can attach for the permissions
we need, so we’ll need to create our own custom policy and attach it to our user
group.

To do this, create a file called custom-eks-policy.json and populate it with the code in
Example 6-2. We have also made a copy of this JSON file available in this book’s Git‐
Hub repository.

Example 6-2. Custom JSON policy for EKS

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "eks:DescribeNodegroup",
 "eks:DeleteNodegroup",
 "eks:ListClusters",
 "eks:CreateCluster"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "eks:*",
 "Resource": "arn:aws:eks:*:*:cluster/*"
 }

Configuring Amazon Web Services | 113

https://oreil.ly/Microservices_UpandRunning_scripted
https://oreil.ly/Microservices_UpandRunning_scripted
https://oreil.ly/Microservices_UpandRunning_json
https://oreil.ly/Microservices_UpandRunning_json

]
}

Now, run the following command to create a new policy named EKS-Management
based on the JSON we’ve just created:

$ aws iam create-policy --policy-name EKS-Management\
 --policy-document file://custom-eks-policy.json

If the command was successful, you’ll see a JSON representation of the new policy:

{
 "Policy": {
 "PolicyName": "EKS-Management",
 "PolicyId": "ANPA4IGBHKZTP3CFK4FAW",
 "Arn": "arn:aws:iam::[some_number]:policy/EKS-Management",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2020-07-06T15:50:26+00:00",
 "UpdateDate": "2020-07-06T15:50:26+00:00"
 }
}

In AWS, every resource has a unique identifier called an Amazon
Resource Name (ARN). The string of digits in the ARN of the pol‐
icy you’ve just created will be unique to you and your AWS
instance. You’ll need to make note of your policy’s ARN string so
that you can reference it in the following steps.

With the new policy created, all that’s left is to attach it to our user group. Run the
following command, replacing the token we’ve called {YOUR_POLICY_ARN} with the
ARN from your policy:

$ aws iam attach-group-policy --group-name Ops-Accounts \
 --policy-arn {YOUR_POLICY_ARN}

You now have an ops-account user that has the permissions needed to automatically
create AWS infrastructure resources for us. We’ll be using this user account when we
write our Terraform code and when we configure the infrastructure pipeline. Make
sure you keep the access key and secret somewhere handy (and safe) as we’ll need it
later.

We have one last bit of setup to take care of before we can get to work building the
pipeline: the creation of an AWS S3 storage bucket for Terraform to store state.

114 | Chapter 6: Building an Infrastructure Pipeline

Creating an S3 Backend for Terraform
Terraform is powerful because it allows us to declare what an infrastructure should
look like, rather than defining the specific steps needed to reach that state. Terraform
works its magic by making the right changes to an environment to make it look the
way we’ve described. But, in order to do that, Terraform needs to keep track of what
the environment looks like and the last operations it’s performed. Terraform keeps
track of all that information in a JSON-based state file that is read and updated every
time it is run.

By default, Terraform will keep this state file in your local filesystem. In practice, stor‐
ing the state file locally is problematic. State often needs to be shared across machines
and users so that an environment can be managed in multiple places. However, local
state files are difficult to share and you can easily find yourself dealing with state con‐
flicts and synchronization issues.

Instead, we’ll use the AWS S3 service to store the Terraform state file. Terraform
comes with out-of-the-box support for using S3 as a state backend. All we’ll need to
do is create a new “bucket” for the data and make sure we have the correct permis‐
sions set for our ops user account.

Like most cloud providers, AWS provides lots of different data
storage options. Amazon’s Simple Storage Service (S3) lets you cre‐
ate data objects that can be referenced by a key. The data objects are
just blobs to Amazon and can be in any format you like. In this
case, Terraform will be storing environment state as JSON objects.

To create a bucket, you’ll need to give it a unique name and pick the region that it
should reside in. You should have already selected a default region when you config‐
ured the AWS CLI and we suggest that you use the same region for the S3 bucket. You
can find more information about S3 bucket regions in the AWS documentation.

S3 Bucket Names Must Be Unique

Amazon S3 buckets can be referenced by their names. So the name
you pick must be unique across the entire AWS region that you
select. There is a good chance you won’t be able to use a generic
name like “test” or “microservices.” Instead, you’ll need to come up
with something unique. Usually, appending your name to the
bucket name works. Throughout this book, whenever we refer to
this S3 bucket, we’ll use the token {YOUR_S3_BUCKET_NAME} and
leave it to you to replace it with your bucket name.

Configuring Amazon Web Services | 115

https://oreil.ly/5Frfk

If you are hosting your bucket in the us-east-1 region, use the following command:

S3 requires special handling if you’re not in the us-east-1 region.
We’ve listed the default us-east-1 and nondefault versions of the
command in the following examples. We’ve also split up the com‐
mand lines using the bash multiline operator “\” for readability.

$ aws s3api create-bucket --bucket {YOUR_S3_BUCKET_NAME} \
> --region us-east-1

If you are hosting the s3 bucket in a region other than us-east-1, use the following
command:

$ aws s3api create-bucket --bucket {YOUR_S3_BUCKET_NAME} \
> --region {YOUR_AWS_REGION} --create-bucket-configuration \
> LocationConstraint={YOUR_AWS_REGION}

If everything has gone well, you should see a JSON object with the location of your
bucket. It will look something like this example for a bucket named my-msur-test:

{
 "Location": "http://my-msur-test.s3.amazonaws.com/"
}

This indicates that the bucket has been successfully created and has been assigned its
own unique URL. By default, S3 buckets aren’t publicly accessible. That’s a good thing
because we don’t want just anyone to be able to see and change our Terraform state
file. However, we’ve already given our ops account user full permissions to the S3 ser‐
vice, so it is ready for use.

With this final step complete, we now have an AWS user called ops-account config‐
ured to create, edit, and delete resources in AWS. We’ve also given it permissions to
store objects in a special S3 bucket we’ve created just for managing Terraform state.
This should be the last time we make manual operator changes to our AWS instance;
from here on out we’ll only make changes through code and with an automated
pipeline!

Building an IaC Pipeline
With the accounts, permissions, and tools ready to go, we can now get on with the
real focus of this chapter. By the end of this section, we’ll have an IaC pipeline imple‐
mented and ready to use. Remember, the infrastructure pipeline is incredibly impor‐
tant because it gives us a safe and easy way to provision environments quickly.
Without a pipeline, we’d end up with lots of manual steps and microservices environ‐
ments that have drifted apart in the way they work.

116 | Chapter 6: Building an Infrastructure Pipeline

Instead, we’ll have a stable declarative definition of the infrastructure for our services.
Our development and operations teams will be able to use those definitions to create
their own environments to perform testing, make changes, and release services into
production. We won’t be implementing any of the actual AWS infrastructure in this
chapter, but we will be implementing a foundation that we’ll use in the next chapter.
In this section we’ll build the following components:

• A GitHub-hosted Git repository for a sandbox testing environment
• A Terraform root module that defines the sandbox
• A GitHub Actions CI/CD pipeline that can create a sandbox environment

The sandbox testing environment we’re building is just a test environment that will
give us a chance to try out our IaC modules and pipelines. We’ll build it out in the
next chapter and then throw it away when we’re happy that everything works. Later,
we’ll use all of these assets to build a test environment for the microservices that we’ll
be designing and building.

But our first step will be to establish a repository for the code and pipeline, so let’s get
started with creating the repository.

Creating the Sandbox Repository
We’ve already mentioned in the beginning of this chapter that we’ll be using Git and
GitHub to manage our infrastructure code. If you’ve been following along, you’ll
already have a local copy of Git installed and a GitHub account ready to be used.
We’re going to use both of those tools to create a new repository for our sandbox
environment.

In our model, we’ve decided to give each environment its own repository with the
code and pipeline bundled within it. We like this approach because it gives teams
more independence in how they manage the environments they want to create, while
still keeping the pipeline configuration and code together for easier management.

Key Decision: One Repository per Environment
Each environment’s code and pipeline will be managed independently in its own code
repository.

We’ll use GitHub’s browser-based interface to create the sandbox repository.
Although there is a GitHub CLI application available, it will be quicker and easier to
use the web-based interface to create our new repository. Later, we’ll also be using
GitHub’s browser interface to run and monitor the pipeline.

Building an IaC Pipeline | 117

Some practitioners like to keep all of the environment configura‐
tions together in a single “monorepo.” This makes it easier to share
libraries, components, and actions between all the environments
and helps keep things consistent. Most practitioners also use speci‐
alized CI/CD tooling (Jenkins being one of the most popular),
rather than building inside GitHub. This is an important decision,
so you’ll need to consider the trade-offs when you build your next
microservices architecture based on the observations you make
from the one we’re building together.

To create the repository, open your browser and navigate to the GitHub sign-in page.
If you haven’t already logged in to your GitHub account, you’ll be prompted to enter
your login credentials. Once that is done, you’ll be presented with a form to create a
new repository. Give your new repository the name env-sandbox and select Private
from the access options. You should also tick the Add .gitignore checkbox and choose
Terraform from the drop-down, as shown in Figure 6-8.

Figure 6-8. Create a GitHub sandbox repository

It’s important that we ask GitHub to add a .gitignore for Terraform to the module
because it will make sure we don’t accidentally commit Terraform’s hidden working
files to our module. If you’ve missed this step you can always add this file later by
copying the source from this GitHub site.

118 | Chapter 6: Building an Infrastructure Pipeline

https://github.com/new
https://oreil.ly/VZ0Xk

It’s possible to write code using GitHub’s browser-based text editor, but it’s not very
practical for doing real work. Instead, we’ll clone this repository into a local develop‐
ment environment so we can use our own tools. We’ll leave it to you to create a clone
of your env-sandbox repository in your local development environment.

If you’ve never worked with Git and GitHub before, you can find
helpful instructions on how to clone a GitHub repository in the
official GitHub documentation.

That’s all we need to do with GitHub for now. We’ll come back to the browser-based
GitHub interface later when we work on the pipeline. But with the local clone created,
we can begin work on the Terraform code.

Understanding Terraform
We mentioned earlier that we’ll be using Terraform as our tool of choice for declara‐
tively coding our infrastructure foundation. Terraform does a lot of complicated work
to make changes that match a declared state. That said, it’s surprisingly easy to get
started with and the language it uses is fairly intuitive. That makes it a great fit for our
architecture and our goal of getting a system running as quickly as possible.

Terraform files are configured in a data format called HCL, which was invented by
HashiCorp (the company that created Terraform). HCL is similar to JSON, with a few
adaptations and improvements. If you’re used to JSON, the biggest difference you’ll
notice is that HCL doesn’t use a ":" delimiter between key and value pairs. Instead,
keys and values are just separated by a white space or an "=" depending on the con‐
text. There are some other minor improvements, such as comments and multiline
strings. In our experience, it’s an easy language with a very low learning curve if
you’ve used JSON or YAML in the past.

In addition to understanding HCL, it’s useful to understand four of the key Terraform
concepts—backends, providers, resources, and modules:

Backends
Terraform needs to maintain a state file so that it knows what kinds of changes to
make to the infrastructure environment. A backend is the location of that state
file. By default this is located in the local filesystem. We’ll be using an AWS S3
bucket that we configured earlier.

Resources
A resource is an object that represents a thing for which you are declaring a state.
Terraform does the work of making the changes to bring the resource to that
state.

Building an IaC Pipeline | 119

https://oreil.ly/tZXaG

Providers
A Terraform provider is a packaged library of resources that you can use in your
code. We’ll be using Terraform’s AWS provider for most of our work. The nice
thing about Terraform is that you can use it for lots of different cloud platforms
and infrastructure environments—you just need to specify the provider you plan
to use.

Modules
Terraform modules are similar to functions or procedures in a regular program‐
ming language. They give you a nice way of encapsulating your HCL code in a
reusable, modular way.

There’s a lot more to Terraform that what we’ve described here, but this is enough
knowledge for us to get started with our environment build work. If you want to go
deeper, the Terraform documentation is a great place to start.

Our next step is to write some Terraform code that will help us build a sandbox envi‐
ronment.

Writing the Code for the Sandbox Environment
Our goal in this chapter is to set up the tooling and infrastructure for our environ‐
ment build, so we won’t be writing a complete Terraform file that defines our infra‐
structure until the next chapter. For now, we’ll need to create a simple starter file to
test our Terraform-based tool chain.

The Terraform CLI tool works by looking for files it recognizes in the working direc‐
tory where it’s run. In particular, it looks for a file called main.tf and will parse that
file and apply changes based on its contents. You can only have one main.tf file in a
single directory, so we’ll need to have a directory dedicated to our sandbox environ‐
ment and we’ll need to create a Terraform main.tf file that will describe its target state.

We’ve already created a Git repository called env-sandox for the sandbox environ‐
ment, so that’s the directory we’ll use for the Terraform code. Let’s get started by cre‐
ating a new file called main.tf in the local sandbox Git repository. Populate it with the
HCL code in Example 6-3.

You’ll need to replace the tokens {YOUR_S3_BUCKET_NAME} and
{YOUR_AWS_REGION} with the S3 bucket name you created earlier
and the AWS region you’ve been using.

120 | Chapter 6: Building an Infrastructure Pipeline

https://oreil.ly/07b_c

Example 6-3. env-sandbox/main.tf

terraform {
 backend "s3" {
 bucket = "{YOUR_S3_BUCKET_NAME}"
 key = "terraform/backend"
 region = "{YOUR_AWS_REGION}"
 }
}

locals {
 env_name = "sandbox"
 aws_region = "{YOUR_AWS_REGION}"
 k8s_cluster_name = "ms-cluster"
}

Network Configuration

EKS Configuration

GitOps Configuration

The S3 bucket name should just be the name of your bucket, not
the full URL (for example, my-bucket).

The HCL snippet you’ve just written lets Terraform know that we are using an S3
bucket to store our backend state. It also defines a set of local variables using a Terra‐
form construct called locals. Finally, it has a few Terraform comments at the end,
indicating where we’ll be adding details for the infrastructure. We’ll be using the local
variables and filling in the rest of the configuration in the next chapter. For now, we
just want to test the scaffolding of our Terraform file.

With our first Terraform code file written, we’re ready to try running some Terraform
commands to make sure it works as expected. The Terraform CLI tool includes a lot
of helpful features to improve the quality and safety of your infrastructure code. You
can use it to format (or lint) the HCL that you’ve written, validate the syntax, and do a
dry run of the changes that Terraform would run against your provider.

If you’ve followed the instructions earlier in this chapter, you should have a local copy
of Terraform available in your working environment. Make sure you are in the same
working directory as your main.tf file and try running the fmt command to format
your code:

env-sandbox msur$ terraform fmt main.tf

Building an IaC Pipeline | 121

The fmt command is a formatter that will examine your HCL file and make changes
to improve its consistency and readability. If any changes were made it will output the
name of the file that it changed.

Next, we’ll validate that the syntax of the HCL we’ve written is valid. But, before we
do that we’ll need to install the providers we’re using; otherwise Terraform will com‐
plain that it can’t do the syntax check. Run the following command to install the
providers:

env-sandbox msur$ terraform init

Successfully configured the backend "s3"! Terraform will automatically
use this backend unless the backend configuration changes.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

If you get an error related to AWS credentials, make sure you’ve
followed the instructions at the beginning of this chapter to config‐
ure access to an AWS environment first.

Now we can run a validate command to ensure that we haven’t introduced any syntax
errors:

env-sandbox msur$ terraform validate
Success! The configuration is valid.

Finally, we can run a command called plan to see what changes Terraform would
make to create the environment we’ve specified. This performs the same steps that
will be run when the code is applied, but it doesn’t actually make any changes. Think
of it as a dry run that allows Terraform to show you its plan for getting the infrastruc‐
ture to the state you’ve asked for. Use the following command to run a plan:

122 | Chapter 6: Building an Infrastructure Pipeline

$ terraform plan

Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

No changes. Infrastructure is up-to-date.

This means that Terraform did not detect any differences between your configuration
and the real physical resources. As a result, no actions need to be performed.

Notice that our plan result isn’t very interesting: “No changes.” That’s because we
haven’t actually defined any resources to create. The good news is that we now have a
syntactically valid Terraform file to start building our sandbox environment. This is a
good time to commit and push the file into the GitHub repository so that the file is
available for use:

$ git add .
$ git commit -m "The sandbox starter file"
$ git push origin

With our Terraform file working and ready to be used, we can shift our focus over to
the pipeline that we’ll use to automatically apply it.

Building the Pipeline
In this section we’ll set up an automated CI/CD pipeline that will automatically apply
the Terraform file that we’ve just created. To configure the pipeline activities, we’ll be
using GitHub’s built-in DevOps tool, GitHub Actions. The nice thing about using
GitHub Actions is that we can put our pipeline configuration in the same place as our
infrastructure code.

The easiest way to use GitHub Actions is to configure it through the browser inter‐
face. So go back to your browser and navigate to the sandbox repository you created
earlier in GitHub.

Our plan is to create resources in the AWS account that we created earlier in this
chapter. Thus, we’ll need to make sure that GitHub is able to use the AWS access key
and secret that we provisioned when we created the operator account. There are lots
of ways to manage secrets in a microservices architecture, but for our DevOps tool‐
ing, we’ll just use GitHub’s built-in secrets storage function.

Setting up secrets
Navigate to the GitHub secrets storage area by selecting Settings from the top naviga‐
tion of your repository. Select Secrets from the menu of settings options on the left‐
hand side of the screen, as shown in Figure 6-9.

Building an IaC Pipeline | 123

Figure 6-9. GitHub secrets

Select “Add a new secret” and create a secret called AWS_ACCESS_KEY_ID. Enter the
access key ID that you tucked away earlier in this chapter when you created your
operator user. Repeat the process and create a secret named AWS_SECRET_ACCESS_KEY
with the secret access key you generated earlier. When you are done, you should have
something that looks like Figure 6-10.

Figure 6-10. Add your AWS ID and key

Now that the secrets have been added, we can get started on the workflow for the
pipeline.

124 | Chapter 6: Building an Infrastructure Pipeline

Creating the workflow
A workflow is the set of steps that we want to run whenever a pipeline is triggered.
For our microservices infrastructure pipeline, we’ll want a workflow that validates
Terraform files and then applies them to our sandbox environment. But in addition
to testing and applying infrastructure changes, we’ll need to add a few steps before
and after applying our Terraform files.

The workflow will need to start with a trigger that lets GitHub know when the work‐
flow should start. GitHub Actions gives us a few different options for triggers, but
we’ll use Git’s tag mechanism as the trigger for our infrastructure builds. A tag is a
way of giving a name to or labeling a particular point in a Git repository history.
Using tagging as a trigger gives us a nice versioning history for the changes we are
making to the environment. It also gives us a way of committing files to the reposi‐
tory without triggering a build.

When our pipeline workflow is triggered it will need to operate on the Terraform files
that we’ve committed to the repository. But, we’ll need some setup steps to prepare
the build environment. First, we’ll install Terraform and AWS just like we did in our
local environment. Although we are running this in GitHub Actions, the actual build
takes place in a virtual machine, so we’ll also need to grab a copy of the code from our
code repository.

Finally, when the changes are applied to our sandbox environment, we’ll have a
chance to do any cleanup or post-provisioning activities. In our case, we’ll be making
a special configuration file available for download so that we can connect to the AWS-
based microservices environment from a local machine. When it’s complete, the pipe‐
line will look like Figure 6-11.

Figure 6-11. Infrastructure pipeline steps

Building an IaC Pipeline | 125

We’ll be defining the steps of the pipeline using the YAML language and the set of
workflow commands in GitHub Actions. You can refer to the full GitHub Actions
documentation. Let’s dig into the YAML configuration by navigating to the GitHub
Actions page for your repository. You should be able to do this by selecting Actions
from the top navigation bar in your sandbox’s GitHub repository page. When you get
there, you should see a screen that looks similar to Figure 6-12.

Figure 6-12. Create a GitHub Actions workflow

GitHub Actions provides you with templates you can use to quickly get started with a
workflow. However, we’re going to ignore the templates and set up a workflow our‐
selves from scratch. Click the Set up a workflow yourself button in the top-right cor‐
ner of the screen (or wherever it is in the latest version of the interface).

You’ll now find yourself editing a newly created YAML file for your workflow. Git‐
Hub keeps the Actions files in a hidden directory called /.github/workflows. When
you clone a GitHub repository, you can edit these files in whatever editor you like, or
create new YAML files to define new GitHub Action workflows. But the advantage of
editing Actions on the GitHub website is that you can search for plug-ins from the
marketplace. So we’ll stick to the browser-based editor for our initial workflow
editing.

The first thing we’ll do is configure a trigger for the workflow and set up a container
environment to do the infrastructure build.

To help you understand what is happening, we’re going to explore
the workflow file as individual parts. We’ll explain each part as we
go along, but the actual workflow is all contained in a single file.
You can see an example of the completed workflow file at this
book’s GitHub site.

126 | Chapter 6: Building an Infrastructure Pipeline

https://oreil.ly/Kk7-J
https://oreil.ly/Kk7-J
https://oreil.ly/Microservices_UpandRunning_env_sandbox
https://oreil.ly/Microservices_UpandRunning_env_sandbox

Configuring the trigger and setup
One of the most important steps in our workflow is the trigger step that initiates it. As
we mentioned earlier, we’ll use a simple trigger based on Git’s tagging mechanism.
We’ll configure our pipeline so that it runs whenever infrastructure is tagged with a
label that starts with a v. That way we can keep a version history of the infrastructure
that we’ve built. For example, our first infrastructure build could be tagged with
“v1.0.”

Replace the YAML in your workflow editor with the code in Example 6-4 to get
started.

Example 6-4. Workflow trigger and job setup

name: Sandbox Environment Build

on:
 create:
 tags:
 - v*
jobs:
 build:
 runs-on: ubuntu-latest
 env:
 AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
 AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}

 steps:
 - uses: actions/checkout@v2

 # Install Dependencies

Install Dependencies in Example 6-4 is a comment. We’ll use
comments in the YAML to describe what is happening, but also to
indicate where we’ll be adding additional YAML in later steps.

In the preceding snippet, on is a GitHub Actions command that specifies the trigger
for the workflow. We’ve configured our workflow to run when a new tag that matches
the pattern v* is created. In addition, we’ve added a jobs collection that specifies the
work that GitHub should do when it is triggered. Jobs need to be run in a machine or
a container. The runs-on property indicates that we want to run this build in an
Ubuntu Linux Virtual Machine. We’re also adding the AWS secrets that we config‐
ured earlier in the build environment.

The steps collection indicates the specific workflow steps that the workflow will per‐
form within the environment we have set up. But before we do anything else we need

Building an IaC Pipeline | 127

to get the code. So the first step we’ve defined is to check out our Terraform code
from Git using the GitHub actions/checkout@v2 action. This creates a copy of the
code inside of the Ubuntu build environment for the rest of the job steps to act upon.

Actions are modularized libraries of code that can be called from a
GitHub Actions workflow. Actions are the heart of the GitHub
Actions system and give it a richness of features and integration.
There is a large catalog of actions available in the GitHub Actions
marketplace that you can use in your workflow files. But, be selec‐
tive when choosing them as anyone can create and publish new
actions, so support, security, and quality are not guaranteed.

We have enough in our workflow to be able to run it, but it would not be able to do
anything useful beyond grabbing a copy of our code. What we really want to do is
start working with Terraform, but before we can do that we need to get the environ‐
ment set up so that our tooling can be run. That means we need to add some depend‐
ency installation instructions.

Installing dependencies
When we set up our local infrastructure development environment, we needed to
install the Git, AWS, and Terraform command-line tools. We’ll need to do something
similar in our build environment, but since we know the specific operations we’ll be
running, we can set up a slightly leaner set of dependencies.

The good news is that we get Git for free when we use GitHub Actions, so we won’t
need to worry about installing it. Also, HashiCorp provides a ready-to-go GitHub
Action for Terraform, so we won’t need to worry about installing the Terraform cli‐
ent. The only thing that’s left to deal with is our AWS configuration.

Earlier in this chapter we used the AWS CLI to make changes to our AWS account. In
our pipeline environment, however, we want to use Terraform to make changes. In
fact, we don’t want to make any changes to the environment beyond what we’ve speci‐
fied in our Terraform code. So we won’t need to install the AWS CLI.

All of this tells us that we don’t need to install any dependencies to make a pipeline
that can create AWS resources for us. But as we start building out our infrastructure
in the next chapter, we’ll find out that our infrastructure needs some special depen‐
dencies to deal with some of the complexities of installing a Kubernetes-based micro‐
services architecture.

128 | Chapter 6: Building an Infrastructure Pipeline

Because this is a book, we’ve identified the dependencies you’ll
need for the pipeline before you know you need them. That’s
because books are easier to read when they are linear, so we’ve done
the work to give you a linear set of instructions to follow. In prac‐
tice, you’ll go through several iterations of editing your pipeline
actions as you test, and learn and develop your infrastructure and
microservices pipelines.

Specifically, we’ll be installing an AWS authenticator tool and an installer for the Istio
service mesh. The AWS authenticator is a command-line tool that other tools can use
to authenticate and access an AWS environment. This will come in handy later, when
we are working with Kubernetes and need to configure access to an AWS-hosted
Kubernetes cluster. Istio is a service mesh tool. We’ll introduce Istio in the next chap‐
ter; for now we just need to make sure we’ve installed the CLI tool.

Add the code in Example 6-5 to your workflow file to set up those dependencies in
the build environment. These steps need to be added after the # Install Dependen
cies comment we added earlier. Be careful with the indenting and make sure you are
lined up with the -uses step from earlier as YAML is very particular about spacing.

Example 6-5. Installing dependencies

[...]

 # Install Dependencies

 - name: Install aws-iam-authenticator
 run: |
 echo Installing aws-iam-authenticator...
 mkdir ~/aws
 curl -o ~/aws/aws-iam-authenticator \
 "https://amazon-eks.s3.us-west-2.amazonaws.com/\
 1.16.8/2020-04-16/bin/linux/amd64/aws-iam-authenticator"
 chmod +x ~/aws/aws-iam-authenticator
 sudo cp ~/aws/aws-iam-authenticator /usr/local/bin/aws-iam-authenticator

 # Apply Terraform

The run commands in the YAML you’ve just added will run shell commands in the
Ubuntu build environment. We’ve added instructions to install the AWS IAM
Authenticator based on the AWS documentation as well as the Istio CLI tool.

The virtual machine (VM) defined in our GitHub Actions work‐
flow will be created at the start of every pipeline run and destroyed
at completion. That means our tools will be installed every time we
trigger our pipeline job and no state will be retained between runs.

Building an IaC Pipeline | 129

The last part of our YAML code uses HashiCorp’s Terraform setup action. As you can
see, this is much cleaner and easier to read and understand than the command-line
installations we included for the AWS authenticator and Istio. GitHub Actions is bet‐
ter when you have actions to use, so it’s a good idea to take advantage of them when
they fit your needs.

With our dependencies set up and Terraform ready to go, we can now add some Ter‐
raform handling steps to our workflow.

Applying Terraform files
In “Writing the Code for the Sandbox Environment” on page 120, we used Terraform
commands to format and validate the HCL code we wrote in main.tf. We want to do
something similar in our pipeline, but we want these activities to happen automati‐
cally. The goal is for the Terraform code to be automatically formatted, validated, and
planned. We’ll also add an automatic “apply” step that will apply the plan and imple‐
ment changes.

Add the YAML code in Example 6-6 to the end of your workflow YAML, after the #
Apply Terraform comment.

Example 6-6. Terraform workflow

 # Apply Terraform

 - uses: hashicorp/setup-terraform@v1
 with:
 terraform_version: 0.12.19

 - name: Terraform fmt
 run: terraform fmt

 - name: Terraform Init
 run: terraform init

 - name: Terraform Validate
 run: terraform validate -no-color

 - name: Terraform Plan
 run: terraform plan -no-color

 - name: Terraform Apply
 run: terraform apply -no-color -auto-approve

 # Publish Assets

130 | Chapter 6: Building an Infrastructure Pipeline

As you can see from your YAML, we’re using the run action to call the Terraform CLI
from the Ubuntu shell. This is largely the same as what you did in your local environ‐
ment with the addition of the apply step at the end that will make real changes in the
AWS infrastructure. Notice that we’ve added the -auto-approve flag to the apply
command so that there won’t be any need for human interaction.

We’re almost done with the pipeline. The final step is to publish any files that we want
to keep from our run.

Publishing assets and committing changes
When a GitHub Actions workflow completes, the VM that we used for our build is
destroyed. But sometimes we want to keep some of the state, files, or results for later
use. To help with that, GitHub provides an upload-artifact action that gives us an
easy way to make files available for us to download later.

In the next chapter, we’ll be setting up a Kubernetes cluster on AWS. When you work
with Kubernetes, it’s useful to connect to the cluster from your remote machine. To
do that, you need a lot of connection and authentication details, which we’ll make
easier by introducing a final step that provisions a Kubernetes configuration file that
can be downloaded to connect to the cluster once it is created.

Add the code in Example 6-7 to the end of the workflow file to implement the final
step of our job.

Example 6-7. Upload kubeconfig

 # Publish Assets
 - name: Upload kubeconfig file
 uses: actions/upload-artifact@v2
 with:
 name: kubeconfig
 path: kubeconfig

This action uploads a file called kubeconfig from the local working directory of the
build environment to your GitHub Actions repository. It assumes that the file exists,
so we’ll need to create that file in the next chapter when we get into the details of
buildling our sandbox infrastructure.

With this final addition, you now have a complete infrastructure pipeline for your
sandbox environment. GitHub manages the workflow files the same way it manages
code. So, we’ll need to commit our changes to save them. Click the Start commit but‐
ton, give the commit a description, and click the Commit new file button to finish
commiting the change (see Figure 6-13).

Building an IaC Pipeline | 131

Figure 6-13. Committing a change in GitHub Actions

Taking Your Pipeline Further

We couldn’t fit all of the things that a production CI/CD IaC pipe‐
line would have in this chapter. In particular, we had to omit inte‐
gration testing from our pipeline activities. But we highly
recommend that you investigate and implement an integration-test
step for your Terraform code. The Go-based tool Terratest from
Gruntworks.io is worth looking at when you start introducing this
kind of functionality.

All that’s left is to try out our workflow to make sure that it runs correctly.

132 | Chapter 6: Building an Infrastructure Pipeline

https://oreil.ly/UKvMQ

Testing the Pipeline
To test the pipeline that we’ve created, we’ll need to fire the trigger for the job we
defined. In our case, we need to create a Git tag in our repository with a label that
starts with the letter v. We could do this in the browser-based UI by using GitHub’s
Releases feature. But since we’ll be doing most of our work outside GitHub on our
local workstation, we’ll create the tag there instead.

The first thing we need to do is get the local clone of the repository up to date with
the changes we’ve made. To do that, open a shell in your workstation and run the
command git pull in your env-sandbox directory. You should get a result that looks
something like Example 6-8 indicating that we’ve pulled the new .github/workflows/
main.yml file into the local repository.

Example 6-8. Pull changes into the local repository

env-sandbox msur$ git pull
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 5 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (5/5), done.
From https://github.com/msur/env-sandbox
 a6b706f..9923863 master -> origin/master
Updating a6b706f..9923863
Fast-forward
 .github/workflows/main.yml | 54 ++
 1 file changed, 54 insertions(+)
 create mode 100644 .github/workflows/main.yml

Now that we are up to date with the GitHub-hosted repository, we can create a tag.
Since this is just a test, we’ll label our release “v0.1.” Use the git tag command as
shown in Example 6-9 to create the new tag with a label.

Example 6-9. Create a v0.1 tag

env-sandbox msur$ git tag -a v0.1 -m "workflow test"

Although we’ve created a tag, it only exists locally in our workstation clone of the
repository. In order to trigger our workflow, we’ll need to push this tag to our
GitHub-hosted repository. Use the git push command with the name of the tag to
do this, as shown in Example 6-10.

Building an IaC Pipeline | 133

Example 6-10. Push the tag to GitHub

env-sandbox testuser$ git push origin v0.1
Enumerating objects: 1, done.
Counting objects: 100% (1/1), done.
Writing objects: 100% (1/1), 165 bytes | 165.00 KiB/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To https://github.com/mitraman/env-sandbox.git
 * [new tag] v0.1 -> v0.1

We’ll be doing this sequence of tagging and pushing a tag whenever we want the pipe‐
line to run. Pushing the tag should have triggered the workflow we’ve created in Git‐
Hub Actions, so all we need to do now is check to make sure it has run successfully.

To see the status of the run, go back to the browser-based GitHub interface and navi‐
gate to Actions just like we did before. You should see something like Figure 6-14,
indicating that our workflow job has completed successfully.

Figure 6-14. A successful run of the pipeline

You can also see more details of the job that has been run. This can be useful if your
job hasn’t run as expected and you need to do some troubleshooting. To see job
details, select the workflow you want more details on (ours is called Sandbox Environ
ment Build), then select the job (in our case the job is called build). In the detail
screen you’ll be able to see what happened at each step of the job when the pipeline
ran (see Figure 6-15).

GitHub Actions is a relatively new product and GitHub changes the UI frequently, so
the exact steps you need to take to reach this screen may have changed by the time
you read this. If you are having trouble getting to the steps for your job, refer to the
GitHub documentation.

134 | Chapter 6: Building an Infrastructure Pipeline

https://oreil.ly/LPieV

Figure 6-15. Details of a job

With our pipeline successfully tested, we’ve finished setting up the tooling we need to
declaratively build our infrastructure.

Summary
In this chapter we set up a simple but powerful IaC pipeline based on some important
DevOps principles and practices. We installed and used Terraform as our tool for
implementing the principles of IaC and immutable infrastructure. We set up a
GitHub-based code repository to manage that code. Finally, we created a GitHub
Actions workflow as a CI/CD pipeline with automated testing to improve the safety
and speed of our infrastructure changes.

We didn’t actually create any infrastructure resources, but we did walk through the
steps of making an infrastructure change. We created and edited a Terraform file,
tested and ran it locally, committed it to the repository, and tagged it to kick off a
build and apply pipeline process. This sequence of steps is going to be our method for
immutable infrastructure development and we’ll be using it often in the next chapter
where we design and build our microservices infrastructure.

Summary | 135

CHAPTER 7

Building a Microservices Infrastructure

In the previous chapter we built a CI/CD pipeline for infrastructure changes. The
infrastructure for our microservices system will be defined in code and we’ll be able
to use the pipeline to automate the testing and implementation of that code. With our
automated pipeline in place, we can start writing the code that will define the infra‐
structure for our microservices-based application. That’s what we’ll focus on in this
chapter.

Setting up the right infrastructure is vital to getting the most out of your microser‐
vices system. Microservices give us a nice way of breaking the parts of our application
into bite-sized pieces. But we’ll need a lot of supporting infrastructure to make all
those bite-sized services work together properly. Before we can tackle the challenges
of designing and engineering the services themselves, we’ll need to spend some time
establishing a network architecture and a deployment architecture for the services to
use.

By the end of this chapter, you’ll have built a cloud-based infrastructure designed to
host the microservices we’ll be building in the next chapter. We’ll start by introducing
the infrastructure and its components.

Infrastructure Components
The infrastructure is the set of components that will allow us to deploy, manage, and
support a microservices-based application. An infrastructure can include a lot of
parts: hardware, software, networks, and tools. So the scope of components we’ll need
to set up is quite large and getting all of those parts up and running is a big task.

Thankfully, as microservices approaches have matured, there’s been an explosion in
tools and services that make this work easier. In our model, we’ll use tools like these
as much as we can. We’ll also focus on getting the infrastructure to work with a single

137

cloud platform (AWS) rather than building a cloud-agnostic application that can be
“lifted and shifted” to other hosts. These decisions will make it possible for us to
define a feature-rich infrastructure in the small space of this single chapter.

But it’s still quite a challenge! We’ll be covering a lot of topics in a small number of
pages. That means we’ll need to make some trade-offs. For example, we won’t be able
to cover security, operations controls, or event logging and support. Instead we’ll
focus on designing and writing Terraform code to create a working network, an AWS
managed Kubernetes service, and a declarative GitOps server. These three compo‐
nents will give us the foundation we need to deploy our example microservices.

Network design and Kubernetes are deep and complex topics that
require much more discussion than we can afford to give them.
The good news is, you don’t need to be a network or Kubernetes
expert to set up your first microservices environment. If these are
new domains for you, you can follow the instructions we’ve pro‐
vided to get those parts of the system up and running as a first step
to learning more about them.

Let’s kick things off by taking a quick tour of our main components, starting with the
network.

The Network
Microservices need to be run on a network. So we’ll need to make sure we have a suit‐
able one set up. Since we’ve made the decision to host our services on an AWS cloud,
we’ll need to tailor our network design accordingly, and create a virtual network
instead of a physical one. We won’t need to worry about the details of physical rout‐
ers, cables, or network devices. Instead, we’ll need to learn to use the language of
AWS network resources and configure those accordingly.

We’re going to keep our network design as simple as we can. We’ll build just enough
to get our system up and running. But, we’ll still need to build and configure a few
basic resources to support the running of our future microservices:

A virtual private cloud
In AWS, a virtual private cloud (VPC) is the parent object for a virtual network.
We’ll be creating and configuring a VPC as part of our network design.

Subnets
A VPC can be partitioned into multiple smaller networks called subnets. Subnets
give us a way of organizing network traffic and controlling access to resources.
We’ll be creating a total of four subnets as part of our network configuration.

138 | Chapter 7: Building a Microservices Infrastructure

Routing and security
In addition to creating the VPC and subnet objects, we’ll be defining objects that
dictate how traffic can flow in and out of them. For example, we’ll be defining
two “private” subnets that will only accept traffic from inside our VPC.

As you can see, our network has a bit of complexity that we’ll need to deal with,
including managing four “subnets” and connecting them. The main driver for this
complexity comes from the needs of the Kubernetes service running on top of it. So,
let’s take a look at that next.

The Kubernetes Service
Throughout this book, we’ve emphasized that reducing coordination costs is an
important success factor for the system. We’ve also mentioned containers and con‐
tainerization a few times in earlier chapters. That’s because containers are a great way
of helping our teams get more done with less coordination costs. Containers give us
the advantages of running applications in a predictable, isolated system configuration
without the overhead and heavy lifting that comes with a VM deployment. Microser‐
vices and containers are a natural fit.

If you need help understanding containers and containerization,
Docker’s website has a nice introductory explanation of containers.

Containers make it easy for us to build microservices that run predictably across
environments as a self-contained unit. But, containers don’t know how to start them‐
selves, scale themselves, or heal themselves when they break. Containers work great
in isolation, but a lot of operations work is required to manage them in production-
like environments. That’s where Kubernetes comes in.

Kubernetes is a container orchestration tool developed by Google. It solves the prob‐
lems of working with containers at scale. Kubernetes provides a tool-based solution
for deploying, scaling, observing, and managing container-based applications. It can
help you roll out and roll back container deployments, automatically deploy or
destroy container deployments based on demand patterns, mount storage systems,
manage secrets, and help with load balancing and traffic management. Kubernetes
can do a lot of complicated and complex work, and has quickly become an essential
part of a microservices infrastructure stack.

Kubernetes is also pretty complicated itself, however. Because of this, we won’t be div‐
ing into the details of how Kubernetes works in this book. But we will be able to put
together a working Kubernetes infrastructure hosted on AWS.

Infrastructure Components | 139

https://oreil.ly/tC7aZ

If you want to learn about Kubernetes, a great introduction is pro‐
vided by Kubernetes: Up and Running by Brendan Burns, Joe Beda,
and Kelsey Hightower (O’Reilly).

If you’re new to Kubernetes, it’s worth understanding the big moving parts in a
Kubernetes system, so you’ll be able to follow along as we set one up:

Kubernetes cluster
The cluster is the parent object in a Kubernetes system. When you install Kuber‐
netes, you are installing a cluster. A cluster contains a control plane and a set of
nodes.

Control plane
In Kubernetes, the control plane is the “brains” of the cluster. It manages the sys‐
tem by making decisions about starting, stopping, and replicating containers.
The control plane also provides an API that we can use to administrate the
cluster.

Nodes
The runtime work happens in the nodes. Each node is a physical or virtual
machine that runs the container-based workload. In Kubernetes, nodes run pods.
Each pod contains one or more containers. Every cluster has at least one node.

In our implementation, we’ll be using an AWS managed service for Kubernetes called
Elastic Kubernetes Service (EKS). We’re using EKS because it handles for us a lot of
Kubernetes’ complexity. It will help us provision the cluster and give us a control
plane to use as a managed service. All we’ll need to do is configure the number and
types of nodes we want and provision a suitable network.

Key Decision: Use a Managed Kubernetes Service
We will use AWS EKS as a managed service for our Kubernetes cluster.

The last piece of our infrastructure is the GitOps deployment server. Let’s find out
more about what that is and how it will help us.

The GitOps Deployment Server
In Chapter 2, we introduced the release team. This is the team that will be responsible
for deploying microservices into production. We expect our microservices teams to
use a CI/CD pipeline to integrate, test, build, and deliver their services. But in our
operating model they don’t own the actual deployment of the service into the system.
We made that decision because in our experience, production deployments are fairly

140 | Chapter 7: Building a Microservices Infrastructure

https://learning.oreilly.com/library/view/kubernetes-up-and/9781492046523

complex and require special attention. To facilitate the deployment work of the
release team, we’re introducing a special tool in our platform service offering: a
GitOps deployment server.

Continuous Delivery Versus Continuous Deployment

One of the confusing things about CI/CD is that the “CD” part can
mean either Continuous Delivery or Continuous Deployment,
depending on who you ask. In our model, Continuous Delivery
(CD) of microservices happens when our teams are able to auto‐
matically and continually ship their finished microservices as con‐
tainers. Deployment happens when these containers are released
into the production environment by our release team.

The name GitOps, created by a company called WeaveWorks, describes a way of
working that uses Git as a “source of truth.” That means that whatever is in Git should
be the target state for the system. Like Terraform, GitOps prescribes a declarative
approach. GitOps tools need to do the work of synchronizing system configurations
to look like the state described in the Git repository. They also need to alert opera‐
tions teams if the real world has drifted from the state defined in Git.

Argo CD is a GitOps tool that facilitates the work of deploying Kubernetes applica‐
tions. We’ve decided to use Argo CD for our release process because we like the
declarative GitOps approach. If we didn’t use Argo CD we’d need to automate a series
of Kubernetes calls to deploy an application. Instead, with the GitOps approach, we
only need to point Argo CD at a Git source and let it do the work of keeping our
environment up to date.

For example, once we have Argo CD set up, we’ll be able to have it watch a microser‐
vice code repository. When new changes are comitted and tested, Argo CD will be
able to automatically deploy the new version of the service into the environment. This
declarative, continuous deployment capability makes Argo CD a great product for
our release teams to use.

Key Decision: Deploy Microservices Using a GitOps Deployment Tool
Our release teams will use Argo CD to manage microservice deployment into pro‐
duction and production-like environments.

By the end of this chapter, we’ll have created a sandbox environment with an Argo
CD server installed on top of an AWS managed Kubernetes cluster, running on an
AWS VPC network. It will take a lot of Terraform code to make that happen, so pre‐
pare to roll up your sleeves. We’ll dive into the build in the next section.

Infrastructure Components | 141

Implementing the Infrastructure
In Chapter 6 we established a decision to use Terraform to write the code that defines
our infrastructure and GitHub Actions to test and apply our infrastructure changes.
In this section, we’ll break our infrastructure design into discrete Terraform modules
and call them from the sandbox environment we started building in the previous
chapter. We’ll start by setting up the tools you’ll need in your infrastructure develop‐
ment workspace.

Installing kubectl
If you’ve followed along with the instructions in Chapter 6, you’ll already have an
environment ready for the infrastructure build. So you’ll have:

• An AWS instance and a configured operator account
• Git, Terraform, and AWS CLI tools installed in your workstation
• A GitHub Actions pipeline for the infrastructure

If you haven’t yet set up your GitHub Actions pipeline, or you had trouble getting it
to work the way we’ve described, you can create a fork of a basic sandbox environ‐
ment by following the instructions in this book’s GitHub repository.

In addition to the setup we’ve done in the previous chapter, you’ll need to do one
more installation step to get ready for this chapter: installing kubectl. When we’re
installing the Kubernetes service, we’ll need a way to test and interact with the Kuber‐
netes system. To do that, we’ll use the command-line application kubectl to interact
with a Kubernetes server.

Follow the instructions in the Kubernetes documentation to install kubectl in your
local system. We’ll leave it to you to pick the flavor that’s appropriate to your operat‐
ing system.

With the workspace set up and ready to go, we can move on to writing the Terraform
modules that will define the infrastructure.

Setting Up the Module Repositories
When you write professional software, it’s important to write clean, professional
code. When code is too difficult to understand, to maintain, or to change, the project
becomes costly to operate and maintain. All of that is true for our infrastructure code
as well.

Since we’re taking the IaC approach, we’ll need to apply good code practices to our
infrastructure project. The good news is that we have lots of existing guidance in our
industry on how to write code that is easier to learn, understand, and extend. The bad

142 | Chapter 7: Building a Microservices Infrastructure

https://oreil.ly/Microservices_UpandRunning_env_starter
https://oreil.ly/sji9x

news is that not every principle and practice from traditional software development is
going to be easy to implement in the IaC domain. That’s partly because the tooling
and languages for IaC are still evolving and partly because the context of changing a
live, physical device is a different model from the traditional software development
model.

But with Terraform we’ll be able to apply three essential coding practices that will
help us write clean, easier-to-maintain code:

Use modules
Writing small functions that do one thing well

Encapsulate
Hiding internal data structures and implementation details

Avoid repetition
Don’t repeat yourself (DRY), implementing code once in only one location

Terraform’s built-in support for modules of infrastructure code will help us in using
all three of these practices. We’ll be able to maintain our infrastructure code as a set of
reusable, encapsulated modules. We’ll build modules for each of the architecturally
significant parts of our system: networks, the API gateway, and the managed Amazon
Kubernetes service (EKS). Once we have our reusable modules in place, we’ll be able
to implement another set of Terraform files that use them. We’ll be able to have a dif‐
ferent Terraform file for each environment that we want to create without repeating
the same infrastructure declarations in each one (see Figure 7-1).

Figure 7-1. Reusing a network module

This approach allows us to easily spin up new environments by creating new Terra‐
form files that reuse the modules we’ve developed. It also lets us make changes in just
one place when we want to change an infrastructure configuration across all
environments. We can start by creating a simple module that defines a basic network
and an environment file that uses it.

Implementing the Infrastructure | 143

The infrastructure code we are writing in this chapter uses Terraform’s module struc‐
ture. Each module will have its own directory and contain variables.tf, main.tf, and
output.tf files. The advantage of this approach is that you can define a module once
and use it in a parameterized way to build multiple environments. You can learn
more about these modules in the Terraform documentation.

We’re going to create two modules for our microservices infrastructure. First, we’ll
create an AWS networking module that contains a declarative configuration of our
software-defined network. We’ll also create a Kubernetes module that defines an
AWS-based managed Kubernetes configuration for our environments. We’ll be able
to use both of these modules to create our sandbox environment.

Don’t Use Our Configuration Files in Your Production Environment!

We’ve done our best to design an infrastructure that mirrors pro‐
duction environments that large organizations use for microser‐
vices. But space constraints prevent us from giving you a
comprehensive set of configurations that will work for your specific
environment, security needs, and constraints. You can use this
chapter as a quick starter and guide to the tools you’ll need, but we
advise that you spend time designing your own production-grade
infrastructure, configuration, and architecture.

In Chapter 6, we created a GitHub code repository for the sandbox environment code
and its CI/CD pipeline. We’ll be using that code repository in this chapter, but we’ll
also create a new repository for each module we write. Terraform has built-in support
for importing modules that are managed as GitHub repositories, so it will be easy to
pull them in when we want to use them.

To get started, let’s create the repositories for all the modules we’ll be writing in this
chapter. Go ahead and create three new public GitHub-hosted repositories with the
names described in Table 7-1.

Table 7-1. Infrastructure module names

Repository name Visibility Description
module-aws-network Public A Terraform module that creates the network

module-aws-kubernetes Public A Terraform module that sets up EKS

module-argo-cd Public A Terraform module that installs Argo CD into a cluster

If you aren’t sure how to create a GitHub repository, you can follow
the GitHub instructions.

144 | Chapter 7: Building a Microservices Infrastructure

https://oreil.ly/87ahC
https://oreil.ly/wNY0P

We recommend that you make these repositories public so that they are easier to
import into your Terraform environment definition. You can use private repositories
if you prefer—you’ll just have to add some authentication information to your import
command so that Terraform can get to the files correctly. You should also add
a .gitignore file to these repositories so you don’t end up with a lot of Terraform work‐
ing files pushed to your GitHub server. You can do that by choosing a Terra‐
form .gitignore in the GitHub web GUI, or save the contents as a .gitignore file in the
root directory of your code repository, as outlined on this GitHub site.

With our three GitHub module repositories created and ready to be populated, we
can dive into the work of actually writing the actual infrastructure definitions—start‐
ing with the network.

The Network Module
The virtual network is a foundational part of our infrastructure, so it makes sense for
us to start by defining the network module. In this section, we’ll write an AWS net‐
work module that will support a specific Kubernetes and microservices architecture
and workload. Because it’s a module, we’ll be writing input, main, and output code—
just like we’d write inputs, logic, and return values for an application function. When
we’re done, we’ll be able to use this module to easily provision a network environ‐
ment by specifying just a few input values.

We’ll be writing the network infrastructure code in the module-aws-network GitHub
repository that you created earlier. We’ll be creating and editing Terraform files in the
root directory of this module. If you haven’t already done so, clone the repository into
your local environment and get your favorite text editor ready.

A completed listing for this AWS network module is available in
this book’s GitHub repository.

Network module outputs
Let’s start by defining the resources that we expect the networking module to pro‐
duce. We’ll do this by creating a Terraform file called output.tf in the root directory of
module-aws-network, as in Example 7-1.

Implementing the Infrastructure | 145

https://oreil.ly/7AUJl
https://oreil.ly/Microservices_UpandRunning_mod_aws_netw

Example 7-1. module-aws-network/output.tf

output "vpc_id" {
 value = aws_vpc.main.id
}

output "subnet_ids" {
 value = [
 aws_subnet.public-subnet-a.id,
 aws_subnet.public-subnet-b.id,
 aws_subnet.private-subnet-a.id,
 aws_subnet.private-subnet-b.id]
}

output "public_subnet_ids" {
 value = [aws_subnet.public-subnet-a.id, aws_subnet.public-subnet-b.id]
}

output "private_subnet_ids" {
 value = [aws_subnet.private-subnet-a.id, aws_subnet.private-subnet-b.id]
}

Based on the Terraform module output file, we can see that the network module cre‐
ates a VPC resource that represents the software-defined network for our system.
Within that network, our module will also create four logical subnets—these are the
bounded parts of our network (or subnetworks). Two of these subnets will be public,
meaning that they will be accessible over the internet. Later, we’ll use all four subnets
for our Kubernetes cluster setup and eventually we’ll deploy our microservices into
them.

Network module main configuration
With the output of our module defined, we can start putting together the declarative
code that builds it and creates the outputs we are expecting. In a Terraform module,
we’ll be creating and editing a file named main.tf in the root directory of the module-
aws-network repository.

Getting the Source Code

To help you understand the network implementation, we’ve broken
the main.tf source code file into smaller parts. You can find the
complete source code listing for this module at this book’s GitHub
site.

We’ll start our module implementation by creating an AWS VPC resource. Terraform
provides us with a special resource for defining AWS VPCs, so we’ll just need to fill in
a few parameters to create our definition. When we create a resource in Terraform,

146 | Chapter 7: Building a Microservices Infrastructure

https://oreil.ly/Microservices_UpandRunning_maintf
https://oreil.ly/Microservices_UpandRunning_maintf

we define the parameters and configuration details for it in the Terraform syntax.
When we apply these changes, Terraform will make an AWS API call and create the
resource if it doesn’t exist already.

You can find all the Terraform documentation for the AWS pro‐
vider on the Terraform site. You can also consult this documenta‐
tion if you’re building a similar implementation in GCP or Azure.

Create a file called main.tf in the root of your network module’s repository and add
the Terraform code in Example 7-2 to the main.tf file to define a new AWS VPC
resource.

Example 7-2. modules-aws-network/main.tf

provider "aws" {
 region = var.aws_region
}

locals {
 vpc_name = "${var.env_name} ${var.vpc_name}"
 cluster_name = "${var.cluster_name}-${var.env_name}"
}

AWS VPC definition
resource "aws_vpc" "main" {
 cidr_block = var.main_vpc_cidr
 tags = {
 "Name" = local.vpc_name,
 "kubernetes.io/cluster/${local.cluster_name}" = "shared",
 }
}

The network module starts with a declaration that it is using the AWS provider. This
is a special instruction that lets Terraform know that it needs to download and install
the libraries it will need in order to communicate with the AWS API and create
resources on our behalf. When we validate or apply this file in Terraform, it will
attempt to connect to the AWS API using the credentials we’ve configured in the sys‐
tem as environment variables. We’re also specifying an AWS region here so that Ter‐
raform knows which region it should be working in.

We’ve also specified two local variables using a Terraform locals block. These vari‐
ables define a naming standard that will help us differentiate environment resources
in the AWS console. This is especially important if we plan to create multiple environ‐
ments in the same AWS account space as it will help us avoid naming collisions.

Implementing the Infrastructure | 147

https://oreil.ly/pvWJS

After the local variable declaration, you’ll find the code for creating a new AWS VPC.
As you can see, there isn’t much to it, but it does define two important things: a CIDR
block and a set of descriptive tags.

Classless inter-domain routing (CIDR) is a standard way of describing an IP address
range for the network. It’s a shorthand string that defines which IP addresses are
allowed inside a network or a subnet. For example, a CIDR value of 10.0.0.0/16
would mean that you could bind to any IP address between 10.0.0.0 and 10.0.255.255
inside the VPC. We’ll be defining a pretty standard CIDR range for you when we
build the sandbox environment, but for more details on how CIDRs work and why
they exist, you can read about them in the RFC.

We’ve also added some tag values to the VPC. Resource tags are useful because they
give us a way of easily identifying groups of resources when we need to administrate
them. Tags are also useful for automated tasks and for identifying resources that
should be managed in specific ways. In our definition, we have defined a “Name” tag
to make our VPC easier to identify. We’ve also defined a Kubernetes tag that identifies
this cluster as a target for our Kubernetes cluster (which we’ll define in “Defining the
EKS cluster” on page 162).

Also, notice that in a few cases we’ve referenced a variable instead of an actual value
in our configuration. For example, our CIDR block is defined as var.main_vpc_cidr
and it has a Name tag with the value local.vpc_name. These are Terraform variables,
and we’ll define their values later when we use this module as part of our sandbox
environment. The variables are what makes the modules reusable—by changing the
variable values we can change the types of environments that we create.

With our main VPC defined, we can move on to configuring the subnets for the net‐
work. As we mentioned earlier in this chapter, we’ll be using Amazon’s managed
Kubernetes service (EKS) to run our workload. In order for EKS to function properly,
we’ll need to have subnets defined in two different “availability zones.” In AWS, an
availability zone represents a separate physical data center. It’s a useful construct,
because even though the AWS resources are virtual, they’re still running on a com‐
puter plugged into an outlet somewhere. By using two availability zones for our
deployment, we ensure that our services will still work even if one of the data centers
goes down.

In addition to configuring two availability zones, Amazon also recommends a VPC
configuration with both public and private subnets. So our network will have public
subnets that allow traffic from the internet and private subnets that will only allow
traffic from inside the VPC. When EKS is running, it will deploy load balancers in the
public subnet to manage inbound traffic, which will be routed to our containerized
microservices deployed in the private subnets.

148 | Chapter 7: Building a Microservices Infrastructure

https://oreil.ly/PtHmq

To meet those requirements, we’ll define a total of four subnets. Two of them will be
designated as public subnets, so they’ll be accessible over the web. The other two sub‐
nets will be private. We’ll also split our public and private subnets up so that they are
deployed in separate availability zones. When we’re done, we’ll have a network that
looks like Figure 7-2.

Figure 7-2. AWS subnet design

We’ve already specified a CIDR for the IP range in our VPC. Now we’ll need to split
up those IP addresses for the subnets to use. Since the subnets are inside of the VPC,
they’ll need to have a CIDR that is within the boundaries of the VPC IP range. We
won’t actually be defining those IP addresses in our module though. Instead, we’ll use
variables just like we did for the VPC.

In addition to the CIDR blocks, we’ll specify the availability zones for our subnets as a
parameter. Rather than hardcoding the name of the availability zone, we’ll use a spe‐
cial Terraform type called data that will let us dynamically choose the zone name. In
this case, we’ll put public-subnet-a and private-subnet-a in data.aws.availabil
ity_zones.available.names[0] and public-subnet-b and private-subnet-b in
data.aws.availability_zones.available.names[1]. Using dynamic data like this
makes it easier for us to spin up this infrastructure in different regions.

Finally, we’ll add a name tag so that we can easily find our network resources through
the admin and ops consoles. We’ll also need to add some EKS tags to the subnet
resources so that our AWS Kubernetes service will know which subnets we are using
and what they are for. We’ll tag our public subnets with an elb role so that EKS
knows it can use these subnets to create and deploy an elastic load balancer. We’ll tag
the private subnets with an internal-elb role to indicate that our workloads will be
deployed into them and can be load balanced. For more details on how AWS EKS
uses load balancer tags, consult the AWS documentation.

Add the Terraform code in Example 7-3 to the end of your main.tf file in order to
declare the subnet configuration.

Implementing the Infrastructure | 149

https://oreil.ly/WlqQh

Example 7-3. modules-aws-network/main.tf (subnets)

subnet definition

data "aws_availability_zones" "available" {
 state = "available"
}

resource "aws_subnet" "public-subnet-a" {
 vpc_id = aws_vpc.main.id
 cidr_block = var.public_subnet_a_cidr
 availability_zone = data.aws_availability_zones.available.names[0]

 tags = {
 "Name" = (
 "${local.vpc_name}-public-subnet-a"
)
 "kubernetes.io/cluster/${local.cluster_name}" = "shared"
 "kubernetes.io/role/elb" = "1"
 }
}

resource "aws_subnet" "public-subnet-b" {
 vpc_id = aws_vpc.main.id
 cidr_block = var.public_subnet_b_cidr
 availability_zone = data.aws_availability_zones.available.names[1]

 tags = {
 "Name" = (
 "${local.vpc_name}-public-subnet-b"
)
 "kubernetes.io/cluster/${local.cluster_name}" = "shared"
 "kubernetes.io/role/elb" = "1"
 }
}

resource "aws_subnet" "private-subnet-a" {
 vpc_id = aws_vpc.main.id
 cidr_block = var.private_subnet_a_cidr
 availability_zone = data.aws_availability_zones.available.names[0]

 tags = {
 "Name" = (
 "${local.vpc_name}-private-subnet-a"
)
 "kubernetes.io/cluster/${local.cluster_name}" = "shared"
 "kubernetes.io/role/internal-elb" = "1"
 }
}

resource "aws_subnet" "private-subnet-b" {
 vpc_id = aws_vpc.main.id

150 | Chapter 7: Building a Microservices Infrastructure

 cidr_block = var.private_subnet_b_cidr
 availability_zone = data.aws_availability_zones.available.names[1]

 tags = {
 "Name" = (
 "${local.vpc_name}-private-subnet-b"
)
 "kubernetes.io/cluster/${local.cluster_name}" = "shared"
 "kubernetes.io/role/internal-elb" = "1"
 }
}

In Terraform, a data element is a way of querying the provider for
information. In the network module, we’re using the aws_availa
bility_zones data element to ask AWS for availability zone IDs in
the region we’ve specified. This is a nice way to avoid hardcoding
values into the module.

Although we’ve configured four subnets and their IP ranges, we haven’t yet defined
the network rules that AWS will need to manage traffic through them. To finish our
network design, we’ll need to implement a set of routing tables that define what traffic
sources we will allow into our subnets. For example, we’ll need to establish how traffic
will be routed through our public subnets and how each of the subnets will be
allowed to communicate with each other.

We’ll start by defining the routing rules for our two public subnets: public-subnet-a
and public-subnet-b. To make these subnets accessible on the internet, we’ll need to
add a special resource to our VPC called an internet gateway. This is an AWS network
component that connects our private cloud to the public internet. Terraform gives us
a resource definition for the gateway, so we’ll use that and tie it to our VPC with the
vpc_id configuration parameter.

Once we’ve added the internet gateway, we’ll need to define routing rules that let AWS
know how to route traffic from the gateway into our subnets. To do that, we’ll create
an aws_route_table resource that allows all traffic from the internet (which we’ll
identify with CIDR block 0.0.0/0) through the gateway. Then we just need to create
associations between our two public subnets and the table we’ve defined.

Add the Terraform code in Example 7-4 to main.tf to define routing instructions for
our network.

Implementing the Infrastructure | 151

Example 7-4. modules-aws-network/main.tf (public routes)

Internet gateway and routing tables for public subnets
resource "aws_internet_gateway" "igw" {
 vpc_id = aws_vpc.main.id

 tags = {
 Name = "${local.vpc_name}-igw"
 }
}

resource "aws_route_table" "public-route" {
 vpc_id = aws_vpc.main.id

 route {
 cidr_block = "0.0.0.0/0"
 gateway_id = aws_internet_gateway.igw.id
 }

 tags = {
 "Name" = "${local.vpc_name}-public-route"
 }
}

resource "aws_route_table_association" "public-a-association" {
 subnet_id = aws_subnet.public-subnet-a.id
 route_table_id = aws_route_table.public-route.id
}

resource "aws_route_table_association" "public-b-association" {
 subnet_id = aws_subnet.public-subnet-b.id
 route_table_id = aws_route_table.public-route.id
}

With the routes for our public subnets defined, we can dive into the setup for our two
private subnets. The route configuration for the private subnets will be a bit more
complicated than what we’ve done so far. That’s because we’ll need to define a route
from our private subnet out to the internet to allow our Kubernetes Pods to talk to
the EKS service.

For that kind of route to work, we’ll need a way for nodes in our private subnet to talk
to the internet gateway we’ve deployed in the public subnets. In AWS, we’ll need to
create a network address translation (NAT) gateway resource that gives us a path out.
When we create the NAT, we’ll also need to assign it a special kind of IP address
called an elastic IP address (or EIP). Because this is an AWS construct, the IP is a real
internet-accessible network address, unlike all the other addresses in our network,
which are virtual and exist inside AWS alone. Since real IP addresses aren’t unlimited,
AWS limits the amount of these available. Unfortunately, we can’t create an NAT
without one, so we’ll have to use two of them—one for each NAT we are creating.

152 | Chapter 7: Building a Microservices Infrastructure

Add the Terraform code in Example 7-5 to implement an NAT gateway in our
network.

Example 7-5. modules-aws-network/main.tf (NAT gateway)

resource "aws_eip" "nat-a" {
 vpc = true
 tags = {
 "Name" = "${local.vpc_name}-NAT-a"
 }
}

resource "aws_eip" "nat-b" {
 vpc = true
 tags = {
 "Name" = "${local.vpc_name}-NAT-b"
 }
}

resource "aws_nat_gateway" "nat-gw-a" {
 allocation_id = aws_eip.nat-a.id
 subnet_id = aws_subnet.public-subnet-a.id
 depends_on = [aws_internet_gateway.igw]

 tags = {
 "Name" = "${local.vpc_name}-NAT-gw-a"
 }
}

resource "aws_nat_gateway" "nat-gw-b" {
 allocation_id = aws_eip.nat-b.id
 subnet_id = aws_subnet.public-subnet-b.id
 depends_on = [aws_internet_gateway.igw]

 tags = {
 "Name" = "${local.vpc_name}-NAT-gw-b"
 }
}

In addition to the NAT gateway we’ve created, we’ll need to define routes for our pri‐
vate subnets. Add the Terraform code in Example 7-6 to main.tf to complete the defi‐
nition of our network routes.

Example 7-6. modules/network/main.tf (private routes)

resource "aws_route_table" "private-route-a" {
 vpc_id = aws_vpc.main.id
 route {
 cidr_block = "0.0.0.0/0"
 nat_gateway_id = aws_nat_gateway.nat-gw-a.id

Implementing the Infrastructure | 153

 }

 tags = {
 "Name" = "${local.vpc_name}-private-route-a"
 }
}

resource "aws_route_table" "private-route-b" {
 vpc_id = aws_vpc.main.id
 route {
 cidr_block = "0.0.0.0/0"
 nat_gateway_id = aws_nat_gateway.nat-gw-b.id
 }

 tags = {
 "Name" = "${local.vpc_name}-private-route-b"
 }
}

resource "aws_route_table_association" "private-a-association" {
 subnet_id = aws_subnet.private-subnet-a.id
 route_table_id = aws_route_table.private-route-a.id
}

resource "aws_route_table_association" "private-b-association" {
 subnet_id = aws_subnet.private-subnet-b.id
 route_table_id = aws_route_table.private-route-b.id
}

That’s it for our main network definition. When we eventually run this Terraform file,
we’ll have an AWS software-defined network that is ready for Kubernetes and our
microservices. But, before we can use it, we’ll need to define all of the input variables
that this module needs. Although we’ve referenced a lot of var values in our code,
Terraform modules require us to identify all of the input variables we’ll be using in a
specific file called variables.tf. If we don’t do that, we won’t be able to pass variable
values into our module.

Network module variables
Create a file in the root folder of the network module called variables.tf. Add the Ter‐
raform code in Example 7-7 to variables.tf to define the inputs for the module.

154 | Chapter 7: Building a Microservices Infrastructure

Example 7-7. modules/network/variables.tf

variable "env_name" {
 type = string
}

variable "aws_region" {
 type = string
}

variable "vpc_name" {
 type = string
 default = "ms-up-running"
}

variable "main_vpc_cidr" {
 type = string
}

variable "public_subnet_a_cidr" {
 type = string
}

variable "public_subnet_b_cidr" {
 type = string
}

variable "private_subnet_a_cidr" {
 type = string
}

variable "private_subnet_b_cidr" {
 type = string
}

variable "cluster_name" {
 type = string
}

As you can see, the variable definitions are fairly self-explanatory. They describe a
name, optional description, and type value. In our module we’re only using string val‐
ues. In some cases, we’ve also provided a default value so that those inputs don’t
always have to be defined for every environment. We’ll give the module values for
those variables when we use it to create an environment.

Implementing the Infrastructure | 155

It’s good practice to include a description attribute for every vari‐
able in your Terraform module. This improves the maintainability
and usability of your modules and becomes increasingly important
over time. We’ve done this for the Terraform files we’ve published
in GitHub, but we’ve removed the descriptions in all our examples
to save space in the book.

The Terraform code for our network module is now complete. At this point, you
should have a list of files that looks something like this in your module directory:

drwxr-xr-x 3 msur staff 96 14 Jun 09:57 ..
drwxr-xr-x 7 msur staff 224 14 Jun 09:58 .
-rw-r--r-- 1 msur staff 23 14 Jun 09:57 README.md
drwxr-xr-x 13 msur staff 416 14 Jun 09:57 .git
-rw-r--r-- 1 msur staff 0 14 Jun 09:58 main.tf
-rw-r--r-- 1 msur staff 612 14 Jun 09:58 variables.tf
-rw-r--r-- 1 msur staff 72 14 Jun 09:58 outputs.tf

With the code written, we’ll be testing the network module by creating a sandbox
environment network, but before we use the module we should make sure we haven’t
made any syntax errors. The Terraform command-line application includes some
handy features to format and validate code. If you haven’t already installed the Terra‐
form client in your local system, you can find a binary for your operating system on
the Terraform site.

Use the following Terraform command while you are in your module’s working direc‐
tory to format the module’s code:

module-aws-network$ terraform fmt

The fmt command will lint, or format, all the Terraform code in the working direc‐
tory and ensure that it conforms to a set of built-in style guidelines. It will automati‐
cally make those changes for you and will list any files that have been updated.

Next, run terraform init so that Terraform can install the AWS provider libraries.
We need to do this so that we can validate the code. Note that you’ll need to have
AWS credentials defined for this to work. If you haven’t done that yet, follow the
instructions in the previous chapter:

module-aws-network$ terraform init

If you run into any problems, try to fix those before you continue; the Terraform doc‐
umentation has a helpful section on troubleshooting. Finally, you can run the vali
date command to make sure that our module is syntactically correct:

module-aws-network$ terraform validate
Success! The configuration is valid.

156 | Chapter 7: Building a Microservices Infrastructure

https://oreil.ly/pFDq8
https://oreil.ly/oh_Wn

If you need to debug your Terraform code, you can set the environ‐
ment variable TF_LOG to INFO or DEBUG. That will instruct Terra‐
form to emit logging info to standard output.

When you are satisfied that the code is formatted and valid, you can commit your
changes to the GitHub repository. If you’ve been working in a local repository, you
can use the following command to push your changes to the main repository:

module-aws-network$ git add .
module-aws-network$ git commit -m "network module created"
[master ddb7e41] network module created
 3 files changed, 226 insertions(+)
module-aws-network$ git push

Our Terraform-based network module is now complete and available for use. It has a
variables.tf file that describes the required and optional input variables to use it. It has
a main.tf file that declaratively defines the resources for our network design. Finally, it
has an outputs.tf file that defines the significant resources that we’ve created in the
module. Now we can use the module to create a real network in our sandbox
environment.

Create a sandbox network
The nice thing about using Terraform modules is that we can create our environ‐
ments easily in a repeatable way. Outside of the specific values we’ve defined in the
variables.tf file, any environment that we create with the module we’ve defined will
operate with a network infrastructure that we know and understand. That means we
can expect our microservices to work in a predictable way as we move them through
testing and release environments since we have reduced the level of variation.

But to apply the module we’ve defined and create a new environment, we’ll need to
call it from a Terraform file that defines values for the module’s variables. To do that,
we’ll create a sandbox environment that demonstrates a practical example of using a
Terraform module. If you followed the steps in Chapter 6, you’ll already have a code
repository for your sandbox environment with a single main.tf file in it.

In order to use the network module that we’ve created, we’ll use a special Terraform
resource called module. It allows us to reference a Terraform module that we’ve cre‐
ated and pass in values for the variables that we’ve defined. Terraform expects a prop‐
erty called source to exist in the module that indicates where it can find the code.

In our case, we want Terraform to retrieve the network module from a GitHub repos‐
itory. To do this, we need to use a source property that starts with the string "git
hub.com" and contains the path of our repository. That lets Terraform know it needs
to pull the source from GitHub.

Implementing the Infrastructure | 157

For example, a source value of "github.com/implementing-microservices/module-
aws-network" references our example network module. You can find the path for
your module’s repository by copying the path from its GitHub URL (see Table 7-2).

Table 7-2. Sandbox environment network variable

Name Description Example

YOUR_NETWORK_MOD
ULE_REPO_PATH

The path to your module’s repository in GitHub github.com/implementing-
microservices/module-aws-network

When you have the path for your network module ready, open the main.tf file for the
sandbox environment you created in Chapter 6. Add the Terraform code in
Example 7-8 after the # Network Configuration comment. Don’t forget to replace
the source value with the path of your network module’s GitHub repository.

Example 7-8. env-sandbox/main.tf (network)

...

Network Configuration
module "aws-network" {
 source = "github.com/{YOUR_NETWORK_MODULE_REPO_PATH}"

 env_name = local.env_name
 vpc_name = "msur-VPC"
 cluster_name = local.k8s_cluster_name
 aws_region = local.aws_region
 main_vpc_cidr = "10.10.0.0/16"
 public_subnet_a_cidr = "10.10.0.0/18"
 public_subnet_b_cidr = "10.10.64.0/18"
 private_subnet_a_cidr = "10.10.128.0/18"
 private_subnet_b_cidr = "10.10.192.0/18"
}

EKS Configuration

GitOps Configuration

Amazon’s S3 bucket names must be globally unique, so you’ll need
to change the value of bucket to something that is unique and
meaningful for you. Refer to “Creating an S3 Backend for Terra‐
form” on page 115 for instructions on how to set up the backend. If
you want to do a quick and dirty test, omit the backend definition
and Terraform will store state locally in your filesystem.

158 | Chapter 7: Building a Microservices Infrastructure

Our infrastructure pipeline will apply Terraform changes, but before we kick it off we
need to check to make sure that the Terraform code we’ve written will work. A good
first step is to format and validate the code locally:

$ terraform fmt
[...]
$ terraform init
[...]
$ terraform validate
Success! The configuration is valid.

If you need to debug the networking module and end up making
code changes, you may need to run the following command in
your sandbox environment directory:

$ terraform get -update

This will instruct Terraform to pull the latest version of the net‐
work module from GitHub.

If the code is valid, we can get a plan to validate the changes that Terraform will make
when they are applied. It’s always a good idea to do a dry run and examine the
changes that will be made before you actually change the environment, so make this
step a part of your workflow. To get the Terraform plan, run this command:

$ terraform plan

Terraform will provide you with a list of the resources that will be created, deleted,
and updated. If Terraform and AWS are new to you, the plan might be difficult to
evaluate and understand in detail. But, you should still be able to get a general sense
of what is going to happen. Since this is the first update, the plan should list a lot of
new resources that Terraform will create. When you’re ready, you can push the code
to the GitHub repository and tag it for release:

$ git add .
$ git commit -m "initial network release"
$ git push origin
$ git tag -a v1.0 -m "network build"
$ git push origin v1.0

There are two git push commands that we need to run. The first
one pushes the code changes we’ve made and the second only
pushes the tag.

With the code tagged and pushed, our GitHub Actions pipeline should take over and
start building the network for our sandbox environment. You’ll need to log in to Git‐
Hub and check the Actions tab in your sandbox environment repository to make sure

Implementing the Infrastructure | 159

that everything goes according to plan. If you don’t remember how to do that, you’ll
find instructions in Chapter 6.

You can test that the VPC has been successfully created by making an AWS CLI call.
Run the following command to list the VPCs with a CIDR block that matches the one
that we’ve defined:

$ aws ec2 describe-vpcs --filters Name=cidr,Values=10.10.0.0/16

You should get a JSON body back describing the VPC that we created. If that has hap‐
pened, it indicates that you now have an AWS network running and ready to use. It’s
now time to start writing the module for the Kubernetes service.

The Kubernetes Module
One of the most important parts of our microservices infrastructure is the Kuber‐
netes layer that orchestrates our container-based services. If we set it up correctly,
Kubernetes will give us an automated solution for resiliency, scaling, and fault toler‐
ance. It will also give us a great foundation for deploying our services in a dependable
way. On top of that, an Istio service mesh gives us a powerful way of managing traffic
and improving the way our microservices communicate.

To build our Kubernetes module, we’ll follow the same steps that we did to build our
network module. We’ll start by defining a set of output variables that define what the
module will produce, then we’ll write the code that declaratively defines the configu‐
ration that Terraform will create. Finally, we’ll define the inputs. As we mentioned
earlier in this chapter, we are managing each of infrastructure modules in it’s own
GitHub code repository. So make sure you start by creating a new GitHub repository
for our Kubernetes module if you haven’t done so already.

Implementing Kubernetes can get very complicated. So, to get our system up and
running as quickly as possible, we’ll use a managed service that will hide some of the
setup and management complexity for us. Since we are running on AWS in our
examples, we’ll use the EKS bundled in Amazon’s cloud offering.

The configuration for managed Kubernetes services tends to be
very vendor specific, so the examples we provide here will likely
take some reworking if you want to use them in Google Cloud,
Azure, or another hosted service.

An EKS cluster contains two parts: a control plane that hosts the Kubernetes system
software and a node group that hosts the VMs that our microservices will run on. In
order to configure EKS, we’ll need to provide parameters for both of these areas.
When the module is finished running, we can return an EKS cluster identifier so that
we have the option of inspecting or adding to the cluster with other modules.

160 | Chapter 7: Building a Microservices Infrastructure

With all that in mind, let’s dive into the code that will make it come to life. We’ll be
working in the module-aws-kubernetes GitHub repository that you created earlier,
so make sure you start by cloning it to your local machine. When you’ve done that,
we can begin by editing the Terraform outputs file.

A completed listing for this Kubernetes module is available in this
book’s GitHub repository.

Kubernetes module outputs
We’ll start by declaring the outputs that our module provides. Create a Terraform file
called outputs.tf in the root directory of the module-aws-kubernets repository and
add to it the code in Example 7-9.

Example 7-9. module-aws-kubernetes/outputs.tf

output "eks_cluster_id" {
 value = aws_eks_cluster.ms-up-running.id
}

output "eks_cluster_name" {
 value = aws_eks_cluster.ms-up-running.name
}

output "eks_cluster_certificate_data" {
 value = aws_eks_cluster.ms-up-running.certificate_authority.0.data
}

output "eks_cluster_endpoint" {
 value = aws_eks_cluster.ms-up-running.endpoint
}

output "eks_cluster_nodegroup_id" {
 value = aws_eks_node_group.ms-node-group.id
}

The main value we’re returning is the identifier for the EKS cluster that we’ll be creat‐
ing in this module. The rest of the values need to be returned so that we can access
the cluster from other modules once the cluster is ready and operational. For exam‐
ple, we’ll need the endpoint and certificate data when we install the Argo CD server
into this EKS cluster at the end of the chapter.

While the output of our module is pretty simple, the work of getting our EKS-based
Kubernetes system set up is going to be a bit more complicated. Just like we did

Implementing the Infrastructure | 161

https://oreil.ly/Microservices_UpandRunning_Kmod
https://oreil.ly/Microservices_UpandRunning_Kmod

before, we’ll build the module’s main Terraform file in parts before we test it and
apply it.

Defining the EKS cluster
To start, create a Terraform file called main.tf in the root directory of your Kubernetes
module and add an AWS provider definition, as in Example 7-10.

Example 7-10. module-aws-kubernetes/main.tf

provider "aws" {
 region = var.aws_region
}

Remember that we’ll be using the Terraform naming convention of var to indicate
values that can be replaced by variables when our module is invoked.

As we mentioned earlier, we’re going to use Amazon’s EKS to create and manage our
Kubernetes installation. But EKS will need to create and modify AWS resources on
our behalf in order to run. So we’ll need to set up permissions in our AWS account so
that it can do the work it needs to do. We’ll need to define policies and security rules
at the overall cluster level and also for the VMs or nodes that EKS will be spinning up
for us to run microservices on.

We’ll start by focusing on the rules and policies for the entire EKS cluster. Add the
Terraform code in Example 7-11 to your main.tf file to define a new cluster access
management policy.

Example 7-11. module-aws-kubernetes/main.tf (cluster access management)

locals {
 cluster_name = "${var.cluster_name}-${var.env_name}"
}

resource "aws_iam_role" "ms-cluster" {
 name = local.cluster_name

 assume_role_policy = <<POLICY
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "eks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }

162 | Chapter 7: Building a Microservices Infrastructure

]
}
POLICY
}

resource "aws_iam_role_policy_attachment" "ms-cluster-AmazonEKSClusterPolicy" {
 policy_arn = "arn:aws:iam::aws:policy/AmazonEKSClusterPolicy"
 role = aws_iam_role.ms-cluster.name
}

The snippet here establishes a trust policy that allows the AWS EKS service to act on
your behalf. It defines a new identity and access management role for our EKS service
and attaches a policy called AmazonEKSClusterPolicy to it. This policy has been
defined by AWS for us and gives the EKS the permissions it needs to create VMs and
make network changes as part of its Kubernetes management work. Notice that we
are also defining and using a local variable for the name of the cluster. We’ll use that
variable throughout the module.

Now that the cluster service’s role and policy are defined, add the code in
Example 7-12 to your module’s main.tf file to define a network security policy for the
cluster.

Example 7-12. module-aws-kubernetes/main.tf (network security policy)

resource "aws_security_group" "ms-cluster" {
 name = local.cluster
 vpc_id = var.vpc_id

 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

 tags = {
 Name = "ms-up-running"
 }
}

A VPC security group restricts the kind of traffic that can go into and out of the net‐
work. The Terraform code we’ve just written defines an egress rule that allows unre‐
stricted outbound traffic, but doesn’t allow any inbound traffic, because there is no
ingress rule defined. Notice that we are applying this security group to a VPC that
will be defined by an input variable. When we use this module, we can give it the ID
of the VPC that our networking module has created.

Implementing the Infrastructure | 163

With these policies and a security group defined for the EKS cluster, we can now add
the declaration for the cluster itself to the main.tf Terraform file (see Example 7-13).

Example 7-13. module-aws-kubernetes/main.tf (cluster definition)

resource "aws_eks_cluster" "ms-up-running" {
 name = local.cluster_name
 role_arn = aws_iam_role.ms-cluster.arn

 vpc_config {
 security_group_ids = [aws_security_group.ms-cluster.id]
 subnet_ids = var.cluster_subnet_ids
 }

 depends_on = [
 aws_iam_role_policy_attachment.ms-cluster-AmazonEKSClusterPolicy
]
}

The EKS cluster definition we’ve just created is pretty simple. It simply references the
name, role, policy, and security group values we defined earlier. It also references a set
of subnets that the cluster will be managing. These subnets will be the ones that we
created earlier in the networking module, and we’ll be able to pass them into this
Kubernetes module as a variable.

When AWS creates an EKS cluster, it automatically sets up all of the management
components that we need to run our Kubernetes cluster. This is called the control
plane because it’s the brain of our Kubernetes system. But in addition to the control
plane, our microservices need a place where they can run. In Kubernetes, that means
we need to set up nodes—the physical or VMs that containerized workloads can run
on.

One of the advantages of using a managed Kubernetes service like EKS is that we can
offload some of the work of managing the creation, removal, and updating of Kuber‐
netes nodes. For our configuration, we’ll define a managed EKS node group and let
AWS provision resources and interact with the Kubernetes system for us. But to get a
managed node group running, we’ll still need to define a few important configuration
values.

Defining the EKS node group
Just like we did for our cluster, we’ll begin the node configuration by defining a role
and some security policies. Add the node group IAM definitions in Example 7-14 to
the Kubernetes module’s main.tf file.

164 | Chapter 7: Building a Microservices Infrastructure

Example 7-14. module-aws-kubernetes/main.tf (node group IAM)

Node Role
resource "aws_iam_role" "ms-node" {
 name = "${local.cluster_name}.node"

 assume_role_policy = <<POLICY
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
POLICY
}

Node Policy
resource "aws_iam_role_policy_attachment" "ms-node-AmazonEKSWorkerNodePolicy" {
 policy_arn = "arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy"
 role = aws_iam_role.ms-node.name
}

resource "aws_iam_role_policy_attachment" "ms-node-AmazonEKS_CNI_Policy" {
 policy_arn = "arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy"
 role = aws_iam_role.ms-node.name
}

[...]
resource "aws_iam_role_policy_attachment" "ms-node-ContainerRegistryReadOnly" {
[...]
 policy_arn = "arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly"
 role = aws_iam_role.ms-node.name
}

The role and policies in this Terraform snippet will allow any nodes that are created
to communicate with Amazon’s container registries and VM services. We need these
policies because the nodes in our Kubernetes system will need to be able to provision
computing resources and access containers in order to run services. For more details
on the IAM role for EKS worker nodes, check out the AWS EKS documentation.

Now that we have our node’s role and policy resources defined, we can write the dec‐
laration for a node group that uses them. In EKS, a managed node group needs to
specify the types of compute and storage resources it will use along with some
defined limits for the number of individual nodes or VMs that can be created

Implementing the Infrastructure | 165

https://oreil.ly/fm75j

automatically. This is important because we are letting EKS automatically provision
and scale our nodes. We don’t want to inadvertently consume massive amounts of
AWS resources and end up with a correspondingly massive bill.

We could hardcode all of these parameters in our module, but instead we’ll use input
variables as values for the size limits, disk size, and CPU types. That way we’ll be able
to use the same Kubernetes module to create different kinds of environments. For
example, a development environment can be set up to use minimal resources, while a
production environment can be more robust.

Add the Terraform code in Example 7-15 to the end of the module’s main.tf file to
define our EKS node group.

Example 7-15. module-aws-kubernetes/main.tf (node group)

resource "aws_eks_node_group" "ms-node-group" {
 cluster_name = aws_eks_cluster.ms-up-running.name
 node_group_name = "microservices"
 node_role_arn = aws_iam_role.ms-node.arn
 subnet_ids = var.nodegroup_subnet_ids

 scaling_config {
 desired_size = var.nodegroup_desired_size
 max_size = var.nodegroup_max_size
 min_size = var.nodegroup_min_size
 }

 disk_size = var.nodegroup_disk_size
 instance_types = var.nodegroup_instance_types

 depends_on = [
 aws_iam_role_policy_attachment.ms-node-AmazonEKSWorkerNodePolicy,
 aws_iam_role_policy_attachment.ms-node-AmazonEKS_CNI_Policy,
 aws_iam_role_policy_attachment.ms-node-AmazonEC2ContainerRegistryReadOnly,
]
}

The node group declaration is the last part of our EKS configuration. We have
enough here to be able to call this module from our sandbox environment and
instantiate a running Kubernetes cluster on the AWS EKS service. Our module’s out‐
puts will return the values that are needed to connect to the node group once it’s run‐
ning. But it’s also useful to provide those connection details in a configuration file for
the kubectl CLI that most operators use for Kubernetes management.

Our last step is to generate a kubeconfig file that we’ll be able to use to connect to the
cluster. Append the code in Example 7-16 to your module’s main.tf file.

166 | Chapter 7: Building a Microservices Infrastructure

Example 7-16. module-aws-kubernetes/main.tf (generate kubeconfig)

Create a kubeconfig file based on the cluster that has been created
resource "local_file" "kubeconfig" {
 content = <<KUBECONFIG_END
apiVersion: v1
clusters:
- cluster:
 "certificate-authority-data: >
 ${aws_eks_cluster.ms-up-running.certificate_authority.0.data}"
 server: ${aws_eks_cluster.ms-up-running.endpoint}
 name: ${aws_eks_cluster.ms-up-running.arn}
contexts:
- context:
 cluster: ${aws_eks_cluster.ms-up-running.arn}
 user: ${aws_eks_cluster.ms-up-running.arn}
 name: ${aws_eks_cluster.ms-up-running.arn}
current-context: ${aws_eks_cluster.ms-up-running.arn}
kind: Config
preferences: {}
users:
- name: ${aws_eks_cluster.ms-up-running.arn}
 user:
 exec:
 apiVersion: client.authentication.k8s.io/v1alpha1
 command: aws-iam-authenticator
 args:
 - "token"
 - "-i"
 - "${aws_eks_cluster.ms-up-running.name}"
 KUBECONFIG_END
 filename = "kubeconfig"
}

This code looks complicated, but it’s actually fairly simple. We are using a special Ter‐
raform resource called local_file to create a file named kubeconfig. We are then
populating kubeconfig with YAML content that defines the connection parameters for
our Kubernetes cluster. Notice that we are getting the values for the YAML file from
the EKS resources that we created in the module.

When Terraform runs this block of code, it will create a kubeconfig file in a local
directory. We’ll be able to use that file to connect to the Kubernetes environment
from CLI tools. We made a special provision for this file when we built our pipeline
in Chapter 6. When you run the infrastructure pipeline, you’ll be able to download
this populated configuration file and use it to connect to the cluster. This configura‐
tion file will make it a lot easier for you to connect to the cluster from your machine.

We’re almost done writing our Kubernetes service module; all that’s left is to define
the variables.

Implementing the Infrastructure | 167

Kubernetes module variables
To declare the variables for our Kubernetes module, create a file called variables.tf in
your module-aws-kubernetes repository and add the code in Example 7-17.

Example 7-17. module-aws-kubernetes/variables.tf

variable "aws_region" {
 type = string
 default = "eu-west-2"
}

variable "env_name" {
 type = string
}

variable "cluster_name" {
 type = string
}

variable "ms_namespace" {
 type = string
 default = "microservices"
}

variable "vpc_id" {
 type = string
}

variable "cluster_subnet_ids" {
 type = list(string)
}

variable "nodegroup_subnet_ids" {
 type = list(string)
}

variable "nodegroup_desired_size" {
 type = number
 default = 1
}

variable "nodegroup_min_size" {
 type = number
 default = 1
}

variable "nodegroup_max_size" {
 type = number
 default = 5
}

168 | Chapter 7: Building a Microservices Infrastructure

variable "nodegroup_disk_size" {
 type = string
}

variable "nodegroup_instance_types" {
 type = list(string)
}

Our AWS Kubernetes module is now fully written. As we did for our network mod‐
ule, we’ll take a moment to clean up the formatting and validate the syntax of the
code by running the following Terraform commands:

module-aws-kubernetes$ terraform fmt
[...]
module-aws-kubernetes$ terraform init
[...]
module-aws-kubernetes$ terraform validate
Success! The configuration is valid.

When you are satisfied that the code is valid, commit your changes and push them to
GitHub, so that we can use this module in the sandbox environment:

$ git add .
$ git commit -m "kubernetes module complete"
$ git push origin

With the EKS module ready to go, we can go back to our sandbox Terraform file and
use it.

Create a sandbox Kubernetes cluster
Now that our complex Kubernetes system is wrapped up in a simple module, the
work of setting it up in our sandbox environment is pretty simple. All we’ll need to do
is call our module with the input parameters that we want. Remember that our sand‐
box environment is defined in its own code repository and has its own Terraform file
called main.tf which we’ve used to set up the network. We’ll be editing that file again,
but this time we’ll add a call to the Terraform module.

If you recall, we gave some of our input variables default values. To keep things sim‐
ple, we’ll just use those default values in our sandbox environment. We’ll also need to
pass some of the output variables from our network module into this Kubernetes
module so that it installs the cluster on the network we’ve just created. But beyond
those inputs, you’ll need to define the aws_region value for your installation. This
should be the same as the value you used for the network module and the backend
configuration. You’ll also need to set the source parameter to point to your GitHub-
hosted module.

Update the main.tf file of your sandbox environment so that it uses the Kubernetes
module you’ve just created. You can add the module reference immediately after the

Implementing the Infrastructure | 169

#EKS Configuration placeholder we put in the file earlier. You’ll also need to replace
the token {YOUR_EKS_MODULE_PATH} with the path to your module’s GitHub reposi‐
tory (see Example 7-18).

Example 7-18. env-sandbox/main.tf (Kubernetes)

...

Network Configuration
...

EKS Configuration
module "aws-eks" {
 source = "*github.com/{YOUR_EKS_MODULE_PATH}*"

 ms_namespace = "microservices"
 env_name = local.env_name
 aws_region = local.aws_region
 cluster_name = local.k8s_cluster_name
 vpc_id = module.aws-network.vpc_id
 cluster_subnet_ids = module.aws-network.subnet_ids

 nodegroup_subnet_ids = module.aws-network.private_subnet_ids
 nodegroup_disk_size = "20"
 nodegroup_instance_types = ["t3.medium"]
 nodegroup_desired_size = 1
 nodegroup_min_size = 1
 nodegroup_max_size = 3
}

GitOps Configuration

Now you can commit and push this file into your CI/CD infrastructure pipeline and
create a working EKS cluster. Don’t forget that you’ll need to use a tag to get the build
to kick off. For example, you can run the following commands to create a 1.1 version
of the infrastructure:

$ git add .
$ git commit -m "initial k8s release"
$ git push
$ git tag -a v1.1 -m "k8s build"
$ git push origin v1.1

Be prepared to wait for a few minutes for a result as provisioning a new EKS cluster
can take up to 10 to 15 minutes. When it’s done, you’ll have a powerful container-
based infrastructure up and running, ready to run your microservices resiliently.

170 | Chapter 7: Building a Microservices Infrastructure

The AWS EKS cluster we’ve defined here will accrue charges even
when it’s idle. We recommend that you destroy the environment
when you are not using it. You’ll find instructions for doing that in
“Cleaning Up the Infrastructure” on page 177.

You can test that the cluster has been provisioned by running the following AWS CLI
command:

$ aws eks list-clusters

If all has gone well, you’ll get the following response:

{
 "clusters": [
 "ms-cluster-sandbox"
]
}

Our final step is to install a GitOps deployment tool that will come in handy when it’s
time to release our services into our environment’s Kubernetes cluster.

Setting Up Argo CD
As we mentioned earlier, we’re going to complete our infrastructure setup with a
GitOps server that we’ll use later in the book. We’ll continue to follow the module
pattern by creating a Terraform module for Argo CD that we can call to bootstrap the
server in our sandbox environment. Unlike the other modules, we’ll be installing
Argo CD on the Kubernetes system that we’ve just instantiated.

To do that, we’ll need to let Terraform know that we’re using a different host. Up until
now, we’ve been using the AWS provider, which lets Terraform communicate with
AWS through its API. For our Argo CD installation we’ll use a Kubernetes provider;
this enables Terraform to issue Kubernetes commands and install the application to
our new cluster. We’ll also use a package-management system called Helm to do the
installation. We’ll introduce Helm a little bit later, but for now, we’ll need to set up
Terraform to use it as a provider.

We’ll install this resource into the Kubernetes cluster rather than on the AWS
platform.

That means we won’t be using the AWS provider. Instead, we’ll use Terraform’s
Kubernetes and Helm providers.

A completed version of this module is available in this book’s Git‐
Hub repository.

Implementing the Infrastructure | 171

https://oreil.ly/Microservices_UpandRunning_argo_mod
https://oreil.ly/Microservices_UpandRunning_argo_mod

Create a file called main.tf file in the root directory of the module-argo-cd Git reposi‐
tory that you created earlier. Add the code in Example 7-19 to set up the providers we
need for the installation.

Example 7-19. module-argo-cd/main.tf

provider "kubernetes" {
 load_config_file = false
 cluster_ca_certificate = base64decode(var.kubernetes_cluster_cert_data)
 host = var.kubernetes_cluster_endpoint
 exec {
 api_version = "client.authentication.k8s.io/v1alpha1"
 command = "aws-iam-authenticator"
 args = ["token", "-i", "${var.kubernetes_cluster_name}"]
 }
}

provider "helm" {
 kubernetes {
 load_config_file = false
 cluster_ca_certificate = base64decode(var.kubernetes_cluster_cert_data)
 host = var.kubernetes_cluster_endpoint
 exec {
 api_version = "client.authentication.k8s.io/v1alpha1"
 command = "aws-iam-authenticator"
 args = ["token", "-i", "${var.kubernetes_cluster_name}"]
 }
 }
}

To configure the Kubernetes provider, we’re using the properties of the EKS cluster
that we provisioned earlier. These properties let Terraform know it needs to use the
AWS authenticator to connect to the cluster along with the certificate that we’ve
provided.

As we mentioned earlier, we’re also using a provider for Helm. Helm is a popular way
of describing a Kubernetes deployment and for distributing Kubernetes applications
as packages. It’s similar to other package-management tools, such as apt-get in the
Linux world, and is designed to make installation of Kubernetes-based applications
simple and easy. To configure our Helm provider, we simply need to provide a few
Kubernetes connection parameters.

A Helm deployment is called a chart. We’ll be using a Helm chart provided by the
Argo CD community to install the Argo CD server. Add the code in Example 7-20 to
the main.tf file to complete the installation declaration.

172 | Chapter 7: Building a Microservices Infrastructure

Example 7-20. module-argo-cd/main.tf (Helm)

resource "kubernetes_namespace" "example" {
 metadata {
 name = "argo"
 }
}

resource "helm_release" "argocd" {
 name = "msur"
 chart = "argo-cd"
 repository = "https://argoproj.github.io/argo-helm"
 namespace = "argo"
}

This code creates a namespace for the Argo CD installation and uses the Helm pro‐
vider to perform the installation. All that’s left to complete the Argo CD module is to
define some variables.

Variables for Argo CD
Create a file called variables.tf in your Argo CD module repository and add the code
in Example 7-21.

Example 7-21. module-argo-cd/variables.tf

variable "kubernetes_cluster_id" {
 type = string
}

variable "kubernetes_cluster_cert_data" {
 type = string
}

variable "kubernetes_cluster_endpoint" {
 type = string
}

variable "kubernetes_cluster_name" {
 type = string
}

variable "eks_nodegroup_id" {
 type = string
}

We need to define these variables so that we can configure the Kubernetes and Helm
providers in our code. So we’ll need to grab them from the Kubernetes module’s out‐
put when we call it in our sandbox’s Terraform file. Before we get to that step, let’s

Implementing the Infrastructure | 173

format and validate the code we’ve written in the same way as we did for our other
modules:

module-argocd$ terraform fmt
[...]
module-argocd$ terraform init
[...]
module-argocd$ terraform validate
Success! The configuration is valid.

When you are satisfied that the code is valid, commit your code changes and push
them to the GitHub repository so that we can use the module in our sandbox
environment:

$ git add .
$ git commit -m "ArgoCD module init"
$ git push origin

Now, as we’ve done before, we just need to call this module from our sandbox
definition.

Installing Argo CD in the sandbox
We want the Argo CD installation to happen as part of our sandbox environment
bootstrapping, so we need to call the module from the Terraform definition in our
sandbox environment. Add the code in Example 7-22 to the end of your sandbox
module’s main.tf file to install Argo CD. Don’t forget to use your module’s GitHub
repository path in the source property of the module definition.

Example 7-22. env-sandbox/main.tf (Argo CD)

...

Network Configuration
...

EKS Configuration
...

GitOps Configuration
module "argo-cd-server" {
 source = "*github.com/{YOUR_ARGOCD_MODULE_PATH}*"

 kubernetes_cluster_id = module.aws-eks.eks_cluster_id
 kubernetes_cluster_name = module.aws-eks.eks_cluster_name
 kubernetes_cluster_cert_data = module.aws-eks.eks_cluster_certificate_data
 kubernetes_cluster_endpoint = module.aws-eks.eks_cluster_endpoint
 eks_nodegroup_id = module.aws-eks.eks_cluster_nodegroup_id
}

174 | Chapter 7: Building a Microservices Infrastructure

Now, you can tag, commit, and push the Terraform file into your CI/CD pipeline just
like you’ve done before. For example, the following command will push a v1.2 tag
into the repository and kick off the pipeline process:

You’ll need to wait for the EKS build to complete before tagging
and committing these Argo CD sandbox changes. Otherwise, there
won’t be a Kubernetes cluster for Argo CD to be deployed to.

$ git add .
$ git commit -m "initial ArgoCD release"
$ git push origin
$ git tag -a v1.2 -m "ArgoCD build"
$ git push origin v1.2

When our pipeline is finished applying changes, you’ll have a GitOps server that will
help deploy microservices easier and more reliably. With that step completed, we’ve
finished defining and provisioning the sandbox environment. All that’s left is to test it
and see if it works.

Testing the Environment
Before we finish with our infrastructure implementation, it’s a good idea to run a test
and make sure that the environment has been provisioned as expected. We’ll do this
by verifying that we can log in to the Argo CD web console. That will prove that the
entire stack is running and operational. But in order to do that, we’ll need to set up
our kubectl CLI application.

Earlier in this chapter, when we were creating the Terraform code for our Kubernetes
module, we added a local file resource to create a kubeconfig file. Now, we need to
download that file so that we can connect to the EKS cluster using the kubectl
application.

To retrieve this file, navigate to your sandbox GitHub repository in your browser and
click on the Actions tab. You should see a list of builds with your latest run at the top
of the screen. When you select the build that you just performed, you should see an
artifact called “kubeconfig” that you can click and download.

If you’re having trouble finding the page to download the artifact,
try following the instructions in the GitHub documentation.

Implementing the Infrastructure | 175

https://oreil.ly/czDRi

GitHub will package the artifact as a ZIP file, so after downloading it you’ll need to
decompress the package. Inside the ZIP file you should find a file called kubeconfig.
To use it, you just need to set an environment variable called KUBECONFIG that points
to it. This will let the Kubernetes command-line application know where to find it.
For example, if the kubeconfig file is in your ~/Downloads directory, use the following
value:

$ export KUBECONFIG=~/Downloads/kubeconfig

If you like, you can copy the kubeconfig file to ~/.kube/config and
avoid having to set an environment variable. Just make sure you
aren’t overwriting a Kubernetes configuration you’re already using.

You can test that everything runs as expected by issuing the following command:

$ kubectl get svc

You should see something like the following in response:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 172.20.0.1 <none> 443/TCP 2h

This shows us that our network and EKS services were provisioned and we were able
to successfully connect to the cluster. To get this information, kubectl makes an API
call to the Kubernetes cluster we’ve just created. Getting this response back is proof
that our cluster is up and running. As a final test, we’ll check to make sure that Argo
CD has been installed in the cluster. Run the following command to verify that the
Argo CD pods are running:

$ kubectl get pods -n "argo"
NAME READY STATUS RESTARTS
msur-argocd-application-controller-5bddfb78fc-9jpzj 1/1 Running 0
msur-argocd-dex-server-84cd5fc9b9-bjzrm 1/1 Running 0
msur-argocd-redis-dc867dd9c-rpgww 1/1 Running 0
msur-argocd-repo-server-75474975cc-j7lws 1/1 Running 0
msur-argocd-server-5cc998b478-wvkrr 1/1 Running 0

A Kubernetes Pod represents a deployable unit, consisting of one
or more container images.

Later in the process, we’ll get a chance to use Argo CD, the Kubernetes cluster, and
the rest of the infrastructure we’ve designed. But now that we know our pipeline and
configurations work, it’s time to tear it all down. Don’t worry, though: with our code
written, it will be easy to create our environment again when we need it.

176 | Chapter 7: Building a Microservices Infrastructure

Cleaning Up the Infrastructure
We now have our infrastructure up and running. But, if you aren’t planning on using
it right away, it’s a good idea to clean things up so you don’t incur any costs to have it
running. In particular, the elastic IP addresses that we used for our network can be
costly if we leave them up. Since our environment is now completely defined in Ter‐
raform declarative files, we can re-create it in the same way whenever we need it, so
destroying the existing environment is a low-risk activity.

Terraform will automatically destroy resources in the correct order for us because it
has internally created a dependency graph. To destroy the sandbox environment, use
the following steps:

1. Navigate to the working directory of your sandbox environment code on your
machine. This is the same directory you used in “Installing Argo CD in the sand‐
box” on page 174.

2. Pull the latest version of the code from the repository:
env-sandbox$ git pull

Install the Terraform providers that our environment code uses (we’ll need these
so we can destroy the resources):

env-sandbox$ terraform init

3. After Terraform has finished downloading plug-ins, enter the following com‐
mand to destroy the sandbox environment:

env-sandbox$ terraform destroy

4. Terraform will display the resources that it will destroy. You’ll need to say yes to
continue to the removal process. It will probably take about five minutes to com‐
plete. When it’s done all of the AWS resources that we created will be gone.

We’re able to destroy these AWS resources from our local
machine because we have AWS access and secret keys stored in
a local credentials file. This shouldn’t be the case for a produc‐
tion or secured environment.

5. When it’s done, you’ll see a message that looks like this:
Destroy complete! Resources: 29 destroyed.

6. To verify that the EKS resources have been removed, you can run the following
AWS CLI command to list EKS clusters:

$ aws eks list-clusters

Implementing the Infrastructure | 177

You should get back a response indicating that there are no EKS clusters left in
your instance:

{
 "clusters": []
}

You can also run the following commands to double-check that the other billable
resources have been removed:

$ aws ec2 describe-vpcs --filters Name=cidr,Values=10.10.0.0/16
$ aws elbv2 describe-load-balancers

It’s not absolutely necessary to run these CLI commands if terra
form destroy returns successfully. We have included them so you
can double-check that they are really gone, so you will not be billed
unexpectedly.

If something has gone wrong, you’ll need to use the AWS console and remove the
resources manually. Consult the AWS documentation if you have trouble deleting
resources through the console.

Summary
We did a lot in this chapter. We created a Terraform module for our software-defined
network that spanned two availability zones in a single region. Next, we created a
module that instantiates an AWS EKS cluster for Kubernetes. We also implemented
an Argo CD GitOps server into the cluster using a Helm package. Finally, we imple‐
mented a sandbox environment as code that uses all of these modules in a declarative,
immutable way.

We went into a lot of detail with the Terraform code in this chapter. We did that so
you could get a feel for what it takes to define an environment using infrastructure as
code, immutability, and a CI/CD pipeline. We also wanted you to get hands on with
the Terraform module pattern and some of the design decisions you’ll need to make
for your infrastructure. As we learn more about the microservices we are deploying,
we may need additional infrastructure modules, but later in the book we’ll use pre‐
written, hosted code instead of walking through it all line by line.

In Chapter 8, we’ll get back to our example microservices and start the work of devel‐
oping them. When we’re done, we’ll be able to release them into the infrastructure
we’ve just designed.

178 | Chapter 7: Building a Microservices Infrastructure

https://docs.aws.amazon.com

CHAPTER 8

Developer Workspace

In Chapter 1 we discussed how a microservices architecture is typically most benefi‐
cial when it is applied to complex systems, and explained some of the underlying rea‐
sons supporting this observation.

In any reasonably complex system, the only sustainable way to ensure that well-
intentioned participants behave in a way that leads to positive and predictable collab‐
oration is to make the right behaviors the absolute easiest and most intuitive ones. If
doing the “right thing” is hard, over time most people will choose the path of least
resistance—which will steer them the wrong way. It is therefore essential to invest
early in setting up repeatable, predictable, standardized development processes that
avoid unnecessary complexity and create an intuitively comfortable structure for
your developers.

Investing in an exceptional developer experience that aims at a
consistent and intuitive approach for all developers to easily “do the
right thing” is one of the most underappreciated prerequisites of
facilitating a successful microservices culture.

This is why developing robust continuous integration and continuous deployment
(CI/CD) pipelines, for both your code as well as infrastructure, is a key enabler for
your microservices efforts. Because of the modular nature of the architecture and the
emphasis on independent deployability of each microservice, you will end up with
many pipelines. One thing you should certainly avoid is every team creating a pipe‐
line for their microservice in their own way, without any consistency with the code‐
bases of other microservices. Creating a new microservice should be a quick and
predictable process. Ideally, it should be a templated process in which the majority of
things are fully automated.

179

Robust CI/CD pipelines are crucial, but just as important is how the local develop‐
ment workspace is set up and what practices teams use for creating code. Most soft‐
ware engineers spend the majority of their time writing code on their laptops.
Tapping into this process early and ensuring that the right guidance and tooling are
provided at this stage can also have tremendous benefits later in the process. To be
clear, we do not mean you should dictate every aspect of a developer’s workflow. For
instance, if you ever try to standardize the code editor that members of any sizable
team must use, you will quickly make a lot of passionate enemies and achieve noth‐
ing. However, without becoming an overbearing tyrant we can and should declare
some fundamental principles the team must stick with.

In this chapter, we will start by introducing a set of 10 highly opinionated rules and
guidelines for a developer workspace setup that we have used with great success on
some of our past microservices projects. Next, we’ll walk you through setting up local
containerized environments on multiple platforms. We will show you how to kick-
start both vanilla Docker as well as a lightweight Kubernetes locally. Finally, we will
show you an advanced example of containerization: how to install a local Cassandra
database in the newly minted Docker setup.

By the end of this chapter, you should have a fully functioning, containerized infra‐
structure that’s ready for writing some microservices code. More importantly, you will
gain a solid understanding of the principles we use to set up projects for easy and
intuitive development. We will use these principles in Chapter 9 to properly lay out
our code, when we get into the development phase of our implementation.

Coding Standards and the Developer’s Setup
When trying to introduce any organizational standards, it’s useful to clarify and agree
on goals, so people can relate to the “why” of the process before they are presented
with the actual mechanics, the “how” and “what” of it.

We recommend following three high-level goals as a starting point:

Code can be set up in a short time frame
There are few things more frustrating than joining a new team and spending a
week or more on being able to set up an environment that allows you to start
coding in the new codebase. Whether you are joining a new company, or just
jumping in to give a helping hand to a team next to you in your current job, there
are few more certain ways of killing any excitement and momentum than getting
stuck on “How do I even run it?” Alas, this happens way too often. Our goal is
that a new developer unfamiliar to the code should be able to set up a microser‐
vice, or a collection of microservices forming a logical subsystem, in under an
hour!

180 | Chapter 8: Developer Workspace

New microservices can be created quickly, easily, and predictably
There is a lot of boilerplate related to jump-starting a new service. You need
proper code templates for each supported tech stack, such as Java, Go, Node,
Python, etc.; an automated testing and data management setup; dependencies
such as data storage configured; and a skeleton of a pipeline bootstrapped; to
name just a few. The worst-case scenario would be for a developer starting a new
microservice to have to figure out all of these aspects from scratch, every single
time.

Actually, an even worse scenario would be different developers varying these
aspects unnecessarily for similar microservices. When you have a large codebase,
one of the most impactful things you can do to avoid chaos is to establish consis‐
tency and familiarity. Providing well-thought-out templates for each of the stan‐
dard tech stacks is a powerful way of achieving such consistency and high quality,
while also increasing development speed.

Quality control must be automated
Enforcement of a company’s software development quality standards must be
automated and not left to human error.

Based on these goals, we can derive a set of fundamental guidelines for a developer
workspace setup.

10 Workspace Guidelines for a Superior Developer Experience
The following guidelines are fairly opinionated and are based on the experience of the
authors of this book. We recommend that you use these guidelines as a starting point.

After you have had experience building services with our guidelines, we expect that
you may consider modifying some of them to better fit your individual needs and
experiences:

1. Make Docker the only dependency.
The “works for me” syndrome plagues many developer teams. It’s essential that
anybody be able to easily create the same environment. As such, elaborate, man‐
ual setups should be banned.
We live in the era of containerization and teams should leverage it. To set up
code, we should only expect to see the Docker runtime and Docker Compose on
the host machine—nothing else! It should not matter if the machine is running
Windows, macOS, or Linux and what libraries are present. Such assumptions are
exactly what lead to broken setups. For instance, there should be no set expecta‐
tions about a specific version of Python, Go, Java, etc., being present on the
developer’s machine. Setup instructions must be automated, not codified in
READ.ME files.

Coding Standards and the Developer’s Setup | 181

2. Remote or local should not matter.
Setup should work regardless of whether a developer runs code on their own lap‐
top or on a cloud server via an IDE’s remote development/SFTP plug-ins. This
should hold true by default and if there is a case in which this cannot be done, a
cause for an exception must be justified and documented.

3. Ensure a heterogeneous-ready workspace.
A good setup should accommodate multiple microservices written in multiple
programming languages, using multiple data storage systems. A microservices
architecture assumes the ability to combine heterogeneous microservices; it
doesn’t mean just putting one codebase in one container or standardizing on one
technology stack. Too often we see “[some-language] microservices framework”
in marketing materials. Well, guess what—if 100% of your microservices are
written in Java, there is something wrong with the setup, and no, you don’t get to
chuckle if all your services are written in a “cool” language like Go.
Now, for the record: this does not in any way mean that in a well-managed
microservices environment you should see every team picking whatever language
and databases they feel like and going for it. Quite the opposite: when uncertain,
definitely try to exercise caution and go with two, at most three, stacks. The point
here is that you should be able to introduce a new stack if you genuinely needed
it, so in your example setup, you have to show that you actually can, that is, by
implementing more than one stack.

The Rule of Twos

We have found proactively practicing heterogeneity in a
microservices setup to be a great approach. For any critical
component in your system, make sure that you are using at
least two alternatives in production at the same time—even
when you only need one. You should also make sure that you
have an infrastructure to support the two alternatives as easily
as you would use a single one. We call this approach the “Rule
of Twos”.

Say that most of your APIs are written in Node.js—a truly wonderful, I/O-
optimized stack for writing APIs. See if some of them could be implemented in
Go, or Java, or Rust, etc., maybe because they do something more CPU-bound,
which Node is not great at. While you practice heterogeneity, however, do make
sure that you limit the selection of your programming languages and database
systems across the entire application to two or three. Otherwise, you can run a
high risk of confusing your teams with too much choice and creating serious
maintenance overheads.

182 | Chapter 8: Developer Workspace

https://oreil.ly/_vYfU
https://oreil.ly/_vYfU

4. Running a single microservice and/or a subsystem of several ones should be equally
easy.
Let’s say an airlines reservation system is implemented as three microservices. A
developer should be able to check out any particular microservice individually
and work on it, or check out an entire subsystem of interacting microservices
(the reservation system implementation) and work on that. Both of these tasks
should be very easy.

5. Run databases locally, if possible.
For the sake of isolation, for any database system’s local, Docker-ized alternatives
should be provided, and it should be trivial to switch over to cloud (e.g., AWS)
services via a configuration change. As an example, MinIO can act locally as a
drop-in replacement for S3. Many AWS service alternatives can be installed via
this GitHub site.

6. Implement containerization guidelines.
Not all containerization approaches are equal. Anybody can haphazardly stick
code into a Docker container, but making a containerized coding environment
developer-friendly takes more effort. Following are some principles that we have
found essential:
a. Even though the code runtime is containerized, developers must be able to

edit code on a host machine (e.g., their laptop, an EC2 dev server), with any
code editor. However, during execution a full run/test/debug should be exe‐
cuted in a container.

b. Since Docker Compose can generally do anything a Dockerfile can, they can
easily be confused by developers. As such, it is important to establish the dif‐
ference between the two. We recommend the following formula:
Use a Dockerfile for building a container image, and Docker Compose for
running things locally, including complex integrations. An image built with a
Dockerfile should be directly runnable on Kubernetes, AWS ECR, Swarm, or
any other production-grade runtime. Please note that just because it can be
doesn’t mean the local/dev image will always necessarily be the same as the
one running in production. Teams do often optimize the former for usability
and the latter for security and performance. A good example of this approach
is the usage of multistage builds.

c. Multistage builds must be utilized in Dockerfiles to accommodate usage of
slim images in production and usage of more full-featured images for local
development.

d. Developer user experience is critical. Implementing hot-reloading of the code
and/or the ability to connect a debugger out of the box is an important
feature.

Coding Standards and the Developer’s Setup | 183

https://min.io
https://oreil.ly/Lyasd
https://oreil.ly/qI1Dp

7. Establish rules for painless database migrations.
It is extremely important to manage databases and the data in them in a way that
supports and enhances team collaboration. Changes to data schemas must be
codified and applied without any manual steps. The following list of principles
facilitate painless data management in a microservices environment:
a. Any and all changes to a database schema must be codified in a series of

“database migration” scripts. Migration files should be named and ordered by
date.

b. Database migrations should support both schema changes as well as sample
data insertion.

c. Running database migrations should be part of the project launch (via Make
start, see the next section) and must be enforced.

d. Running database migrations must be automated and should be part of any
build (integration, feature branch builds for PR, etc.).

e. It should be possible to indicate which migrations run on which environments
(or which ones can be skipped), so that migrations that deal with sample data
creation can be skipped in production, for example.

f. These rules apply to all data storage systems: relational, columnar, NoSQL,
and so forth.

g. Some examples:
a. Flyway hosts this introduction to database migrations
b. See this blog post by Daniel Miranda et al. about database migrations for

Cassandra
c. Check out this example of using Node’s db-migrate-sql for a MySQL

database
8. Determine a pragmatic automated testing practice.

Automated testing is a complex subject. We have certainly seen both extremes of
the spectrum: some teams giving up entirely on automated testing, and others
being overzealous on test-driven development to the extent of it becoming a
problem. We advocate for a measured, pragmatic approach to automated testing,
one that balances developer experience with quality metrics and accommodates
the differing personal preferences of various developers on the team.
a. Test-first, test-as-you-code, or test-after-code should all be acceptable practi‐

ces as long as all code is covered with a reasonable amount of meaningful tests
before it is merged with the main branch.

b. Teams should use a testing approach and frameworks that is idiomatic for the
platform/stack in which code is being developed (e.g., JUnit for Java). Codeba‐

184 | Chapter 8: Developer Workspace

https://flywaydb.org
https://oreil.ly/Vg41z
https://oreil.ly/EqTxj

ses of the same stack (e.g., Go, Java, etc.) should use a uniform approach and
various microservices in the same language should not be doing different
things based on who wrote them and when.

c. Using external tools, especially for acceptance or performance testing, is fine
with proper justification, given an important caveat: these tools (e.g., Cucum‐
ber) must be fully integrated in the code/repository of the service itself and
using and running them must be as easy as a native solution. An average
developer of the service should not need to set anything up to get things going
and should be able to easily run tests with a command like make test-all.

d. Special attention and care should be given to automated tests that span the
boundaries of individual microservices. They will have to be applied either at
a higher level (e.g., an API that invokes microservices, or a UI), or in some
cases, a dedicated repository may need to be set up to house testing orchestra‐
tion and automation for such tests.

e. Code linting/static analysis tooling should be set up and a consistent configu‐
ration for the linter must be adapted for the organization’s style.

9. Branching and merging.
Virtually everyone these days uses some form of code version control system.
While the basics of version control–driven development are well-understood, it’s
worth reminding ourselves of some core principles of good branching hygiene
that all team members should observe for a happy collaboration:
a. All development should happen on feature and bug branches.
b. Merging of a branch to the main branch should not be allowed without all

tests (including integration tests in a temporary integration cluster spun up
for the branch) passing on that branch.

c. The status of the test runs (after each commit/push) must be readily visible for
code reviewers during pull requests.

d. Linting/static analysis errors should prevent code from being pushed to a
branch, and/or merged into the main branch.

10. Common targets should be codified in a makefile.
Every code repository (and generally there should be one repository per micro‐
service) should have a makefile that makes it easy for anybody to work with the
code, regardless of the programming language stack used. This makefile should
have standard targets, so that no matter what codebase, in whatever language the
developer clones, they should know that by running make run they can bring that
codebase up, and by running make test they can run automated tests.
We recommend defining and implementing the following standard targets for
your microservice makefiles:

Coding Standards and the Developer’s Setup | 185

• start: Run the code.
• stop: Stop the code.
• build: Build the code (typically a container image).
• clean: Clean all caches and run from scratch.
• add-module

• remove-module

• dependencies: Ensure all modules declared in dependency management are
installed.

• test: Run all tests and produce a coverage report.
• tests-unit: Run only unit tests.
• tests-at: Run only acceptance tests.
• lint: Run a linter to ensure conformance of coding style with defined

standards.
• migrate: Run database migrations.
• add-migration: Create a new database migration.
• logs: Show logs (from within the container).
• exec: Execute a custom command inside the code’s container.

Check out example microservices in Go and Node that follow the aforementioned
pattern, and a sample setup of a multimicroservice workspace that follows the recom‐
mendations defined on this GitHub site. For your convenience, we have also pub‐
lished this template on Github in Markdown format, so you can easily link and refer
to it from your projects if you need to.

Let’s review what we have learned so far. First, we recognized that the developer expe‐
rience is paramount for building happy, highly productive, and autonomous teams.
Next, we identified three core goals for achieving a superior developer experience.
Last, but not least, we delved into 10 principles that, in our experience, fulfill the
promises of these goals. The result is a repeatable blueprint for developing highly
user-friendly developer workspaces for teams, regardless of which technology stack
or specific tools end up being chosen. This is a solid foundation that will help you
delight your teams and create an early team bond when you start building microser‐
vices organization or when you reorganize your existing teams into a microservices
structure.

One of the principles that allows us to create repeatable, reliable, and comfortable
development setups is code containerization with Docker. In the following section,

186 | Chapter 8: Developer Workspace

https://oreil.ly/SY_ph
https://oreil.ly/IMfBj
https://oreil.ly/rJyPX
https://oreil.ly/kd2VT
https://oreil.ly/kd2VT

we will dive into how to set up a solid containerized environment on major platforms,
such as Linux, macOS, and Windows.

Setting Up a Containerized Environment Locally
Earlier in this chapter, we mentioned that the presence of Docker (and possibly of
make for running makefiles) should be the only expectation for a developer environ‐
ment. Everything else should be easily installable off of that. Let’s see how we can get
a complete Docker toolset, or even single-node Kubernetes, if needed, on various
platforms.

Installing Docker on a Linux machine is fairly straightforward, but what are some
ways of getting it on your macOS or Windows machine?

When Docker4Mac and Docker4Windows came out they were truly revolutionary:
bringing the cutting-edge power of Docker to the everyday desktop environments
most people use. Eventually they started supporting Kubernetes as well, and it looked
like the world could not be more perfect for a backend web developer, especially
those moving into microservices.

The easiest way to get Docker and Kubernetes on your macOS or Windows is still
Docker4Mac and Docker4Windows. There are, however, other choices that may be
appealing to you.

An unfortunate reality is that the day-to-day experience of using Docker4Mac and
Docker4Windows can be quite hit-and-miss. Even on fairly modern, powerful hard‐
ware we have experienced high CPU usage and battery drain. For some it may also be
a problem that Docker4Mac only allows you to install one Docker instance and one
Kubernetes. If you experiment a lot, you may want to have more freedom to break
things.

Thankfully, there are alternatives. The obvious one is to install your own VMs with
VirtualBox or its commercial alternatives. My experience, however, has been that
these are even heavier than Docker4Mac/Win packages.

One of the more interesting alternatives that I have recently started experimenting
with, however, is Multipass, a slick tool from Canonical, the creators of Ubuntu, that
allows you to very quickly launch Ubuntu-based Docker hosts on your macOS or
Windows machine (or even Linux). Multipass supports a number of underlying VMs,
but most importantly it defaults to HyperKit on macOS, and Hyper-V on Windows
(Windows Pro required!), which in our experience are more lightweight.

Setting Up a Containerized Environment Locally | 187

https://oreil.ly/2jdq6
https://oreil.ly/gXDWu
https://oreil.ly/oLSzW
https://multipass.run

Installing Multipass
Multipass installers for various platforms can be downloaded from the website. Once
you have it installed, check out the following interesting things you can do on macOS
or Windows Subshell for Linux.

To launch a new Ubuntu environment:

→ multipass launch -n docker
Launched: docker
→ multipass list
Name State IPv4 Image
docker Running 192.168.64.3 Ubuntu 20.04 LTS

By default, Multipass allocates 1 GB RAM, 5 GB disk, and 1 CPU core to the new
machine. These may not be sufficient. In our experience, if you are using something
like Node.js or Python with MySQL, 1 GB may be OK, but if you start using heavy
Java applications with Java-based database systems such as Cassandra, you’ll need
more memory. We can override the defaults at launch:

→ multipass launch -m 4G -n dubuntu
Launched: dubuntu
→ multipass list
Name State IPv4 Image
docker Running 192.168.64.3 Ubuntu 20.04 LTS
dubuntu Running 192.168.64.4 Ubuntu 20.04 LTS

→ multipass exec dubuntu -- bash

ubuntu@dubuntu:~$ free -m
 total used free shared buff/cache available
Mem: 3945 79 3640 0 225 3653

While Multipass does allow you to indicate more than one CPU
with, say, -c 2, for us this resulted in broken containers on macOS.
We assume it may have something to do with limitations on the
Hypervisor implementation, but proceed with caution. Increasing
memory has been no problem.

You could also increase the memory of an existing container without reinstalling
everything you already have set up. You have to be careful, since this process can be
fragile, but generally speaking, you need to stop a Multipass process via launchctl
(otherwise it will overwrite your changes) and edit the configuration JSON, then
relaunch the Multipass process:

→ sudo launchctl unload /Library/LaunchDaemons/com.canonical.multipassd.plist
→ sudo vi "/var/root/Library/Application
 Support/multipassd/multipassd-vm-instances.json"
→ sudo launchctl load /Library/LaunchDaemons/com.canonical.multipassd.plist

188 | Chapter 8: Developer Workspace

https://multipass.run

The JSON file you will be editing (multipassd-vm-instances.json) should look some‐
thing like this:

{
 "dubuntu": {
 "deleted": false,
 "disk_space": "5368709120",
 "mac_addr": "52:54:00:27:53:b4",
 "mem_size": "4294967296",
 "metadata": {
 },
 "mounts": [
],
 "num_cores": 1,
 "ssh_username": "ubuntu",
 "state": 4
 }
}

As you might guess, mem_size is what you want to override (in bytes). To be on the
safer side, we recommend indicating a number that is properly divisible by 1 GB.
Since 1 GB is 1024 * 1024 * 1024 = 1,073,741,824 bytes, you should indicate a number
that is a multiple of 1,073,741,824; e.g., for 8 GB enter 1073741824 * 8 =

8589934592.

Entering the Container and Mapping Folders
You can launch any command within your container with a command like multipass
exec <containername> -- <command launched inside>. For instance, to see free
memory in the container or to launch a bash shell, use the following:

→ multipass exec dubuntu -- free -m
 total used free shared buff/cache available
Mem: 3945 77 3640 0 226 3654
Swap: 0 0 0

→ multipass exec dubuntu -- bash

ubuntu@dubuntu:~$ ls -al
total 36
drwxr-xr-x 5 ubuntu ubuntu 4096 .
drwxr-xr-x 3 root root 4096 ..
-rw------- 1 ubuntu ubuntu 107 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 .bashrc
drwx------ 2 ubuntu ubuntu 4096 .cache
drwx------ 3 ubuntu ubuntu 4096 .gnupg
-rw-r--r-- 1 ubuntu ubuntu 807 .profile
drwx------ 2 ubuntu ubuntu 4096 .ssh
ubuntu@dubuntu:~$ exit

Setting Up a Containerized Environment Locally | 189

exit
→

Launching a shell of the primary container can be made easier by indicating which of
your containers you want to set as primary. Then you can just type multipass shell:

→ multipass set client.primary-name=dubuntu
→ multipass shell

ubuntu@dubuntu:~$

To map your home folder (on macOS) to a folder in the container, you can run:

→ multipass mount $HOME dubuntu:/home/ubuntu/mac
Enabling support for mounting -

→ multipass exec dubuntu -- ls -ald mac
drwxr-xr-x 1 ubuntu ubuntu 3936 mac
→ multipass info dubuntu
Name: dubuntu
State: Running
IPv4: 192.168.64.4
Release: Ubuntu 18.04.4 LTS
Image hash: 2f6bc5e7d9ac (Ubuntu 18.04 LTS)
Load: 0.00 0.08 0.07
Disk usage: 1.1G out of 4.7G
Memory usage: 81.9M out of 3.9G
Mounts: /Users/irakli => /home/ubuntu/mac
→ multipass exec dubuntu -- ls -al mac
total 240120
drwxr-xr-x 1 ubuntu ubuntu 3936 .
drwxr-xr-x 6 ubuntu ubuntu 4096 ..
-rw-r--r-- 1 ubuntu ubuntu 10244 .DS_Store
drwx------ 1 ubuntu ubuntu 64 .Trash
drwxr-xr-x 1 ubuntu ubuntu 512 .atom
drwxr-xr-x 1 ubuntu ubuntu 128 .aws

Now that we have a functioning virtualized Linux via Multipass, installing Docker (or
even local Kubernetes) becomes quite easy. Let’s see in the next section how we would
go about it.

Installing Docker
You can install Docker inside a container by following the usual Docker installation
process:

→ multipass shell

ubuntu@dubuntu:~$ sudo apt-get update && sudo apt-get upgrade -y
ubuntu@dubuntu:~$ sudo apt-get install build-essential -y

Sanity Check

190 | Chapter 8: Developer Workspace

ubuntu@dubuntu:~$ sudo apt-get remove docker \
 docker-ce-cli docker-engine docker.io containerd runc

Install Docker and Docker Compose
ubuntu@dubuntu:~$ sudo snap install docker
ubuntu@dubuntu:~$ echo 'export PATH=/snap/bin:$PATH' >> ~/.bashrc
ubuntu@dubuntu:~$ source ~/.bashrc

After completing these steps, you should have a working Docker installation, but it
can only be run as root (via sudo), which is both insecure as well as inconvenient. To
fix it you should grant the default, nonprivileged user (ubuntu for this installation)
group access to Docker, as shown in the following code. Note that you must log out of
Ubuntu and log back in for this change to take effect:

ubuntu@dubuntu:~$ sudo groupadd docker
ubuntu@dubuntu:~$ sudo usermod -aG docker $USER
ubuntu@dubuntu:~$ exit
logout
→ multipass restart
→ multipass shell

ubuntu@dubuntu:~$ docker ps
CONTAINER ID STATUS IMAGE PORTS NAMES

ubuntu@dubuntu:~$ docker version
Client:
 Version: 19.03.11
 API version: 1.40

ubuntu@dubuntu:~$ $ docker-compose --version
docker-compose version 1.25.5, build unknown

To test our new Docker setup, let’s now use it for bringing up a MySQL database with
Docker Compose.

Testing Docker
First, let’s create a mysql-stack.yml file with instructions for Docker Compose:

version: '3.1'

services:
 db:
 image: mysql
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: rootPass
 ports:
 - 33060:3306

We should mention here that, by default, this file would be called docker-compose.yml,
but we can use a custom name as long as we indicate the name we used with a special

Installing Docker | 191

-f flag when we try to execute Docker Compose. Let’s now launch MySQL in a
Docker container with the following:

ubuntu@dubuntu:~$ docker-compose -f mysql-stack.yml up -d

ubuntu@dubuntu:~$ docker ps
CONTAINER ID STATUS IMAGE PORTS
e08f6f072c89 Up 3 seconds mysql 33060/tcp, 0.0.0.0:33060->3306/tcp

At this point you should have a working Docker and Docker Compose setup. In the
next section, we will show you how to use these tools to easily install advanced com‐
ponents, such as a local Cassandra database, should you need to do so.

Advanced Local Docker Usage: Installing Cassandra
We have already discussed how to use Docker Compose for running a containerized
MySQL database, but let’s look now at a somewhat more complex example of running
a Cassandra database in a container. Considering the popularity and versatility of
Cassandra, it is probably something you will have to deal with at some point in your
cloud native microservices development journey.

Cassandra requires more than the default 1 GB RAM, so make sure
your Multipass container has more memory (e.g., 6–8 GB).

First, create a docker-compose.yml file with the following content anywhere in the
container:

version: '3'

services:
 cassandra-seed:
 container_name: cassandra-seed
 image: cassandra:3.11
 ports:
 - "9042:9042" # Native protocol clients
 # - "7199:7199" # JMX
 # - "9160:9160" # Thrift clients
 volumes:
 - local_cassandra_data_seed:/var/lib/cassandra

volumes:
 local_cassandra_data_seed:

Then run it and check that it worked:

ubuntu@dubuntu:~/cassandra$ docker-compose up -d
Creating network "cassandra_default" with the default driver

192 | Chapter 8: Developer Workspace

Creating cassandra-seed ... done
ubuntu@dubuntu:~/cassandra$ docker-compose ps
Name Command State Ports

cassandra-seed docker-entrypoint.sh cassa ... Up 7000/tcp, 7001/tcp

ubuntu@dubuntu:~/cassandra$ docker exec -it cassandra-seed cqlsh
Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 3.11.6 | CQL spec 3.4.4 | Native protocol v4]
Use HELP for help.
cqlsh> DESCRIBE keyspaces;

The last command, DESCRIBE keyspaces, will show all of the existing keyspaces in
the newly minted Cassandra installation. At this point, you should have a fully work‐
ing, local Cassandra setup. Next we will show you how to get a local Kubernetes envi‐
ronment installed when you need one.

Installing Kubernetes
For most cases, Docker Compose provides ample capabilities in orchestrating various
components and microservices that make up your overall application. For more
advanced cases, Kubernetes is a popular solution, with a much wider spectrum of
functionality. It does, however, come with a proportionally higher level of complexity.

Avoid Using Kubernetes Locally Unless You Must

Generally, we do not recommend using local Kubernetes for every‐
day coding. Docker and Docker Compose can complete most
containerization-related tasks more easily and they have more
straightforward tooling for building container images. Kubernetes
excels in orchestrating a runtime fleet of containers, which is rarely
needed in a Dev environment, but which is crucial for environ‐
ments such as production, preproduction, staging, performance
testing, etc. However, in some circumstances you may want to use
Kubernetes locally, especially for targeted testing.

You cannot simply install the official Kubernetes distribution on a single machine.
Kubernetes is designed to be deployed on a cluster of servers. However, there are
multiple nice side projects that bypass the requirement and get a functioning Kuber‐
netes setup on a single machine. The default one, created by the same community
that maintains Kubernetes, is Minikube. It is not the only solution, however. Two of
our other favorites, based on simplicity and reliability, are Rancher’s k3s and Canoni‐
cal’s MicroK8s.

To install Kubernetes locally with k3s, use the following:

Installing Kubernetes | 193

https://oreil.ly/O9SON
https://k3s.io
https://microk8s.io

ubuntu@dubuntu:~$ curl -sfL https://get.k3s.io | sh -
[INFO] Finding release for channel stable
[INFO] Using v1.17.4+k3s1 as release
[INFO] Downloading hash \
https://github.com/rancher/k3s/releases/download/v1.17.4+k3s1/...
[INFO] Downloading binary \
https://github.com/rancher/k3s/releases/download/v1.17.4+k3s1/k3s
[INFO] Verifying binary download
[INFO] Installing k3s to /usr/local/bin/k3s
...

ubuntu@dubuntu:~$ sudo k3s kubectl get nodes
NAME STATUS ROLES AGE VERSION
dubuntu Ready master 104s v1.17.4+k3s1

With MicroK8s, the steps are similar but we are also adding a current user to a spe‐
cific group, and will need to log in again just like we did with Docker:

ubuntu@dubuntu:~$ sudo snap install microk8s --classic
microk8s v1.18.1 from Canonical✓ installed
ubuntu@dubuntu:~$ sudo usermod -a -G microk8s $USER
ubuntu@dubuntu:~$ sudo chown -f -R $USER ~/.kube
ubuntu@dubuntu:~$ exit
logout
→ multipass shell

ubuntu@dubuntu:~$ microk8s.kubectl get services --all-namespaces
NAMESPACE NAME TYPE CLUSTER-IP PORT(S) AGE
default kubernetes ClusterIP 10.152.183.1 443/TCP 3m22s

And that’s pretty much all you need to have a functioning Kubernetes setup on a
development machine.

As we mentioned in the beginning of this section, an out-of-the box Kubernetes envi‐
ronment does not have tooling to build container images. It requires supplying a URI
of a pre-built image from a registry. This shortcoming makes Kubernetes a cumber‐
some choice for active development, since there is no obvious solution for facilitating
a streamlined build-run-test cycle. Kubernetes is really more of a tool for sophistica‐
ted orchestration in nondevelopment (QA, staging, preprod, prod, etc.) environ‐
ments. That said, several years after Kubernetes was released, an open source toolset
called Skaffold was developed to make building container images pluggable into
Kubernetes life cycles.

We will not use local Kubernetes in most coding examples in this book, but if you
would like to take a look at a sample open source project implementing such a setup,
check out the Skaffold microservices repository that we created for demonstration
purposes.

194 | Chapter 8: Developer Workspace

https://skaffold.dev
https://oreil.ly/WHcqP

Summary
In this chapter, we outlined goals for designing a developer-friendly workspace to
ensure that the space in which most developers spend the majority of their time
(except maybe for meetings) is comfortable, reliable, and effective. Based on those
goals, we introduced 10 principles for building efficient developer workspaces and
demonstrated some of the steps for laying the containerized foundation for a variety
of major operating systems: macOS, Windows, and Ubuntu Linux.

These concepts and skills will allow you to create delightful collaborative environ‐
ments for your development teams, make on-boarding of new developers a pleasant
experience, and facilitate good coding practices. In Chapter 9, we will come back to
the goals and principles outlined here as we demonstrate the finer details of how we
put together the code and the underlying project.

Summary | 195

CHAPTER 9

Developing Microservices

Let’s put to work some of the techniques we’ve been discussing and implement a sam‐
ple multimicroservices project. The implementation of the microservices in this sam‐
ple project will be greatly simplified. We will show just enough code to suffice for
demonstration purposes, but the steps and approaches we’ll discuss can be directly
applied on much larger, real projects.

We will start by identifying fitting candidates for microservices based on a bounded
contexts analysis using Event Storming, similar to the process described in Chapter 4.
Next we’ll go through the seven steps of the SEED(S) design methodology that we
discussed in Chapter 3, culminating in writing the code for both of the sample micro‐
services. In the implementation of these services we will employ the data-modeling
guidance from Chapter 5. And last, but not least, we will show how a user-friendly
development environment for the microservices is properly set up and configured,
applying many of the recommendations from Chapter 8, including the creation of an
umbrella project—a way to execute multiple microservices together in a developer
workspace.

Designing Microservice Endpoints
Let’s assume that an Event Storming session that you conducted for a flight manage‐
ment software product identified two major bounded contexts:

• Flights management
• Reservations management

As we discussed in Chapter 4, in the initial stages it pays off to design microservices
in a coarse-grained way. Specifically, we often align them with bounded contexts; i.e.,
our first two microservices can be ms-flights and ms-reservations!

197

Now that we have the target microservices identified, we need to use the SEED(S)
design process (introduced in Chapter 3) for them. According to the first step of the
SEED(S) methodology, we need to identify various actors. For our purposes, we’ll
assume the following actors:

• The customer trying to book the flight
• The airline’s consumer app (web, mobile, etc.)
• The web APIs that the app interacts with (In Chapter 3, we mentioned that some

call these “backends for frontends” or BFF APIs.)
• The flights management microservice: ms-flights
• The reservations management microservice: ms-reservations

Let’s look at some sample JTBDs that our product team may have collected from cus‐
tomer interviews and business analysis research.

1. When a customer interacts with the UI, the app needs to render a seating chart
showing occupied and available seats, so the customer can choose a seat.

2. When a customer is finalizing a booking, the web app needs to reserve a seat for
the customer, so the app can avoid accidental seat reservation conflicts.

Recall from Chapter 3 that we recommended BFF APIs be a thin layer with no busi‐
ness logic implementation. They mostly just orchestrate microservices. So there are
usually jobs for which a BFF API needs microservices. The following list of jobs, the
more technical JTBDs, describes the needs between the BFF APIs and microservices:

1. When the API is asked to provide a seating chart, the API needs ms-flights to pro‐
vide a seating setup of the flight, so the API can retrieve availabilities and render
the final result.

2. When the API needs to render a seating chart, the API needs ms-reservations to
provide a list of already reserved seats so the API can add that data to the seating
setup and return the seating chart.

3. When the API is asked to reserve a seat, the API needs ms-reservations to fulfill
the reservation, so the API can reserve the seat.

Key Decision: Avoid Microservices Calling Each Other Directly
Note that we don’t let ms-flights call ms-reservations to assemble the seating chart,
and instead have the BFF API handle the interaction. This refers back to the recom‐
mendation in Chapter 3 that direct microservice-to-microservice calls be avoided.

198 | Chapter 9: Developing Microservices

Following the SEED(S) methodology, next we describe the interactions represented
by various jobs, using UML sequence diagrams in PlantUML format:

@startuml

actor Customer as cust
participant "Web App" as app
participant "BFF API" as api
participant "ms-flights" as msf
participant "ms-reservations" as msr

cust -[#blue]-> app ++: "Flight Seats Page"
app -[#blue]-> api ++ : flight.getSeatingSituation()
api -[#blue]-> api: auth
api -> msf ++ : getFlightId()
msf --> api: flight_id
api -> msf: getFlightSeating()
return []flightSeating
api -> msr ++ : getReservedSeats()
return []reservedSeats
return []SeatingSituation
return "Seats Selection Page"
|||
cust -[#blue]->app ++: "Choose a seat & checkout"
app-[#blue]->app: "checkout workflow"
app-[#blue]->api ++: "book the seat"
api -[#blue]->api: auth
api->msr ++: "reserveSeat()"
return "success"
return "success"
return "Success Page"
@enduml

This can be rendered (e.g., using LiveUML) into the UML diagram shown in
Figure 9-1.

As you can clearly see from this diagram, the first JTBD is to present a customer with
a “seats on the flight” page. To fulfill this job, an app (or a website) will need to call a
frontend (BFF) API that returns the seating “situation”: a list of seats with indicators
for which ones are occupied or vacant. The API will first authenticate the call to
ensure the app is authorized to ask such questions. If the auth passes, it will first try
to get a flight_id from the ms-flights microservice. This is necessary because cus‐
tomers usually just enter the nonunique flight number (identifying a route more than
a specific flight on a specific date) and flight date. With the unique flight_id
returned, the API will then get the list of seats from ms-flights. To make sure we can
show occupied seats, it will separately query ms-reservations for existing reservations
on the flight.

Designing Microservice Endpoints | 199

http://liveuml.com

Figure 9-1. Sequence diagram representing interactions of various JTBDs

Of particular importance here is how we’re practicing the principle described in
Chapter 3 regarding microservices not calling each other directly and instead being
orchestrated by a thin API layer. This is entirely why ms-flights is not querying the
list of reserved seats from ms-reservations directly. Once the API collects all of the
required information it can return the rich data to the app/website so the latter can
render the desired screen for the customer.

In the second part of Figure 9-1, we describe the second JTBD for the customer: once
they see the current seating situation, they want to pick a specific (available) seat and
reserve it. To fulfill this task, API will again need to auth and then call a microservice,
ms-reservations, returning the status, success, or failure to the app, based on the
result of the booking attempt. This allows the app to let the customer know whether
their request could be completed or not.

200 | Chapter 9: Developing Microservices

1 For demonstration purposes we are using the Seat Map object structure from Sabre’s Seat Map RESTful API, a
gold standard of the industry.

Once we have the JTBDs, and understand the interactions, we can translate them into
queries and actions. We will do this for both ms-flights and ms-reservations. In
Chapter 3, we explained that you should also design actions and queries for the BFF
API, not just microservices, but we will leave that task as an exercise to the reader.

Flights Microservice
To compile actions and queries for ms-flights:

Get flight details
• Input: flight_no, departure_local_date_time (ISO8601 format and in the local

time zone)
• Response: A unique flight_id identifying a specific flight on a specific date. In

practice, this endpoint will very likely return other flight-related fields, but those
are irrelevant for our context, so we are skipping over them.

Get flight seating (the diagram of seats on a flight)
• Input: flight_id
• Response: Seat Map object in JSON format1

Reservations Microservice
To compile actions and queries for ms-reservations:

Query already reserved seats on a flight
• Input: flight_id
• Response: A list of already-taken seat numbers, each seat number in a format like

“2A”

Reserve a seat on a flight
• Input: flight_id, customer_id, seat_num
• Expected outcome: A seat is reserved and unavailable to others, or an error fired if

the seat was unavailable
• Response: Success (200 Success) or failure (403 Forbidden)

As discussed in Chapter 3, the beauty of writing down actions and queries is that they
bring us much closer to being able to create the technical specifications of the services
than when jobs are presented in their business-oriented, jobs (JTBD) format.

Designing Microservice Endpoints | 201

https://oreil.ly/oQA29

Now that we have the actions and queries for our microservices, we can proceed with
describing the microservices we intend to build in a standard format. In our case, we
will build RESTful microservices and describe them with an OAS. In the next section,
we’ll see what this specification for our two microservices could look like.

Designing an OpenAPI Specification
Based on the query and commands specification we just designed, translation into an
OpenAPI Specification (OAS) becomes fairly straightforward. The top part of the
specification is usually some meta information:

 openapi: 3.0.0
 info:
 title: Flights Management Microservice API
 description: |
 API Spec for Flight Management System
 version: 1.0.1
 servers:
 - url: http://api.example.com/v1
 description: Production Server

For the /flights endpoint you will want to provide flight_no and depar
ture_date_time input parameters in the query string of the request. The schema
should also describe the response JSON’s structure, containing flight_id, the origin
airport’s identifier code, the destination airport’s code, and the HTTP code (200) for a
successful response. This part in OpenAPI format may look like:

 paths:
 /flights:
 get:
 summary: Look Up Flight Details with Flight No and Departure Date
 description: |
 Look up flight details, such as: the unique flight_id used by the
 rest of the Flights management endpoints, flight departure and
 arrival airports.

 Example request:
          ```
            GET http://api.example.com/v1/flights?
                flight_no=AA2532&departure_date_time=2020-05-17T13:20
          ```
 parameters:
 - name: flight_no
 in: query
 required: true
 description: Flight Number.
 schema:
 type : string
 example: AA2532
 - name: departure_date_time

202 | Chapter 9: Developing Microservices

 in: query
 required: true
 description: Date and time (in ISO8601)
 schema:
 type : string
 example: 2020-05-17T13:20

 responses:
 '200': # success response
 description: Successful Response
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 flight_id:
 type: string
 example: "edcc03a4-7f4e-40d1-898d-bf84a266f1b9"
 origin_code:
 type: string
 example: "LAX"
 destination_code:
 type: string
 example: "DCA"

 example:
 flight_id: "edcc03a4-7f4e-40d1-898d-bf84a266f1b9"
 origin_code: "LAX"

When you design the specification for the /flights/{flight_no}/seat_map end‐
point, it can take the flight_no input parameter in the URL path itself, instead of in
the query part of the URL. In the response object, for demonstration purposes, we are
using a SeatMap object structure that mimics that of the industry gold standard, Sab‐
re’s Seat Map API. If you were really building a commercial API, you would need to
design your own implementation or acquire permission for reuse from the design’s
original author:

 /flights/{flight_no}/seat_map:
 get:
 summary: Get a seat map for a flight
 description: |
 Example request:
          ```
            GET http://api.example.com/
                v1/flights/AA2532/datetime/2020-05-17T13:20/seats/12C
          ```
 parameters:
 - name: flight_no

Designing Microservice Endpoints | 203

https://oreil.ly/ySRA0
https://oreil.ly/ySRA0

 in: path
 required: true
 description: Unique Flight Identifier
 schema:
 type : string
 example: "edcc03a4-7f4e-40d1-898d-bf84a266f1b9"

 responses:
 '200': # success response
 description: Successful Response
 content:
 application/json:
 schema:
 type: object
 properties:
 Cabin:
 type: array
 items:
 type: object
 properties:
 firstRow:
 type: number
 example: 8
 lastRow:
 type: number
 example: 23
 Wing:
 type: object
 properties:
 firstRow:
 type: number
 example: 14
 lastRow:
 type: number
 example: 22
 CabinClass:
 type: object
 properties:
 CabinType:
 type: string
 example: Economy
 Column:
 type: array
 items:
 type: object
 properties:
 Column:
 type: string
 example: A
 Characteristics:
 type: array
 example:

204 | Chapter 9: Developing Microservices

 - Window
 items:
 type: string
 Row:
 type: array
 items:
 type: object
 properties:
 RowNumber:
 type: number
 example: 8
 Seat:
 type: array
 items:
 type: object
 properties:
 premiumInd:
 type: boolean
 example: false
 exitRowInd:
 type: boolean
 example: false
 restrictedReclineInd:
 type: boolean
 example: false
 noInfantInd:
 type: boolean
 example: false
 Number:
 type: string
 example: A
 Facilities:
 type: array
 items:
 type: object
 properties:
 Detail:
 type: object
 properties:
 content:
 type: string
 example: LegSpaceSeat

You can view the full source of the specification at this book’s GitHub site.

The OAS can be rendered with a number of editors; for instance, Swagger Editor.
Rendering the preceding specification produces a result that looks like Figure 9-2.

Designing Microservice Endpoints | 205

https://oreil.ly/Microservices_UpandRunning_api_yml
https://editor.swagger.io

Figure 9-2. OAS for ms-flights rendered with Swagger Editor

Similarly to the OAS of the flights microservice, the designs for the endpoints of the
reservation system would be something along the lines of:

 openapi: 3.0.0
 info:
 title: Seat Reservation System API
 description: |
 API Spec for Fight Management System
 version: 1.0.1
 servers:
 - url: http://api.example.com/v1
 description: Production Server
 paths:
 /reservations:
 get:

206 | Chapter 9: Developing Microservices

 summary: Get Reservations for a flight
 description: |
 Get all reservations for a specific flight
 parameters:
 - name: flight_id
 in: query
 required: true
 schema:
 type: string
 responses:
 '200': # success response
 description: Successful Response
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 seat_no:
 type: string
 example: "18F"
 example:
 - { seat_no: "18F" }
 - { seat_no: "18D" }
 - { seat_no: "15A" }
 - { seat_no: "15B" }
 - { seat_no: "7A" }
 put:
 summary: Reserve or cancel a seat
 description: |
 Reserves a seat or removes a seat reservation
 requestBody:
 required: true
 content:
 application/json:
 schema:
 type: object
 properties:
 flight_id:
 description: Flight's Unique Identifier.
 type : string
 example: "edcc03a4-7f4e-40d1-898d-bf84a266f1b9"
 customer_id:
 description: Registered Customer's Unique Identifier
 type : string
 example: "2e850e2f-f81d-44fd-bef8-3bb5e90791ff"
 seat_num:
 description: seat number
 type: string
 example:
 flight_id: "edcc03a4-7f4e-40d1-898d-bf84a266f1b9"

Designing Microservice Endpoints | 207

 customer_id: "2e850e2f-f81d-44fd-bef8-3bb5e90791ff"
 seat_num: "8D"
 responses:
 '200':
 description: |
 Success.
 content:
 application/json:
 schema:
 type: object
 properties:
 status:
 type: string
 enum: ["success", "error"]
 example:
 "success"
 '403':
 description: seat(s) unavailable. Booking failed.
 content:
 application/json:
 schema:
 type: object
 properties:
 error:
 type: string
 description:
 type: string
 example:
 error: "Could not complete reservation"
 description: "Seat already reserved. Cannot double-book"

Now that we have our service designs and the corresponding OASs, it’s time to pro‐
ceed to the last step in the SEED(S) process: writing the code for the microservices.

As we implement the flights and reservations microservices, we will practice the prin‐
ciples discussed earlier in this book. Specifically, we will use different tech stacks for
these services, so we can demonstrate their ability to support heterogeneous imple‐
mentation. The reservations microservice will be implemented in Python and Flask,
while the flights microservice will be implemented in Node/Express.js.

Implementing the Data for a Microservice
To emphasize the need for data independence that we discussed at length in Chap‐
ter 5, not only will we ensure the two microservices do not share any data space, but
we will intentionally implement them using entirely different backend data systems:
Redis for the reservations and MySQL for flights. We will also explain how each of
these microservices benefits from the choice of data storage mechanisms. Let’s start
with the data for the reservations system microservice.

208 | Chapter 9: Developing Microservices

Redis for the Reservations Data Model
In the reservations system, we need to be able to capture a set of seat reservations for
a flight, and reserve a seat if it is not already booked. Redis has a perfect, simple data
structure that fits our use case very well: hashes.

Redis hashes are optimized for storing mappings of lists of key/value pairs, where
both keys and values are of the string type. They are often used to store flat objects
such as a user with first name, last name, email, etc. For us, it can serve as robust stor‐
age for seat reservations information. We can have a hash object saved for each
flight_id (specific flight) where keys of the hash are the seat numbers on the flight
and the value is the customer_id for the customer that the seat is already reserved for.
Redis has commands to set a new value in a hash and to get all set values (for when
we need to know all reserved seats), and, very conveniently, a command that allows
us to set a value only if the value for the same key (seat) is not already set. That’s per‐
fect for us, since we typically do not want to allow double-booking a seat on a flight.

Key Decision: Use Redis to Implement the Reservations Database
Use Redis as the data store for reservations to leverage its unique simplicity and flexi‐
bility, characteristics fitting for the implementation of this microservice.

Let’s see an example of reserving several seats on a flight uniquely identified with the
flight_id of 40d1-898d-bf84a266f1b9. If you have a working Redis installation, or
use the Redis CLI from the reservations microservice’s workspace by invoking make
redis after you check out that GitHub repository, you should be able to run the fol‐
lowing commands:

> HSETNX flight:40d1-898d-bf84a266f1b9 12B b4cdf96e-a24a-a09a-87fb1c47567c
(integer) 1
> HSETNX flight:40d1-898d-bf84a266f1b9 12C e0392920-a24a-b6e3-8b4ebcbe7d5c
(integer) 1
> HSETNX flight:40d1-898d-bf84a266f1b9 11A f4892d9e-a24a-8ed1-2397df0ddba7
(integer) 1
> HSETNX flight:40d1-898d-bf84a266f1b9 3A 017d40c6-a24b-b6d7-4bb15d04a10b
(integer) 1
> HSETNX flight:40d1-898d-bf84a266f1b9 3B 0c27f7c8-a24b-9556-fb37c840de89
(integer) 1
> HSETNX flight:40d1-898d-bf84a266f1b9 22A 0c27f7c8-a24b-9556-fb37c840de89
(integer) 1
> HSETNX flight:40d1-898d-bf84a266f1b9 22B 24ae6f02-a24b-a149-53d7a72f10c0
(integer) 1

The HSETNX command we use here sets the value of the HSET key, we indicate, to the
specified value only if the key doesn’t already have a value. This way we avoid reserv‐
ing seats that are already assigned.

Implementing the Data for a Microservice | 209

https://oreil.ly/ZmFAQ

Let’s see how we would get all of the occupied seats on a specific flight:

> HKEYS flight:40d1-898d-bf84a266f1b9
1) "12B"
2) "12C"
3) "11A"
4) "3A"
5) "3B"
6) "22A"
7) "22B"

If we wanted to get both keys and values, we can also do this:

> HGETALL flight:40d1-898d-bf84a266f1b9
 1) "12B"
 2) "b4cdf96e-a24a-a09a-87fb1c47567c"
 3) "12C"
 4) "e0392920-a24a-b6e3-8b4ebcbe7d5c"
 5) "11A"
 6) "f4892d9e-a24a-8ed1-2397df0ddba7"
 7) "3A"
 8) "017d40c6-a24b-b6d7-4bb15d04a10b"
 9) "3B"
10) "0c27f7c8-a24b-9556-fb37c840de89"
11) "22A"
12) "0c27f7c8-a24b-9556-fb37c840de89"
13) "22B"
14) "24ae6f02-a24b-a149-53d7a72f10c0"

Let’s now see what happens if we try to double-book an already reserved seat, such as
12C:

> HSETNX flight:40d1-898d-bf84a266f1b9 12C 083a6fc2-a24d-889b-6fc480858a38
(integer) 0

Notice how the response to this command is (integer) 0 instead of the (integer)
1 we got for earlier HSETNX commands. This indicates that 0 fields were actually upda‐
ted and that is because 12C had already been reserved.

As you can see, choosing Redis as the data store for ms-reservations has made the
implementation easy and natural. We were able to use well-fitting data structures,
such as HSET, that effortlessly and elegantly met our needs. The HSETNX command
allowed us to avoid accidental double-bookings in a reliable and straightforward way.

Redis is a fantastic key/value store that can be used in a wide variety of use cases,
which is why it has a huge fan base among programmers. However, it is not going to
be the perfect database for every single use case. Sometimes we may have data needs
that are better met by other popular databases.

To demonstrate this, in the next section, we will implement the data for the ms-flights
microservice using a traditional SQL database.

210 | Chapter 9: Developing Microservices

MySQL Data Model for the Flights Microservice
The first data model we need here should contain seat maps. As we saw in the OAS
for the flights microservice, the seat map is a complex JSON object. MySQL can be a
better storage for such data than standard Redis. As of MySQL 5.7.8, MySQL has
robust, native support for JSON data types. This support has expanded and improved
in the latest 8.x version of MySQL. It now also supports in-place, atomic updates of
JSON values and JSON Merge Patch syntax. In comparison, Redis only supports
JSON with a RedisJSON module that doesn’t come pre-built with the standard Redis
distribution.

A well-implemented JSON data type provides tangible advantages over storing JSON
data in a string column: validation of JSON documents during inserts, internally opti‐
mized binary storage, ability to look up subobjects and nested values directly by a key,
and so on.

Additionally, in the lookup endpoint we need to query data by two fields: flight_no
and datetime. A relational database is a more natural structure for such queries. In
Redis, we would probably need to create a compound field to achieve the same. All in
all, while we could technically implement this service with Redis as well, there are
reasons to choose MySQL for doing this, among them that MySQL also helps us
demonstrate usage of different databases for different services. Real-life situations will
obviously be more complex, with more aspects to consider.

Let’s look at the seat_maps table:

CREATE TABLE `seat_maps` (
 `flight_no` varchar(10) NULL,
 `seat_map` json NULL,
 `origin_code` varchar(10) NULL,
 `destination_code` varchar(10) NULL,

 PRIMARY KEY(`flight_no`)
);

Another table we need is the mapping of flight_ids with flight_nos and date
times. The creation script for this table may look something like the following:

CREATE TABLE `flights` (
 `flight_id` varchar(36) NOT NULL,
 `flight_no` varchar(10) NULL,
 `flight_date` datetime(0) NULL,

 PRIMARY KEY (`flight_id`),
 INDEX `idx_flight_date`(`flight_no`, `flight_date`)

 FOREIGN KEY(flight_no)
 REFERENCES seat_maps(flight_no)
);

Implementing the Data for a Microservice | 211

Let’s insert our first sample seat map:

INSERT INTO `seat_maps`(`flight_no`, `seat_map`, `origin_code`, /
`destination_code`) VALUES ('AA2532', '{\"Cabin\": [{\"Row\": [{\"Seat\": /
[{\"Number\": \"A\", \"Facilities\": [{\"Detail\": {\"content\": /
\"LegSpaceSeat\"}}], \"exitRowInd\": false, \"premiumInd\": false, /
\"noInfantInd\": false, \"restrictedReclineInd\": false}], \"RowNumber\": /
8}], \"Wing\": {\"lastRow\": 22, \"firstRow\": 14}, \"Column\": /
[{\"Column\": \"A\", \"Characteristics\": [\"Window\"]}], \"lastRow\": 23, /
\"firstRow\": 8, \"CabinClass\": {\"CabinType\": \"Economy\"}}]}', /
'LAX', 'DCA');

Once we have the proper JSON value in the database, we can easily select specific val‐
ues in it or filter by specific values. For instance:

select seat_map->>"$.Cabin[0].firstRow" from seat_maps

Now that we have a working data model for both of our microservices, we can dive
deeper into the implementation of code for them.

Implementing Code for a Microservice
Now we’ll work toward the second goal that is the foundation of the “10 Workspace
Guidelines for a Superior Developer Experience” on page 181 and start new microser‐
vices quickly, using well-tested templates for each relevant tech stack. For the
Node.js-implemented flights microservice we’ll use a popular bootstrapper, Node‐
Bootstrap. For the Python-based reservation microservice we’re going to use a Git‐
Hub template repository that contains most of the boilerplate code that we’ll need.

Key Decision: Start Microservices with Reusable Templates
Use code templates to jump-start a microservice development in each programming
language supported in your ecosystem. Using templates helps with speed of develop‐
ment without sacrificing quality, and keeps various microservices uniform in their
key traits.

Based on the 10 guidelines, using any templates assumes that you have a working
Docker installation and the GNU Make, since we use both of them. There are no
other expectations, however. In Chapter 8, we showed how to set up Docker on mul‐
tiple platforms. GNU Make usually comes preinstalled on macOS and Linux/Unix
systems. There are multiple ways to get GNU Make on Windows. The one we
recommend is Windows Subsystem for Linux.

212 | Chapter 9: Developing Microservices

https://nodebootstrap.io
https://nodebootstrap.io
https://oreil.ly/g1LIk
https://oreil.ly/g1LIk
https://oreil.ly/1JERY

Edit Code on a Host Run Inside Containers

Note that in all further examples in this chapter, we assume that
you perform work on your host machine, without needing to log in
to Docker containers.

As you work on a containerized project, your favorite code editor would be installed
on your macOS, Windows, or Linux machine and you will be executing various make
commands on that machine. Docker should be installed/available and most results of
the commands you issue will execute inside the containers, but there’s rarely a need
for you to explicitly shell into the containers, unless you are debugging something
low level.

The Code Behind the Flights Microservice
To use NodeBootstrap for jump-starting a Node/Express microservice, either install
its bootstrapper with node install -g nodebootstrap (if you already have Node
available on your system), or clone this GitHub template repository.

While the former may be somewhat easier, we will do the latter since we do not want
to assume that you had to set up Node on your system. Go ahead and click “Use this
template” on the nodebootstrap-microservice’s main repository page, as shown in
Figure 9-3.

Figure 9-3. The nodebootstrap-microservice’s main repository page

Once you have created a new repository for the ms-flights microservice, at the desti‐
nation of your choosing, let’s check it out on your developer machine and start modi‐
fying things by writing code.

Implementing Code for a Microservice | 213

https://oreil.ly/Hi-wn

A nice thing about the NodeBootstrap template is that it comes with full support for
an OAS of the microservices. Let’s take the specification we designed earlier and put it
into the docs/api.yml file, replacing the sample specification we already find there.
Make sure you are in the docs subfolder and then run make start:

→ make start
docker run -d --rm --name ms-nb-docs -p 3939:80 -v \
ms-flights/docs/api.yml:/usr/share/nginx/html/swagger.yaml \
-e SPEC_URL=swagger.yaml redocly/redoc:v2.0.0-rc.8-1
49e0986e318288c8bf6934e3d50ba93537ddf3711453ba6333ced1425576ecdf
server started at: http://0.0.0.0:3939

This will render the specification to a beautiful HTML template and make it available
at http://0.0.0.0:3939. The rendering will probably look like Figure 9-4.

Figure 9-4. Rendered OAS of the ms-flights microservice

The Nodebootstrap microservice comes with a sample “users” module, located under
the lib/users folder. Since we don’t need a user management module and do need a
flights management one, let’s rename that folder flights and delete another default
module, lib/homedoc, as we won’t need that one, either. When you remove the lib/
homedoc folder you need to also remove its plug from appConfig.js in the root folder.
This appears around line 24, and reads something like:

 app.use('/', require('homedoc')); // Attach to root route

Likewise, change the hookup for the flights module in the same file, so that the line
reads as follows:

app.use('/flights', require('flights')); // Attach to sub-route

214 | Chapter 9: Developing Microservices

http://0.0.0.0:3939

Once you are done making these modifications, edit lib/flights/controllers/mappings.js
to introduce some input validation and indicate functions from the actions module of
the microservice that will be invoked for each of your two API endpoint routes:

const {spieler, check, matchedData, sanitize} = require('spieler')();

const router = require('express').Router({ mergeParams: true });
const actions = require('./actions');

const log = require("metalogger")();

const flightNoValidation = check('flight_no',
 'flight_no must be at least 3 chars long and contain letters and numbers')
 .exists()
 .isLength({ min: 3 })
 .matches(/[a-zA-Z]{1,4}\d+/)

const dateTimeValidation = check('departure_date_time',
 'departure_date_time must be in YYYY-MM-ddThh:mm format')
 .exists()
 .matches(/\d{4}-\d{2}-\d{2}T\d{2}:\d{2}/)

const flightsValidator = spieler([
 flightNoValidation,
 dateTimeValidation
]);
const seatmapsValidator = spieler([
 flightNoValidation
]);

router.get('/', flightsValidator, actions.getFlightInfo);
router.get('/:flight_no/seat_map', seatmapsValidator, actions.getSeatMap);

module.exports = router;

As you can see, in this file we are setting up routes for our two main endpoints and
validators that ensure that our input parameters are present, as well as properly for‐
matted. When they are not, NodeBootstrap also has standard error messaging to let
the client know.

Let’s now implement some logic. First we need to create MySQL tables and some
sample data. As you may guess, Nodebootstrap provides an easy solution for this as
well, in the form of database migrations: scripts that codify database modifications
and allow you to apply them in any environment later.

We can create several database migrations with some make commands, as follows:

→ make migration-create name=seat-maps
docker-compose -p msupandrunning up -d
ms-flights-db is up-to-date
Starting ms-flights ... done
docker-compose -p msupandrunning exec ms-flights

Implementing Code for a Microservice | 215

 ./node_modules/db-migrate/bin/db-migrate create seat-maps --sql-file
[INFO] Created migration at /opt/app/migrations/20200602055112-seat-maps.js
[INFO] Created migration up sql file at
 /opt/app/migrations/sqls/20200602055112-seat-maps-up.sql
[INFO] Created migration down sql file at
 /opt/app/migrations/sqls/20200602055112-seat-maps-down.sql
sudo chown -R $USER ./migrations/sqls/
[sudo] password for irakli:

→ make migration-create name=flights
docker-compose -p msupandrunning up -d
ms-flights-db is up-to-date
ms-flights is up-to-date
docker-compose -p msupandrunning exec ms-flights
 ./node_modules/db-migrate/bin/db-migrate create flights --sql-file
[INFO] Created migration at /opt/app/migrations/20200602055121-flights.js
[INFO] Created migration up sql file
 at /opt/app/migrations/sqls/20200602055121-flights-up.sql
[INFO] Created migration down sql file
 at /opt/app/migrations/sqls/20200602055121-flights-down.sql
sudo chown -R $USER ./migrations/sqls/

→ make migration-create name=sample-data
docker-compose -p msupandrunning up -d
ms-flights-db is up-to-date
ms-flights is up-to-date
docker-compose -p msupandrunning exec ms-flights
 ./node_modules/db-migrate/bin/db-migrate create sample-data --sql-file
[INFO] Created migration at
 /opt/app/migrations/20200602055127-sample-data.js
[INFO] Created migration up sql file at
 /opt/app/migrations/sqls/20200602055127-sample-data-up.sql
[INFO] Created migration down sql file at
 /opt/app/migrations/sqls/20200602055127-sample-data-down.sql
sudo chown -R $USER ./migrations/sqls/

After this, we should open the corresponding SQL files and insert the content in
Examples 9-1, 9-2, and 9-3 into each one of them.

Example 9-1. /migrations/sqls/[date]-seat-maps-up.sql

CREATE TABLE `seat_maps` (
 `flight_no` varchar(10) NOT NULL,
 `seat_map` json NOT NULL,
 `origin_code` varchar(10) NOT NULL,
 `destination_code` varchar(10) NOT NULL,
 PRIMARY KEY (`flight_no`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

216 | Chapter 9: Developing Microservices

Example 9-2. /migrations/sqls/[date]-flights-up.sql

CREATE TABLE `flights` (
 `flight_id` varchar(36) NOT NULL,
 `flight_no` varchar(10) NOT NULL,
 `flight_date` datetime(0) NULL,

 PRIMARY KEY (`flight_id`),

 FOREIGN KEY(`flight_no`)
 REFERENCES seat_maps(`flight_no`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Example 9-3. /migrations/sqls/[date]-sample-data-up.sql

INSERT INTO `seat_maps`
VALUES ('AA2532', '{\"Cabin\": [{\"Row\": [{\"Seat\": [{\"Number\": \"A\",
 \"Facilities\": [{\"Detail\": {\"content\": \"LegSpaceSeat\"}}],
 \"exitRowInd\": false, \"premiumInd\": false, \"noInfantInd\": false,
 \"restrictedReclineInd\": false}], \"RowNumber\": 8}],
 \"Wing\": {\"lastRow\": 22, \"firstRow\": 14},
 \"Column\": [{\"Column\": \"A\", \"Characteristics\": [\"Window\"]}],
 \"lastRow\": 23, \"firstRow\": 8,
 \"CabinClass\": {\"CabinType\": \"Economy\"}}]}', 'LAX', 'DCA');

Once you have these files, you can either just restart the project with make restart so
that the migrations will be automatically applied (the new ones get applied at every
project start to keep various installations consistent), or you can explicitly run a task
to apply migrations with make migrate.

For the rest of the modifications, you will want to:

1. Change ms-nodebootstrap-example to ms-flights in a variety of files, if you
didn’t install the project with the nodebootstrap utility, and just clone the reposi‐
tory (the former approach does renaming for you).

2. Modify the rest of the source code to implement the flights and seat_maps
endpoints and hook them up with the database.

ms-flights Full Source Code

You can see a working version of the sample ms-flights code on this
book’s GitHub repository.

When everything is working, you should be able to access your /flights endpoint
locally at a URL like the following:

Implementing Code for a Microservice | 217

https://oreil.ly/Microservices_UpandRunning_msflights
https://oreil.ly/Microservices_UpandRunning_msflights

http://0.0.0.0:5501/flights?flight_no=AA34&departure_date_time=2020-05-17T13:20

The seat_maps endpoint should appear in a URL:

http://0.0.0.0:5501/flights/AA2532/seat_map

Be sure to check out all of the makefile targets. Try testing one to get a sense of the
user experience provided by the template project and what kind of facilities you
should strive to provide to your developers with your templates. For the make test to
work, additional modifications are required, related to us deleting functionality from
the sample project. We aren’t covering those changes in detail here, so it’s best to just
check out this book’s /ms-flights repository, which has every modification required.
Feel free to submit bug requests if you run into any problems.

Health Checks
To manage the life cycle of the containers that the app will be deployed into, most
container-management solutions (e.g., Kubernetes, which we will use later in this
book) need a service to expose a health endpoint. In the case of Kubernetes, you
should generally provide liveness and readiness endpoints.

Key Decision: Starting Microservices from Reusable Templates
To implement a health-check endpoint, we are going to use the draft RFC and a
Node.js implementation of it.

The NodeBootstrap template already has a sample implementation for it, we just need
to modify it for the ms-flights codebase.

Let’s start by replacing lines 13–17 in appConfig.js with code like the following:

// For Liveness Probe, defaults may be all you need.
const livenessCheck = healthcheck({"path" : "/ping"});
app.use(livenessCheck.express());

// For readiness check, let's also test the DB
const check = healthcheck();
const AdvancedHealthcheckers = require('healthchecks-advanced');
const advCheckers = new AdvancedHealthcheckers();

// Database health check is cached for 10000ms = 10 seconds!
check.addCheck('db', 'dbQuery', advCheckers.dbCheck,
 {minCacheMs: 10000});
app.use(check.express());

218 | Chapter 9: Developing Microservices

https://oreil.ly/Microservices_UpandRunning_msflights
https://oreil.ly/nF9T-
https://oreil.ly/ZyfBZ
https://oreil.ly/EzEIi

This will create a simple “Am I live?” check at /ping (known as a liveness probe in
Kubernetes) and a more advanced “Is the database also ready? Can I actually do
useful things?” check (known as the readiness probe in Kubernetes) at /health. Using
two probes for overall health is very convenient since a microservice being up doesn’t
always mean that it is fully functional. If its dependency, such as a database, is not up
yet or is down, it won’t be actually ready for useful work.

The fourth argument {minCacheMs: 10000} in the .addCheck() call sets minimal
cache duration on the server side, indicated in milliseconds. This means you can tell
the health-check middleware (the module we use) to only run an expensive, database-
querying health-check probe against MySQL every 10 seconds (10,000 milliseconds),
at most!

Even if your health-probing infrastructure (e.g., Kubernetes) calls your health-check
endpoint very frequently, the middleware will only trigger the calls you deemed light
enough. For more heavy calls (e.g., database calls like the one to MySQL), the middle‐
ware (Maikai module) will serve cached values, avoiding stress on downstream sys‐
tems like the database. To complete the setup, also edit the libs/healthchecks-
advanced/index.js file and rename the function to dbCheck. Then update the SQL
query so that lines 7–10 read:

async dbCheck() {
 const start = new Date();
 const conn = await db.conn();
 const query = 'select count(1) from seat_maps';

If everything was done correctly and the microservice is up and running in a healthy
way, if you now run curl http://0.0.0.0:5501/health, you should get a health
endpoint output that looks like the following:

{
 "details": {
 "db:dbQuery": {
 "status": "pass",
 "metricValue": 15,
 "metricUnit": "ms",
 "time": "2020-06-28T22:32:46.167Z"
 }
 },
 "status": "pass"
}

If you run curl http://0.0.0.0:5501/ping instead, you should get a simpler
output:

{ "status": "pass" }

Implementing Code for a Microservice | 219

If you run into any issues while modifying the code yourself, you can see the full
microservice implementation on this book’s GitHub repository.

Now that we have a fully functioning ms-flights microservice implemented with
Node.js and MySQL, let’s switch to the code behind the ms-reservations microservice.

Introducing a Second Microservice to the Project
We are going to implement a second microservice (ms-reservations) in Python and
Flask using the Redis data store. Again following the second goal from “10 Work‐
space Guidelines for a Superior Developer Experience” on page 181, we will use a
template GitHub repository for a Python/Flask stack.

As you can see, this template has a lot of the same characteristics as the NodeBoot‐
strap one we just used for ms-flights: it only requires working with Docker and make,
has all of the make targets to support a smooth development experience, just like
NodeBootstrap, and has a working setup for common tasks such as testing, linting,
etc. One thing it lacks, however, is support for database migrations.

Unlike MySQL, Redis doesn’t really use database schemas, so there’s no burning need
to codify various data definitions for “table” creations. You could still use migrations
to create test data in various environments, but we will leave that task to the reader to
figure out and have fun with. It is one way this template is different from the ones you
would see that do use SQL databases.

Just like with ms-flights, we’ll start our code modifications by placing the proper OAS
we developed earlier in this chapter into the docs/api.yml of the new ms-reservations
repository. After running make start in the docs folder (note: this is a separate make‐
file from the main one!), you should see the API specification for reservations ren‐
dered at http://0.0.0.0:3939, appearing as shown in Figure 9-5.

220 | Chapter 9: Developing Microservices

https://oreil.ly/Microservices_UpandRunning_msflights
https://oreil.ly/rjRhK

Figure 9-5. Rendered OAS of the ms-reservations microservice

We will start modifying our template microservice by implementing the reservation
creation endpoint.

Open service.py and replace the mapping for the update_user POST /users endpoint
with the one for PUT /reservations, like this:

@app.route('/reservations', methods=['PUT'])
def reserve():
 """Endpoint that reserves a seat for a customer"""
 json_body = request.get_json(force=True)
 resp = handlers.reserve(json_body)
 if (resp.get("status") == "success"):
 return jsonify(resp)
 else:
 return Response(
 json.dumps(resp),
 status=403,
 mimetype='application/json'
)

As you can see, based on the result of the reservation, we’ll output a success or an
error and provide a corresponding HTTP error code.

To fully implement this endpoint, we also need to create a handler for the mapping
(usually tasked with error validation, but for brevity we’ll skip it) in src/handlers.py.
We’ll do this by replacing the save_user user creation handler with the following:

Introducing a Second Microservice to the Project | 221

def reserve(json_body):
 """Save reservation callback"""
 return model.save_reservation(json_body)

Most importantly, we need to implement the actual save to the database in src/
models.py by replacing the save_user function with something like the following:

def save_reservation(reservation):
 """Saves reservation into Redis database"""

 seat_num = reservation['seat_num']
 try:
 result = this.redis_conn.hsetnx(
 this.tblprefix + reservation['flight_id'],
 seat_num,
 reservation['customer_id'])
 except redis.RedisError:
 response = {
 "error" : f"Unexpected error reserving {seat_num}"
 }
 log.error(f"Unexpected error reserving {seat_num}", exc_info=True)
 else:
 if result == 1:
 response = {
 "status": "success",
 }
 else:
 response = {
 "error" : f"Could not complete reservation for {seat_num}",
 "description" : "Seat already reserved. Cannot double-book"
 }

 return response

This code implements the same hsetnx command in Python that we manually exe‐
cuted earlier in the Redis CLI, when we were demonstrating the benefits of using
Redis for the data model of the reservations microservice. Redis’s hsetnx method
only sets the value if one is not already set. This is how we reliably avoid accidental
double-booking. When hsetnx is rejected due to an already set key, it returns 0 (as in:
“0 records modified”); otherwise it returns 1, letting us know whether a conflict
occurred.

You should also declare the table-level prefix for reservations in the module scope by
adding the following code around line 19 of src/models.py, right after the this =
sys.modules[__name__] declaration:

this = sys.modules[__name__] # Existing line
this.tblprefix = "flights:" # New line

The microservice template we used readily contains all of the code required to grab
the relevant credentials and configuration from the environment and connect to a

222 | Chapter 9: Developing Microservices

Redis database. This is implemented in accordance with the popular guidance out‐
lined in the manifesto for building better cloud native applications, known as the
Twelve-Factor App. Specifically, the template aligns with the third factor of the docu‐
ment, which addresses preferred ways of configuration management. The fact that
the template we used already had this best practice fully implemented demonstrates
once again the significant benefits of leveraging code templates for microservices
development.

Once you make all the required changes, the endpoint should work. You should be
able to run make from the top level of the source code, which will build and run the
project at 0.0.0.0:7701.

If you encounter issues at any point or would like to check out the application logs for
some reason, you can do this using the logs-app make target:

→ make logs-app
docker-compose -p ms-workspace-demo logs -f ms-template-microservice
Attaching to ms-template-microservice
ms-template-microservice | [INFO] Starting gunicorn 20.0.4
ms-template-microservice | [INFO] Listening at: http://0.0.0.0:5000 (1)
ms-template-microservice | [INFO] Using worker: sync
ms-template-microservice | [INFO] Booting worker with pid: 15

You may notice that the logs say the service is running on port 5000, but that is true
inside the Docker container; it’s not port 5000 on the host machine! We map the stan‐
dard Flask port 5000 to 7701 on the host machine (your machine). You can view the
combined app and database logs by running make logs, or just the database logs by
running make logs-db.

Now let’s run several curl commands to insert a couple of reservations:

curl --header "Content-Type: application/json" \
 --request PUT \
 --data '{"seat_num":"12B","flight_id":"werty", "customer_id": "dfgh"}' \
 http://0.0.0.0:7701/reservations

curl --header "Content-Type: application/json" \
 --request PUT \
 --data '{"seat_num":"12C","flight_id":"werty", "customer_id": "jkfl"}' \
 http://0.0.0.0:7701/reservations

We can also test that our protection against accidental double-bookings works. Let’s
verify this by attempting to reserve an already reserved seat (e.g., 12C):

curl -v --header "Content-Type: application/json" \
 --request PUT \
 --data '{"seat_num":"12C","flight_id":"werty", "customer_id": "another"}' \
 http://0.0.0.0:7701/reservations

It will respond with HTTP 403 and an error message:

Introducing a Second Microservice to the Project | 223

https://12factor.net/config

→ curl -v --header "Content-Type: application/json" \
> --request PUT \
> --data '{"seat_num":"12C","flight_id":"werty", "customer_id": "another"}' \
> http://0.0.0.0:7701/reservations
* Trying 0.0.0.0:7701...
* TCP_NODELAY set
* Connected to 0.0.0.0 (127.0.0.1) port 7701 (#0)
> PUT /reservations HTTP/1.1
> Host: 0.0.0.0:7701
> User-Agent: curl/7.68.0
> Accept: */*
> Content-Type: application/json
> Content-Length: 64
>
< HTTP/1.1 403 FORBIDDEN
< Server: gunicorn/20.0.4
< Connection: close
< Content-Type: application/json
< Content-Length: 111
<
* Closing connection 0
{"error": "Could not complete reservation for 12C",
"description": "Seat already reserved. Cannot double-book"}

Perfect!

Since we now have some data in the Redis store, we can proceed to implementing the
reservation retrieval endpoint as well. Again, we will start with the mapping defini‐
tion in service.py, replacing the default /hello/<name> greeter endpoint with the
following:

@app.route('/reservations', methods=['GET'])
def reservations():
 """ Get Reservations Endpoint"""
 flight_id = request.args.get('flight_id')
 resp = handlers.get_reservations(flight_id)
 return jsonify(resp)

The implementation of the handler in src/handlers.py will again be simple since we
are skipping input validation, for the sake of brevity:

def get_reservations(flight_id):
 """Get reservations callback"""
 return model.get_reservations(flight_id)

The model code will look like the following:

def get_reservations (flight_id):
 """List of reservations for a flight, from Redis database"""
 try:
 key = this.tblprefix + flight_id
 reservations = this.redis_conn.hgetall(key)
 except redis.RedisError:

224 | Chapter 9: Developing Microservices

 response = {
 "error" : "Cannot retrieve reservations"
 }
 log.error("Error retrieving reservations from Redis",
 exc_info=True)
 else:
 response = reservations

 return response

To test this endpoint, we can issue a curl command and verify that we receive the
expected JSON response:

→ curl -v http://0.0.0.0:7701/reservations?flight_id=werty
* Trying 0.0.0.0:7701...
* TCP_NODELAY set
> GET /reservations?flight_id=werty HTTP/1.1
> Host: 0.0.0.0:7701
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: gunicorn/20.0.4
< Connection: close
< Content-Type: application/json
< Content-Length: 90
<
{
 "12B": "dfgh",
 "12C": "jkfl",
}
* Closing connection 0

ms-reservations Full Source Code

You can see a working version of the sample ms-reservations code
on this book’s GitHub site.

Please take a look and try to use various make targets available in the repository to
get a better feel for what you get from the template this code was bootstrapped from.

You should also use this opportunity to take a break and pat yourself on the back—
you just created and executed two perfectly sized, impeccably implemented, and
beautifully separate-stack microservices! Hooray!

Now what we need to do is figure out a way to execute these two microservices (and
any additional future components you may create) as a single unit. For this, we will
introduce the notion of an “umbrella project” and explain how to develop one.

Introducing a Second Microservice to the Project | 225

https://oreil.ly/Microservices_UpandRunning_msreservations

Hooking Services Up with an Umbrella Project
Developing individual microservices is how teams should be spending most of their
time. It’s essential for providing team autonomy, which leads to the ever-important
coordination minimizations, and most of our system design work in the microser‐
vices style should indeed target the minimization of coordination needs. That said, at
some point we do need to try the entire project—all microservices working together.
Even if this need is relatively rare, it is very important to make doing so easy, which is
why principle four of the “10 Workspace Guidelines for a Superior Developer Experi‐
ence” on page 181 states: “Running a single microservice and/or a subsystem of sev‐
eral ones should be equally easy.”

We need an easy-to-use umbrella project, one that can launch all of our microservice-
specific subprojects in one simple command and make them all work together nicely,
until such time as we decided to shut down the umbrella project with all of its com‐
ponents. This obviously should also be very easy to do. Everything we want our
developers to do without mistakes should be easy!

To deploy an easy-to-use umbrella project, we’ll use the microservices workspace
template available at this GitHub site and start a workspace for us at this book’s Git‐
Hub repository instead.

Key Decision: Use Faux Git Submodules
To check out repositories of individual microservices under the umbrella repository,
we use the open source project Faux Git Submodules. The idea is to make it easy to
descend into a subfolder of your workspace repository containing a microservice and
treat it as a fully functioning repository, which you can update, commit code in, and
push to. The basic intent is identical to that of regular Git submodules, except anyone
who has used them knows that the actual submodules can behave unpredictably and
tend to be major pains in the neck. Faux submodules, in our opinion, are much sim‐
pler and work more predictably.

We’ll start by indicating the two repos we’ve just created as the components of the
new workspace, by editing the fgs.json file to look something like the following:

{
 "ms-flights" : {
 "url" : "https://github.com/implementing-microservices/ms-flights"
 },

 "ms-reservations" : {
 "url" : "https://github.com/implementing-microservices/ms-reservations"
 }
}

226 | Chapter 9: Developing Microservices

https://oreil.ly/VpyDJ
https://oreil.ly/Microservices_UpandRunning_workspace
https://oreil.ly/Microservices_UpandRunning_workspace
https://oreil.ly/ic_c0

In the last configuration we indicated ms-flights and ms-reservations using the read-
only “http://” protocol. This was done so that you can follow the example. In real
projects, you would want to pull your repositories with the read/write “git://” proto‐
col so you can modify them.

Now that we have configured repos.json, let’s pull the ms-flights and ms-reservations
microservices into the workspace:

→ make update
git clone -b master \
 https://github.com/implementing-microservices/ms-flights ms-flights
Cloning into 'ms-flights'...

git clone -b master \
 https://github.com/implementing-microservices/ms-reservations ms-reservations
Cloning into 'ms-reservations'...

This operation also helpfully adds the checked-out repositories to
the .gitignore of the parent folder, to prevent the parent repository
trying to double-commit them into the wrong place.

We also need to edit the bin/start.sh and bin/stop.sh scripts to make changes from the
default. We’ll edit bin/start.sh as shown in Example 9-4.

Example 9-4. bin/start.sh

#!/usr/bin/env bash
set -eu

export COMPOSE_PROJECT_NAME=msupandrunning

pushd ms-flights && make start
popd
pushd ms-reservations && make start
popd

make proxystarts

Edit .bin/stop.sh as in Example 9-5.

Example 9-5. bin/stop.sh

#!/usr/bin/env bash
set -eu

export COMPOSE_PROJECT_NAME=msupandrunning

Hooking Services Up with an Umbrella Project | 227

pushd ms-flights && make stop
popd

pushd ms-reservations && make stop
popd

make proxystop

To keep things simple yet powerfully automated, our workspace setup is using the
Traefik edge router for seamless routing to the microservices. It gets installed by our
docker-compose.yml file. Also, we will need to add Traefik-related labels to the docker-
compose.yml files of both microservices to ensure proper routing of those services, as
shown in Examples 9-6 and 9-7.

Example 9-6. ms-flights/docker-compose.yaml

services:
 ms-flights:
 container_name: ms-flights
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.ms-flights.rule=PathPrefix(`/reservations`)"

Example 9-7. ms-reservations/docker-compose.yaml

services:
 ms-reservations:
 container_name: ms-reservations
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.ms-reservations.rule=PathPrefix(`/reservations`)"

We also need to update the umbrella project’s name (which serves as the namespace
and network name for all services) in the workspace’s makefile, so that instead of
project:=ms-workspace-demo, it says:

project:=msupandrunning

Once you bring up the workspace by running make start at the workspace level, you
will be able to access both microservices in their attached-to-workspace form. We
mounted Traefik to local port 9080, making http://0.0.0.0:9080/ our base URI. There‐
fore, the following two commands are querying the reservations and flights systems:

> curl http://0.0.0.0:9080/reservations?flight_id=qwerty
> curl \
 http://0.0.0.0:9080/flights?\
 flight_no=AA34&departure_date_time=2020-05-17T13:20

You can see the full source of the umbrella project at this book’s GitHub site.

228 | Chapter 9: Developing Microservices

https://oreil.ly/I-ddh
https://oreil.ly/vBvwS
http://0.0.0.0:9080/
https://oreil.ly/Microservices_UpandRunning_workspace

Summary
In this chapter we brought together a lot of system design and code implementation
guidance that we had been teasing out to provide an end-to-end implementation of a
couple of powerful microservices, together with an umbrella workspace that allows us
to work on these services either individually or as a unified project. We did this
through a step-by-step implementation of the powerful SEED(S) methodology and
the design of individual data models, and learned how to quickly jump-start code
implementations from robust template projects.

The ability to put together well-modularized components quickly and efficiently can
make a material difference in your ability to execute microservice projects success‐
fully. There’s a big difference between what you were able to achieve in this chapter,
and somebody spending weeks figuring out the basic boilerplate or going down the
rabbit hole of wrong decisions. This difference can be that of the success or failure of
the entire initiative.

Summary | 229

CHAPTER 10

Releasing Microservices

We’re getting to an exciting part of our microservices build—the point where we
actually bring everything together. So far, we’ve built an operating model, a microser‐
vice design, an infrastructure foundation, and two working microservices. Now, we’ll
take all those pieces and put them together in a single implementation.

We’ll be covering a lot of ground in this chapter. We’ll build a new infrastructure envi‐
ronment called staging. Next, we’ll augment our code repository with a container
delivery process. With a container ready to go, we’ll implement a deployment process
using the Argo CD GitOps tool. When we’re done, we’ll have an architecture that
looks like Figure 10-1.

Figure 10-1. Staging deployment

Because of the scope of what we need to cover, we’ll only deploy the
flight information microservice. However, you can use all the
mechanisms we describe here to deploy the reservations service as
well.

231

To make all this work, we’ll be using three different GitHub repositories with their
own pipelines and assets (as shown in Figure 10-2). One of the reasons we’ve done it
this way is that it matches up well with the operating model we defined in Chapter 2
and gives each of our teams their own responsibilities and domains to work in.

Figure 10-2. Three code repositories for deployment

There’s a lot to cover, so let’s dive in with our first step: provisioning the AWS-based
staging environment.

Setting Up the Staging Environment
Up until now, we’ve been deploying microservices into a local developer environ‐
ment. Now we’ll take the same services we’ve built and tested locally and deploy them
into an AWS-based cloud infrastructure. In this section, we’ll build the staging infra‐
structure using the process shown in Figure 10-3.

Figure 10-3. Building a staging environment

We started this work when we built the sandbox environment in Chapter 7. Now,
we’ll need to update that infrastructure code to reflect the needs of the flight informa‐
tion and flight reservation microservices. We’ll be adding three new components to
our Terraform code to support our microservices:

• An ingress controller and edge router that sends requests to microservices in
Kubernetes

• An AWS-based MySQL database instance for the flights microservice’s data

232 | Chapter 10: Releasing Microservices

• An AWS-based Redis database instance for the reservations microservice’s data

This kind of nontrivial change could be risky. But this is where our immutable infra‐
structure and infrastructure as code (IaC) approach really starts to pay off! We know
exactly what our current environment build looks like, because all of it is in our Ter‐
raform code. All we need to do now is create modules for each of these new compo‐
nents, update an environment definition, and run the build through our CI/CD
pipeline.

In Chapter 7, we walked through the process of writing each Terraform module
together. But since we’ve already covered that in detail, this time we’ll use code and
configuration assets that we’ve already written for you. You’ll just need to customize
them a bit to fit your needs.

Let’s start by taking a quick tour of the new modules we’ll be using to provision our
new components, starting with the ingress gateway module.

The Ingress Module
In Chapter 9, we used an edge router called Traefik to route messages to our
container-based microservices. We’re going to implement a similar architecture in
our AWS-based infrastructure. There are plenty of tools available to perform ingress
routing. For example, many practitioners use the Nginx ingress controller. Traefik is
also a fine choice: since we’ve already started using it in the development stage, we’ll
make the decision to implement it as our controller in the AWS environment as well.

Key Decision: Implement a Traefik Ingress Controller
We’ll use Traefik to route messages from the load balancer to microservices deployed
in Kubernetes.

To save time, we’ve already written a Terraform module that will install the Traefik
ingress controller into the environment. We’ll be able to use this module in our Terra‐
form environment code, in the same manner as the network, EKS, and Argo CD
modules we used in Chapter 6. The code for the Traefik module is available at this
GitHub site.

We won’t have time to implement a “backend for frontend” (BFF) API as part of our
example build. But the ingress we’re setting up lends itself well to being extended for
that purpose in the future. For example, you can provision an AWS API Gateway in
front of the ingress controller to compose services into a single API. In fact, we’ve
implemented Traefik using an AWS Network Load Balancer, which makes that kind
of connectivity easier to implement.

Setting Up the Staging Environment | 233

https://oreil.ly/QyHmJ
https://oreil.ly/8YXIW
https://oreil.ly/8YXIW
https://oreil.ly/KATjx

We’ll get a chance to use this ingress module in “Forking the Staging Infrastructure
Project” on page 234 when we build the staging environment. For now, let’s see how
we’ll support our database needs.

The Database Module
Each of our microservices use different databases, so we’ll need to provision two dif‐
ferent databases in the infrastructure environment. We’ll need both a MySQL and a
Redis database to support the needs of our microservices teams. For our build, we’ve
decided to use AWS managed versions of these database products. That way, our plat‐
form team can offer two databases in an x-as-a-service manner to the microservices
teams that need them.

Key Decision: Use Shared and Managed Database Services
The platform team will create Terraform-based modules to provision AWS hosted
and managed database services for each environment.

In our database module, we’ll use the AWS ElastiCache service to provision a Redis
data store and the AWS Relational Database (RDS) to provision a MySQL instance.
We’ve already written a module that does this, which you can find in this book’s Git‐
Hub repository. The module provisions both types of databases as well as the net‐
work configuration and access policies that the database service needs for operation.

When the module is applied to the staging environment, we’ll have both a Redis and a
MySQL database instance running and ready for use. All that’s left now is to use our
modules in a Terraform code file and provision an environment. That’s what we’ll
cover in the next section.

Forking the Staging Infrastructure Project
The staging environment we need for releasing our microservices will be very similar
to the sandbox environment we created in Chapter 7. We’ll continue to use the same
methods and principles we applied earlier. We’ll use Terraform to define the environ‐
ment in code and we’ll use the modules we wrote for the network, Kubernetes cluster,
and Argo CD. We’ll complement those modules with the new database and ingress
controller modules we’ve just described. Finally, we’ll use a GitHub Actions pipeline
to provision the environment, just like we did for our sandbox environment.

We explained how to create a GitHub Actions pipeline in Chapter 6, and walked
through the process of writing and using Terraform code in Chapter 7. So there’s no
need to do all of that again. Instead, we’ll use a staging environment skeleton project
that we’ve already created for you (see Figure 10-4). We’ll need to make a few small

234 | Chapter 10: Releasing Microservices

https://oreil.ly/Microservices_UpandRunning_mod_awsdb
https://oreil.ly/Microservices_UpandRunning_mod_awsdb

changes to the code so that it will work in your AWS environment. To do that, we’ll
fork the repository so you can have your own copy that you can change as you like.

Figure 10-4. Starting with the staging environment repository

In GitHub, a fork lets you make a copy of someone else’s code project in your own
account. To fork the staging environment repository, follow these steps:

1. Open your browser and sign in to your GitHub account.
2. Navigate to this book’s GitHub repository.
3. Click the Fork button in the top-right corner of the screen.

You may want to duplicate this repository instead of forking it.
This will allow you to change the access mode of the repository to
private instead of public. Instructions on duplicating a GitHub
repository are available in the GitHub documentation on the topic.

Once the operation is complete you’ll have your own forked copy of infra-staging-
env. But it’s not yet configured to use your AWS account or resources. The first thing
we’ll need to update is the GitHub Actions workflow.

Configuring the Staging Workflow
The forked CI/CD workflow we’ve just created won’t be able to access your AWS
account without credentials. So we’ll need to add AWS access management creden‐
tials and a MySQL password to the repository’s secrets. You should have your AWS
operator account credentials from the pipeline setup work we did in Chapter 6. If you
don’t have those keys anymore, you can open the AWS management console in a
browser and create a new set of credentials for your operations user.

When you have your credentials in hand, navigate to the Settings pane of your forked
GitHub repository and choose Secrets from the lefthand navigation menu. Add the
secrets in Table 10-1 by clicking the New secret button.

Setting Up the Staging Environment | 235

https://oreil.ly/Microservices_UpandRunning_infrastaging_env
https://oreil.ly/HbZMN

Table 10-1. Infrastructure secrets

Key Value

AWS_ACCESS_KEY_ID The access key ID for your AWS operator user

AWS_SECRET_ACCESS_KEY The secret key for your operator user

MYSQL_PASSWORD microservices

Make sure you type these key names exactly as described in Table 10-1. If you don’t,
the pipeline won’t be able to access your AWS instance and create resources. Use the
value microservices for the MYSQL_PASSWORD secret. This password will be used
when we provision the AWS RDS database.

When we forked the infra-staging-env repository, GitHub made a copy of the Actions
workflow that defines the CI/CD pipeline. But, for security reasons, GitHub doesn’t
automatically enable the GitHub Actions feature when you fork a repository (see
Figure 10-5). So, you’ll need to get it running by doing the following:

• Click the Actions tab in the management console for your forked repository.
• If challenged, instruct GitHub to enable the workflow that we’ve forked.

Figure 10-5. Enable GitHub Actions

GitHub changes its user experience quite often, so the specific steps
and screens you encounter might be different.

Our forked infrastructure pipeline is now activated and ready to be triggered. Now
we just need to make a few adjustments to the Terraform code that creates the staging
environment.

236 | Chapter 10: Releasing Microservices

The staging workflow we’ve built for you will automatically gener‐
ate a kubeconfig file as part of the provisioning process. This file
contains connection information so you can connect to the Kuber‐
netes cluster that we’ll create on EKS. Since this code repository is
public, that file will be available to anyone who visits your reposi‐
tory. In theory, this shouldn’t be a problem. Our EKS cluster
requires AWS credentials to authenticate and connect. That means
even with the kubeconfig file an attacker shouldn’t be able to con‐
nect to your cluster, unless they also have your AWS credentials.

Editing the Staging Infrastructure Code
The Terraform code that we’ve written for you will provision a staging environment.
But, it won’t work properly until we set some local variable values that will be specific
to your AWS account and environment. To do that, we’ll work on the files in your
local environment. Also, you’ll need to create a clone of your forked infra-staging-env
repository. We’ll leave it to you to do that.

If you aren’t sure how to clone your repository, follow the instruc‐
tions for your OS in the GitHub documentation.

We’ll be editing the main.tf file that defines the staging environment. You’ll need to
change the values of a few local variables that we’ve defined in Table 10-2.

Table 10-2. Staging environment values in main.tf

Resource Property name Description

terraform bucket The name of the S3 bucket for your Terraform backend

terraform key The identifier to use for your backend data in S3

terraform region Your AWS region

locals aws_region Your AWS region

These values will be identical to the configuration we created in
Chapter 7, so if you have that code handy, you can copy and paste
from there.

To make these changes, edit main.tf in your favorite text editor and update it with the
appropriate values. All the values you need to replace are in the terraform and
locals sections, at the top of the file. You can also use this step to review the

Setting Up the Staging Environment | 237

https://oreil.ly/hvEWn

Terraform file and learn more about what it does. When you’re done, the top of your
file should look similar to Example 10-1.

Example 10-1. An updated main.tf for the staging environment

terraform {
backend "s3" {
 bucket = "rm-terraform-backend"
 key = "terraform-env"
 region = "eu-west-2"
 }
}

locals {
 env_name = "staging"
 aws_region = "eu-west-2"
 k8s_cluster_name = "ms-cluster"
}

Our staging Terraform code is now ready to be applied. But it won’t work if we try to
use it. That’s because our AWS operator account doesn’t have the right privileges.
We’ve added some new database modules, but the operator account we’re using isn’t
allowed to create or work with those AWS resources. If we tried to run our Terraform
right now, we’d get access errors from AWS.

To solve that problem, we’ll need to give our AWS operator a few more permissions.
We’ll do this by creating a new IAM group for database work. When the group is set
up, we’ll add our operator account to the group so it inherits those permissions.

Run the following AWS CLI command to create a new group called DB-Ops:

$ aws iam create-group --group-name DB-Ops

Next, we can run the following command to attach access policies for RDS and Elas‐
tiCache to the group:

$ aws iam attach-group-policy --group-name DB-Ops\
 --policy-arn arn:aws:iam::aws:policy/AmazonRDSFullAccess &&\
aws iam attach-group-policy --group-name DB-Ops\
 --policy-arn arn:aws:iam::aws:policy/AmazonElastiCacheFullAccess

Finally, use a CLI command to add our Ops account to the group we’ve just created:

$ aws iam add-user-to-group --user-name ops-account --group-name DB-Ops

With those permissions set, we’re just about ready to go. But before we commit, let’s
do a quick test to make sure our updated infrastructure code works. Run the follow‐
ing Terraform commands to format and validate our updated code:

infra-staging-env$ terraform fmt
[...]

238 | Chapter 10: Releasing Microservices

infra-staging-env$ terraform init
[...]
infra-staging-env$ terraform validate
[...]
infra-staging-env$ terraform plan
[...]

Now we’re ready to commit the infrastructure code and kick off the CI/CD pipeline.
Let’s start by committing our updated Terraform code to your forked repository:

$ git add .
$ git commit -m "Staging environment with databases"
$ git push origin

If you recall in Chapter 6, our workflow gets triggered when we push a release tag
that starts with a v. Use the following Git commands to create a new v1.0 tag and
push it to your forked repository:

$ git tag -a v1.0 -m "Initial staging environment build"
$ git push origin v1.0

With that, your staging provisioning process should be kicked off. You can validate
the status of your pipeline run in the browser-based GitHub console. If the pipeline
job has succeeded, you now have a staging environment with a Kubernetes cluster
and MySQL and Redis databases running and ready to use. We’ll need that Kuber‐
netes cluster for our microservices deployment. So our next step will be to validate
that it is up and running.

Testing access to the Kubernetes cluster
In order to communicate with the staging Kubernetes cluster we’ll need the configu‐
ration details for the kubectl application. To get those details we’ll use the same pro‐
cess we used in “Testing the Environment” on page 175—we’ll download a
configuration file and update our local environment settings.

Make sure the CI/CD pipeline has completed successfully before
trying to connect to the Kubernetes cluster.

Set up your Kubernetes client environment by downloading the kubeconfig file that
our GitHub Actions staging pipeline generated. Then set the KUBECONFIG environ‐
ment variable to point to the configuration that you’ve just downloaded:

$ export KUBECONFIG=~/Downloads/kubeconfig

Setting Up the Staging Environment | 239

When the environment is set up, run kubectl get svc --all-namespaces to con‐
firm that our staging cluster is running and the Kubernetes objects have been
deployed. You should see a result that looks similar to Example 10-2.

Example 10-2. get svc result

$ kubectl get svc --all-namespaces
NAMESPACE NAME TYPE CLUSTER-IP
argocd msur-argocd-application-controller ClusterIP 172.20.133.240
argocd msur-argocd-dex-server ClusterIP 172.20.74.68
default ms-ingress-nginx-ingress LoadBalancer 172.20.239.114
[... lots more services ...]

In the result you should see a list of all the Kubernetes services that we’ve deployed.
That should include services for the Argo CD application and the Nginx ingress ser‐
vice. That means that our cluster is up and running and the services we need have
been successfully provisioned.

Create a Kubernetes secret
The last step we need to take care of is setting up a Kubernetes secret. When our flight
information microservices connects to MySQL, it will need a password. To avoid
storing that password in plain text, we’re going to store it in a special Kubernetes
object that keeps it hidden from unauthorized viewers.

Run the following command to create and populate the Kubernetes secret for the
MySQL password:

$ kubectl create secret generic \
mysql --from-literal=password=microservices -n microservices

The built-in secrets functions of Kubernetes are useful, but we rec‐
ommend that you use something more feature rich for a proper
implementation. There are lots of options available in this area,
including HashiCorp Vault.

We now have a staging environment with an infrastructure that fits the needs of the
microservices we’ve developed. The next step will be to publish those microservices
as containers so that we can deploy them into the environment.

240 | Chapter 10: Releasing Microservices

https://oreil.ly/YeiHQ

Shipping the Flight Information Container
In Chapter 9, we used make to test, build, and run microservices locally in a develop‐
ment environment. But in order to build and deploy our services into testing, staging,
and beyond, we’ll want a more repeatable and automated process.

We’ve already built a containerized version of the flights microser‐
vice for you to use. So, if you aren’t interested in building a Docker
Hub deployment workflow yourself, you can skip ahead to
“Deploying the Flights Service Container” on page 246.

Using automation and DevOps techniques to build our services improves the predict‐
ability, quality, and speed of our microservice deployments. This is the same principle
we applied to our infrastructure build. In this section, we’ll build a continuous inte‐
gration and continuous delivery (CI/CD) pipeline to build and publish the flights
microservice to a container registry, as in Figure 10-6.

Figure 10-6. Microservices CI/CD

Let’s start by taking a look at Docker Hub, the container registry we’ll be using to host
microservice containers.

Introducing Docker Hub
In Chapter 9, our make-based build process used both docker-compose and docker to
produce containers for testing and release. In order to get those containers into our
staging environment, we’ll need a way to move them, or ship them over. Containers
are a lot like binary applications, so we could just upload them into the filesystem of
the target environment. But this would get messy when the number of containers we
need to manage grows.

Instead, we’ll ship our containers into a container registry. A registry is a software sys‐
tem that stores containers. A good registry keeps containers safe, and makes them
easy to discover and to update and change. Docker even defines an API for registry
operations and the Docker engine has built-in support for using it.

Shipping the Flight Information Container | 241

https://oreil.ly/7LHnY
https://oreil.ly/7LHnY
https://oreil.ly/sLI3B

There are plenty of registry hosting options available that support the Docker registry
API. All the major cloud providers can host a secure, private registry for you. You can
also host your own registry server using Docker’s open source implementation. For
this book, we’ll use Docker’s publicly hosted registry called Docker Hub. We’ve
chosen Docker Hub because it’s free to use, it’s popular, and it has good integration
options with GitHub Actions.

Key Decision: Use Docker Hub as a Container Registry
We’ll be shipping our microservice container into a Docker Hub container registry.

Configuring Docker Hub
Setting up a new Docker Hub registry is pretty easy. All you’ll need to do is log in to
Docker Hub and create one. You can create a repository for our flight application
example by following these steps:

1. Go to the Docker Hub home page in your browser.
2. Log in to Docker Hub.
3. Click the Create Repository button.
4. Give the repository the name “flights.”
5. Click the Create button.

In order to use Docker Hub, you’ll need to have a Docker account.
If you installed Docker when you set up your developer environ‐
ment, you’ll have a Docker ID already. If you don’t have an ID yet,
visit https://hub.docker.com and create one.

If you run into problems during this process, visit the Docker documentation site.
With a Docker account and a container repository, we’re ready to build and push con‐
tainers into it with a CI/CD pipeline.

Configuring the Pipeline
So far, we’ve been using GitHub Actions as our pipeline tool for all of our IaC-based
provisioning work. It does the job well enough for our needs, so for the sake of con‐
sistency we’ll use Actions again as the pipeline for our microservices container builds.
As an added bonus, we’ll be able to take advantage of actions that Docker has pub‐
lished that will make our workflow easier to integrate with Docker Hub.

242 | Chapter 10: Releasing Microservices

https://hub.docker.com
https://hub.docker.com
https://oreil.ly/owCnP

In Chapter 9, we walked through the process of creating a flight information micro‐
service. If you followed along with those steps, you should have a GitHub repository
that contains the code and makefiles (see Figure 10-7). We’ll create our GitHub
Actions workflow inside the repository so that our CI pipeline can live right along‐
side the code. If you don’t have your own flights service repository yet, you can create
a fork of this book’s example repository.

Figure 10-7. Build a container in the flight service repository

Just as we’ve done before, we’ll start our pipeline configuration by adding credentials
to the GitHub repository.

Configuring Docker Hub secrets
Our workflow will need to communicate with Docker Hub in order to publish a con‐
tainer. So we’ll need to add our Docker Hub access information as secrets in the
flights GitHub repository. Specifically, we’ll need to create and populate two secret
keys as defined in Table 10-3. These credentials are the same ones you would have
used to log in to Docker Hub.

Table 10-3. GitHub secrets for Docker Hub

Key Description

DOCKER_USERNAME Your Docker account identity

DOCKER_PASSWORD Your Docker account password

We’ve gone through the details of setting up secrets a few times already, but just as a
reminder, you’ll need to do the following:

1. Using your browser, navigate to the settings page of your forked ms-flights repos‐
itory in GitHub.

2. Select Secrets from the side navigation.
3. Add the secret you want to define by clicking New Secret.

Shipping the Flight Information Container | 243

https://oreil.ly/Microservices_UpandRunning_msflights

You may have noticed that we aren’t adding any AWS account secrets to this reposi‐
tory. That’s because we won’t be deploying into an AWS instance in this pipeline. This
workflow will only focus on pushing containers into the Docker Hub registry—not
the deployment of the containers into our staging environment.

This is a useful separation to create because we want our microservice containers to
be portable and environment agnostic (this means we won’t add any environment-
specific logic or values into the build). Using the same built container in all our test
and release environments should improve the reliability of our system overall.

All we need to do now is create the workflow that does the work of building, testing,
and shipping the container.

Shipping the flight service container
If you’ve forked the ms-flights repository, you’ll find that we’ve already written a Git‐
Hub Actions workflow for you that builds and ships the container. All you need to do
to is enable the workflow by navigating to the Actions tab in your forked repository,
where you’ll be prompted to enable the workflow. If you’ve built your own ms-flights
repository, you can copy the workflow code into your own workflows directory.

The GitHub Actions workflow we’ve defined is triggered by a release tag, and has the
following steps:

1. Runs unit tests on the code
2. Builds a containerized version of the microservices
3. Pushes the container to the Docker Hub registry

We’ve already added Docker Hub credentials to the repository, so the workflow is
ready to run. All we’ll need to do is push a tag called v1.0 into the release to trigger
the CI/CD workflow. We’ve done this a few times before using the command line and
a local copy of the repository. But to save time we’ll trigger this build using the Git‐
Hub browser-based UI.

In your browser, navigate to the Code tab of your forked ms-flights GitHub reposi‐
tory. On the righthand side of the screen, click the “Create a new release” link in the
Releases section, as shown in Figure 10-8.

244 | Chapter 10: Releasing Microservices

https://oreil.ly/Microservices_UpandRunning_mainyaml

Figure 10-8. Create a new release

Next, enter the value v1.0 in the tag version field, as shown in Figure 10-9. Then click
the Publish Release button at the bottom of the screen.

Figure 10-9. Setting the tag version

Publishing a GitHub release with a tag of v1.0 is the same as pushing the tag with the
Git CLI. The end result should be that our GitHub Actions workflow will have kicked
off. You can navigate to the Actions tab in your repository and verify that a workflow
named CICD has started. It will take a few minutes to run the makefile and package up
the container. When it’s done, the flights service container will be pushed and ready
to use in the Docker Hub registry.

To validate that the container has been shipped, access your Docker Hub account in
the browser and take a look at your repositories. You should see an entry for the
flights container that was just pushed. It will look something like Figure 10-10.

Shipping the Flight Information Container | 245

Figure 10-10. ms-flights container pushed

We now have a containerized ms-flights microservice ready to be deployed into our
staging environment. With our microservices pushed into the container registry, we
can move on to the work of deploying the container into our staging environment.

Deploying the Flights Service Container
We now have all the pieces in place to deploy the flights microservice. We’ve provi‐
sioned a test environment using our infrastructure pipeline and we’ve created a
deployable containerized image for the service. To complete our deployment work,
we’ll use the Argo CD GitOps deployment tool we installed in our infrastructure
stack in Chapter 7. When we’re finished with this section we’ll have a running version
of the flight information microservice deployed and ready for use.

To make repeatable deployment easier, we’ll be creating a new deployment repository
that will contain Helm packages. We first introduced Helm in “Setting Up Argo CD”
on page 171, when we were building our first environment. The Helm packages we
build will describe how a microservice should be deployed. When they’re ready and
pushed into the deployment repository, Argo CD will use them to deploy containers
into the staging environment (Figure 10-11).

Figure 10-11. The Helm package will define the service deployment

246 | Chapter 10: Releasing Microservices

All of this deployment work will happen within the world of Kubernetes, so let’s get a
basic understanding of what that means.

Understanding Kubernetes Deployments
In Chapter 7, we introduced and installed Kubernetes to help with operating and run‐
ning container-based microservices. Kubernetes is popular because it handles a lot of
the work that needs to be done to start containers, check on their health, find serv‐
ices, replicate them, and start them again when they fail. This gives our system the
resilience and self-healing qualities that will help us meet our guiding principles.

But a Kubernetes cluster still needs to be told what to do. It can’t deploy your micro‐
services without knowing where to find the container image. It can’t check on the
health of a microservice without knowing which API to call. We also need to provide
Kubernetes with some limits for the number of container instances we want it to cre‐
ate and how those services should be accessed over the network.

Kubernetes sees the world as a set of declarative configuration objects. To configure a
microservices deployment, you will need to describe the optimal state for a running
version of your container. Provided that you have described your running configura‐
tion correctly, Kubernetes will do the work behind the scenes to bring your service to
life—and keep it that way.

This declarative approach is similar to the way we used Terraform to describe our
infrastructure resources. In Kubernetes, we’ll define a set of special deployment
objects using the YAML format. The truth is that Kubernetes is incredibly compli‐
cated, so we won’t be able to go into a lot of detail in this book. But it’s helpful to
cover a few of the core objects so that we can understand how our microservices will
be deployed.

Understanding Kubernetes objects and controllers
There are many objects to learn about if you want to properly understand how to run
a Kubernetes platform. But for our purposes, we’ll just need a surface-level under‐
standing of five key objects in order to create a simple deployment package for our
flights microservice: Pods, ReplicaSets, Deployments, Services, and Ingress.

Pod

A Pod is an object that describes a basic workload unit. It defines one or more
Docker containers that need to be started and managed together.

ReplicaSet

ReplicaSets let Kubernetes know how many instances of a specific Pod it should
start up and run at the same time. You usually won’t need to work with Replica
Sets directly.

Deploying the Flights Service Container | 247

Deployment

The Deployment controller declares a desired state for a Pod and associated Repli
caSets. This is the main object you need to work with to create a Kubernetes
Deployment.

Service

A Service defines how applications in the Kubernetes cluster can access this Pod
over the network—even when there are multiple replicas running at the same
time. The Service object lets you define a single IP and port for accessing a
group of replicated Pods. You’ll almost always want to define a service for a
microservice deployment.

Ingress

The Ingress object allows you to identify an ingress route to your Service for
applications outside the cluster. The Ingress declaration can include routing
rules so that an ingress controller can route messages to the right Services.

In order to deploy our microservice, we’ll need to write declarative configurations for
the Ingress, Service, and Deployment objects. Although we won’t be writing config‐
urations for Pods and ReplicaSets as files in their own right, we’ll be including their
details in the Deployment object configuration. As we mentioned earlier, we’ll be
using Helm to package all of these files up.

Creating a Helm Chart
A Kubernetes Deployment can require a lot of communication with the cluster. You
need to make multiple calls to the Kubernetes API, letting it know how, when, and
where you want to deploy your containers. To help manage some of that complexity,
we’ll use the Helm packaging tool.

Helm is a package manager for Kubernetes. It gives us an easier way to manage the
installation and deployment of application into a Kubernetes cluster. We used Helm
earlier in the book to install off-the-shelf packages like Argo CD. Now we’ll write our
own Helm package so we can install our microservices just as easily.

To use Helm, we’ll first need to understand the three important concepts of charts,
templates, and values:

Charts
A chart is a bundle of files that describe a Kubernetes resource or deployment.
The chart is the core unit of deployment in Helm. We used pre-made charts ear‐
lier in the book when we deployed Kubernetes-based applications like Argo CD.

248 | Chapter 10: Releasing Microservices

Templates
Templates are files in a chart that describe a specific Kubernetes resource. They’re
called templates because they contain special instructions that Helm uses to
replace values in the file. For example, you can create a Service template for a
microservice and make the port number of the Service a templated value.

Values
Every chart has a values file that defines the values that should be used to popu‐
late a template. Value files are a useful way of managing the differences between
environments. Values can also be overridden when the Helm chart is installed.

To create a flights Helm package, we’ll need to create a Helm chart. Within that chart,
we’ll define a set of template files that declare how the flights service should be
deployed. Our template will have some parameterized values that will make it usable
for different types of environments. Finally we’ll create a values file for the staging
environment that populates our templates.

As we described in “Deploying the Flights Service Container” on page 246, we want
our Helm charts to be available for Argo CD to retrieve and use. So the first thing
we’ll need to do is create a microservices deployment repository to store and manage
them.

Creating the Microservices Deployment Repository
We’ll be keeping our Helm charts in a single “monorepo” of microservice deploy‐
ments. This fits well with our operating model and allows the release team to manage
the actual release of services in a holistic fashion. The microservices teams can still
own their own Helm deployment charts and deploy into the deployment repository
independently (see Figure 10-12).

Figure 10-12. Create a deployment package in the deployment repository

To get started, create a new GitHub repository called ms-deploy. Once it’s ready, cre‐
ate a local clone of the repository in your development environment. We’ve done this
a few times already, so we won’t go through all the details again. If you need help

Deploying the Flights Service Container | 249

remembering the process for repository creation, the GitHub Quickstart documenta‐
tion is a good place to start.

The deployment repository you’re creating now will become the
“source of truth” for the Argo CD GitOps deployment tool that
we’ll set up later in the chapter.

You should now have an empty Git repository ready to be populated with Helm
packages.

The easiest way to start working with Helm files is to use the Helm CLI application.
Helm’s CLI allows you to create, install, and inspect Helm charts by using the Kuber‐
netes API. In our examples, we’ll be using Helm version 3.2.4, which you can find at
this GitHub site.

If you don’t have the Helm CLI already, download and install it on your local machine
now. When you’ve done that, you’ll be ready to create the ms-flights Helm chart.

Create a Helm chart
One of the nice things about the Helm CLI is that it provides a handy function for
quickly bootstrapping a new chart. To create our skeleton chart, make sure you are in
the root directory of your ms-deploy repository and run the following command:

ms-deploy $ helm create ms-flights

When it’s done, Helm will have created a basic package that contains a chart.yaml file
which describes our chart, a values.yaml file we can use to customize chart values,
and a templates directory that contains a whole set of Kubernetes YAML templates for
a basic deployment.

The great thing about using Helm is that most of the boilerplate code that we’d need
to write for a basic microservices Kubernetes deployment has been handled for us
already. We’ll only need to make a few small changes to the templates that Helm has
generated for us to have a working, deployable package.

In particular, we’ll need to update the templates/deployment.yaml file just a little bit to
make it more specific to the container that we want to deploy.

Update the flights deployment template
The /ms-flights/templates/deployment.yaml file is a Kubernetes object description file
that declares the target deployment state for a Pod. We’ve already mentioned that
Kubernetes objects can get pretty complicated. The good news is that the file that
Helm generated for us includes a lot of placeholder values that we can leave as is. But

250 | Chapter 10: Releasing Microservices

https://oreil.ly/TdrGG
https://oreil.ly/TdrGG
https://oreil.ly/ohMF7

we’ll need to make a few small changes for this deployment to work for our flights
microservice.

Let’s start by getting a basic understanding of some key YAML properties in the
deployment object:

apiVersion

Every Kubernetes YAML file specifies the version of a named Kubernetes API
that this file uses.

kind

This identifies the type of Kubernetes object. In this case, the Kubernetes object is
Deployment.

spec

The specification for the Kubernetes object—this is the heart of the description.

spec.replicas

Specifies the number of replicas we want for this deployment. Kubernetes will
create ReplicaSets for us based on this value.

spec.template

The template property of the Deployment specification is the template for the
Pod that we are planning to deploy. Kubernetes uses this template to provision
the pods we are deploying.

spec.template.containers

The containers property of a Pod template identifies the container image and
environment values that Kubernetes should use when it creates a replica of a Pod.

For our simple deployment, we’re going to use the default values that Helm has gener‐
ated for most of the Deployment object’s properties. But we’ll need to update
spec.template.containers so that it works for the ms-flights container that we’ve
built.

Update the YAML for the containers property so that it contains the env, ports,
livenessProbe, and readinessProbe values shown in Example 10-3.

Example 10-3. ms-flights template specification

spec:
[...]
 template:
 [...]
 spec:
 [...]
 containers:

Deploying the Flights Service Container | 251

 - name: {{ .Chart.Name }}
 [...]
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 env:
 - name: MYSQL_HOST
 value: {{ .Values.MYSQL_HOST | quote }}
 - name: MYSQL_USER
 value: {{ .Values.MYSQL_USER | quote }}
 - name : MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 name: {{ .Values.MYSQLSecretName }}
 key: {{ .Values.MYSQLSecretKey }}
 - name: MYSQL_DATABASE
 value: {{ .Values.MYSQL_DATABASE | quote }}
 ports:
 - name: http
 containerPort: 5501
 protocol: TCP
 livenessProbe:
 httpGet:
 path: /ping
 port: http
 readinessProbe:
 httpGet:
 path: /health
 port: http
 [...]

A completed example of the ms-flights Helm chart is available at
this book’s GitHub site.

The update we’ve made to the containers section includes the following:

• A templated set of environment variables for connecting to a MySQL database
(we’ll set the actual values later)

• The TCP port that the flights microservice will bind to and our container exposes
• Liveness and readiness endpoints that Kubernetes will use to check if the Pod is

still alive (as defined in Chapter 9)

That’s all we need to customize to make the generated Helm templates work for us.
With the deployment template we’ve created, we have a parameterized Kubernetes
Deployment object defined. We’ll only need to define some values to use in the
template.

252 | Chapter 10: Releasing Microservices

https://oreil.ly/Microservices_UpandRunning_msflights

Set package values
One of the nice things about using a Helm package for deployment is that we can
reuse the same template for lots of different environments by changing a few values.
One way to set those values is through the Helm client at the time of installation. We
did this earlier in the book when we installed the Helm package for Argo CD.

Another option is to create a file that serializes all of the values you want to use in a
single place. This is the approach we’ll take for our deployment package. This gives us
the advantage of being able to manage our deployment value files as code. We’ll use
the values.yaml file that Helm has generated for us already. You’ll find that file in the
root directory of the ms-flights chart.

First, we’ll need to update the details for the Docker image. Open the values.yaml file
in your favorite text editor and find the image key at the beginning of the YAML file.
Update image with the details in Example 10-4.

Example 10-4. Image example

replicaCount: 1

image:
 repository: "msupandrunning/flights"
 pullPolicy: IfNotPresent
 tag: "v1.0"

This example uses the container we’ve already built for you. If you
want to use your own, you’ll need to change the values of reposi
tory and tag.

Next, we’ll add MySQL connection values so the microservice can connect to the
staging environment’s database services. Add the following YAML to your values file
(you can add it immediately after the tag property):

image:
[..]

MYSQL_HOST: rds.staging.msur-vpc.com
MYSQL_USER: microservices
MYSQL_DATABASE: microservices_db
MYSQLSecretName: mysql
MYSQLSecretKey: password

Finally, find the ingress property near the end of the YAML file and update it with
the following text:

Deploying the Flights Service Container | 253

ingress:
 enabled: true
 annotations:
 kubernetes.io/ingress.class: traefik
 hosts:
 - host: flightsvc.com
 paths: ["/flights"]

This definition lets our Ingress service know that it should route any messages sent to
the host flightsvc.com with a URI of /flights to the flight information microservice. We
won’t need to actually host the service at the flightsvc.com domain, we’ll just need to
make sure that HTTP requests have those values if we want them to reach our
service.

For a production environment, we’d probably have more values and template changes
we’d want to make. But to get up and running, this is more than enough.

Test and commit the package
The last thing we’ll need to do is a quick dry-run test to ensure that we haven’t made
any syntax errors. You’ll need to have connectivity to your Kubernetes cluster, so
make sure you still have that environment accessible. Run the following command to
make sure that Helm will be able to build a package:

ms-flights$ helm install --debug --dry-run flight-info .

If it works, Helm will return a lot of YAML that shows the objects that it would gener‐
ate. It should end with something that looks like this:

[... lots of YAML...]
 backend:
 serviceName: flight-info-ms-flights
 servicePort: 80
NOTES:
1. Get the application URL by running these commands:
 http://flightsvc.com/flights

If you’re having trouble getting your Helm package to work, check
out a reference example for the flights service package at this book’s
example repository.

If everything looks good, commit the finished Helm files to the GitHub repository:

ms-flights$ git add .
ms-flights$ git commit -m "initial commit"
ms-flights$ git push origin

Now that the package files are available in the deployment monorepo, we’re ready to
use them with the Argo CD GitOps deployment tool.

254 | Chapter 10: Releasing Microservices

https://oreil.ly/Microservices_UpandRunning_msflights_ex
https://oreil.ly/Microservices_UpandRunning_msflights_ex

Argo CD for GitOps Deployment
So far, we’ve created a Helm chart that gives us a more consumable way of deploying
microservices into the Kubernetes cluster. Helm comes with the capability of per‐
forming deployments into Kubernetes clusters, so we’ve already done enough to be
able to deploy the flight information service into the staging environment.

But with what we have now, this would be a very manual operation and we’d need to
use the Helm CLI for every deployment. We’d also need to somehow keep track of the
current state and version of deployed services so that we’d know if a new deployment
is necessary when our deployment repository is updated.

Instead, we can do something better. Earlier in Chapter 7, we introduced Argo CD as
our continuous deployment tool. Now is our opportunity to use it and improve the
way we deploy services into our environments.

Argo CD is a GitOps deployment tool, designed to use a Git repository as the source
for the desired deployment state for our workloads and services. When it checks a
repository that we’ve specified, it determines whether the target state we defined
matches the running state in the environment. If it doesn’t, Argo CD can “synchron‐
ize” the deployment to match what we declared in our Helm charts.

This declarative approach fits well with our principles and the other tools that we’ve
adopted, like Terraform. To make all this magic happen, we just need to log in to the
Argo CD instance that we’ve installed in staging, point to our ms-deploy repository,
and set up a synchronized deployment.

Make sure you’ve added the MySQL password Kubernetes Secret as
described in “Create a Kubernetes secret” on page 240. Otherwise,
the flight information service won’t be able to start up.

Log in to Argo CD
Before we can log in to Argo CD, we’ll need to get the password for the Argo admin‐
istrative user. Argo CD does something clever and makes the default password the
same as the name of the Kubernetes object that it runs on. Run the following kubectl
command to find the Argo CD Pod:

$ kubectl get pods -n "argocd" | grep argocd-server
NAME READY STATUS RESTARTS AGE
msur-argocd-server-c6d4ffcf-9z4c2 1/1 Running 0 51s

Copy the name of the Pod somewhere as that will be the password we’ll use to log in.
For example, in the result shown, the password would be msur-argocd-server-
c6d4ffcf-9z4c2. In order to access the login screen and use our credentials, we’ll

Deploying the Flights Service Container | 255

need to set up a port-forwarding rule. That’s because we haven’t properly defined a
way to access our Kubernetes cluster from the internet. But thankfully kubectl pro‐
vides a handy built-in tool for forwarding requests from your local machine into the
cluster. Use the following to get it running:

$ kubectl port-forward svc/msur-argocd-server 8443:443 -n "argocd"
Forwarding from 127.0.0.1:8443 -> 8080
Forwarding from [::1]:8443 -> 8080

Now you should be able to navigate to localhost:8443 in your browser. You’ll almost
definitely get a warning indicating that the site can’t be trusted. That’s OK and is
expected at this point. Let your browser know that it is OK to proceed and you should
then see a login screen that looks like the one shown in Figure 10-13.

Figure 10-13. Argo CD login screen

Enter admin as your user ID and use the password you noted earlier and log in. If you
can log in successfully, you’ll see a dashboard screen. Now we can move on to creat‐
ing a reference to our flight information service deployment.

256 | Chapter 10: Releasing Microservices

Sync and deploy a microservice
In Argo CD, a microservice or workload that needs to be deployed is called an appli‐
cation. To deploy the flight-information microservice we’ll need to create a new
“application” and configure it with values that reference the Helm package in the Git
repository that we created earlier.

Start by clicking the Create Application or New App button on the dashboard screen.
When you click it, a web form will slide in from the righthand side of the screen that
you’ll need to populate. This is where you define the metadata for the application and
the location of the Helm package. In our case, we’ll want Argo CD to pull that from
the deployments monorepo and the ms-flights directory within it.

Use the values in Table 10-4 to set up your flight-information microservice deploy‐
ment. Make sure you replace the value YOUR_DEPLOYMENTS_REPOSITORY_URL with the
URL of the deployment repository from “Creating the Microservices Deployment
Repository” on page 249 so that Argo CD can access your Helm packages.

Table 10-4. Flight-information service values

Section Key Value
GENERAL Application name flight-info

GENERAL Project default

GENERAL Sync policy manual

SOURCE Repository URL YOUR_DEPLOYMENTS_REPOSITORY_URL

SOURCE Path ms-flights

DESTINATION Cluster in-cluster (https://kubernetes.default.svc)

DESTINATION Namespace microservices

When you are done filling in the form, click the Create button.

If you run into any trouble, consult the Argo CD documentation
for instructions on setting up an application.

If you’ve created the application successfully, Argo CD will list the flight-info applica‐
tion in the dashboard, as shown in Figure 10-14.

Deploying the Flights Service Container | 257

https://kubernetes.default.svc
https://oreil.ly/kZZJP

Figure 10-14. Flight-information application created

However, while the application has been created, it’s not yet synchronized with the
Deployment declaration, and the flight-info application in our cluster doesn’t match
the description in our package. That’s because Argo CD hasn’t actually done the
Deployment yet. To make that happen, click the flight-info application that we’ve just
created, click the Sync button, and then click the Synchronize button in the window
that slides in, as shown in Figure 10-15.

Figure 10-15. Synchronize the flight-information application

When you click Synchronize, Argo CD will do the work it needs to do to make your
application match the state you’ve described in the Helm package. If everything goes
smoothly, you’ll have a healthy, synchronized, and deployed microservice, as shown
in Figure 10-16.

258 | Chapter 10: Releasing Microservices

Figure 10-16. Deployed flight service

If your deployment status isn’t “healthy,” try clicking the pod (the
last node on the far right of the tree). You’ll be able to view events
and log messages that can help you troubleshoot the problem.

Our container has been deployed in the Kubernetes cluster, its health checks and liv‐
eness checks have passed, and it is ready to receive requests. This is a big milestone!

Now, let’s try testing the flights service with a simple request.

Test the flights service
Our flights microservice is now up and running in our AWS-hosted staging environ‐
ment. In order to test the service with a request message, we’ll need to access Traefik’s
load balancer, which will route our request to the containerized service. The first
thing we’ll need is the load balancer’s network address. Since we didn’t set up a DNS
entry, AWS will have given us a random address automatically. To get that address,
run the following kubectl command:

$ kubectl get svc ms-traefik-ingress

You should get back something that looks like this:

NAME TYPE CLUSTER-IP EXTERNAL-IP
ms-traefik-ingress LoadBalancer 172.20.149.191 ab.elb.amazonaws.com

The EXTERNAL-IP is the address of the Traefik load balancer. Make a note of it for our
test request.

We’ll be using curl to send a request message to the flights microservice. If you don’t
have a local copy of curl, you can get it from this site. If you’ve never used it before,
curl is a powerful command-line tool for sending messages to URL-based addresses.
We’re using curl because it has a lot of useful options, including the ability to set a
host header in the HTTP request. That’s helpful for us because we need to set a host
of flightsvc.com for our ingress routing rule to work.

Deploying the Flights Service Container | 259

https://oreil.ly/xtfjJ

Run the following curl command to send a test request message to the flights service
(replacing {TRAEFIK-EXTERNAL-IP} with the address for your load balancer):

curl --header "Host: flightsvc.com" \
 {TRAEFIK-EXTERNAL-IP}/flights?flight_no=AA2532

If all has gone well, you’ll get the details of that flight as a JSON-formatted response.

You can use a dedicated API testing tool such as Postman or
SoapUI to get a more user-friendly formatted version of the
response message.

The HTTP request we’ve just made calls the ingress service, which in turn routes the
message to the flights microservice based on the ingress rule we defined earlier in this
chapter. The flights microservice retrieves data from the database service we provi‐
sioned and returns a result to us through the load balancer. With that request, we’ve
been able to bring together all the parts of our architecture deployment and test an
end-to-end microservices architecture!

All that’s left is to clean up, so we don’t end up paying for AWS resources that we
aren’t using.

AWS bills you for EKS resources even when they aren’t handling
traffic, so make sure you tear down your infrastructure if you aren’t
using it.

Clean Up
As we’ve done before, we’ll use a local Terraform client to bring down the infrastruc‐
ture. Make sure you’re in the directory where your staging Terraform files are and run
the following command:

infra-staging-env $ terraform destroy

When it’s successfully completed, our Kubernetes-based staging environment will be
destroyed. You can check to make sure that the resources have been destroyed by
using the AWS CLI or the AWS browser-based console. We gave you some examples
of CLI commands you can run in Chapter 6.

260 | Chapter 10: Releasing Microservices

Summary
At the beginning of this chapter we warned you that we’d be doing a lot of work. All
that work paid off as we ended up with the end-to-end deployment of the microser‐
vices architecture that we’ve been building throughout this book. We also got to reuse
some of the tools and practices we established earlier to get more done in less time.

In this chapter we updated our infrastructure template to support the dependencies
from our microservices teams. We implemented a build and integration pipeline in
our microservice code repositories, and we built a new deployment repository and
tool-based process to get services deployed.

Hopefully, you’ve been able to see how the decisions we made at deployment time
have been heavily influenced by the earlier decisions we made on principles, operat‐
ing models, infrastructure, and design. They’ve all come together to form an end state
that allowed us to build a running implementation.

But the real test of a microservices system is how it handles change. That’s what we’ll
cover in our next chapter.

Summary | 261

CHAPTER 11

Managing Change

We have now built a microservices system that is optimized to reduce change costs.
We’ve done it quite quickly and with a great variety of tools, technologies, and reposi‐
tories. In this chapter, we’ll take a step back and consider the system we’ve built from
the perspective of change. We’ll explore what change looks like for the system we’ve
built. We’ll take a look at the typical kinds of change you’ll need to do and the pat‐
terns and methods that work well to support them.

Change is an important factor because of the impact it has. Poorly designed software
can end up costing organizations a lot of pain. As we highlighted in Chapter 1, one of
the benefits of a microservices system is that it makes change faster and safer.

Also, change will always have a cost. In a software system, that cost is a combination
of time, money, and impact to people. To get the most out of our microservices sys‐
tem, we need to minimize change cost and make changes that have the greatest
impact. Reducing the cost of change gives all of our teams more freedom to experi‐
ment, optimize, and improve. Focusing change activities gives us better results from a
finite change budget.

Let’s start by getting a better understanding of the kinds of changes we can expect in a
microservices system and the best way to make decisions about change.

Changes in a Microservices System
In a microservices system, change should be a feature, not a problem or a bug. That
means you should be able to change the system to make it better and get more value
from the software you’ve built. When people think about software change, they often
think about extrinsic drivers—the things that come from business or user input. For
example, here are some common reasons to make changes in your system:

263

• Supporting a new product launch
• Resolving a logic bug that is degrading the user experience
• Integrating with a new partner

These are all important reasons to change and our architecture should facilitate these
kinds of changes to make them as cost-effective as possible. But it’s important to
understand that the microservices style is an optimization technique. That means we
should consider intrinsic drivers as well. The following changes come from our
observation of the system itself:

• Splitting a microservice to reduce code complexity
• Redeploying infrastructure to avoid drifting from the infrastructure code
• Optimizing the CI/CD pipeline to deliver changes faster

There’s no doubt that you’ll need to support extrinsic change. But to get the best value
from your system you’ll need to plan for and execute intrinsic change as well. A good
way to adopt this continual improvement mindset is to use data and measurements to
guide your decisions.

Be Data-Oriented
A classic problem in software development is overengineering and premature optimi‐
zation. This happens when we design software or architecture to resolve a problem
that hardly ever occurs. Or when our solution to a predicted problem is more costly
than the problem itself will ever be.

This can be a danger for a microservices system as well. That’s why it’s a good idea to
use data and measurements to guide your decision making about when to make
changes—especially the intrinsic improvement ones. Without data, you’ll be guessing
and you’ll probably end up working hard to improve parts of the system that actually
don’t need any help. Meanwhile, other pressing problem areas may go undetected.
With finite resources, you can’t afford to work that way.

Product teams use data to make better informed decisions about the changes they
want to make. Businesses use objective and key results (OKRs), key performance
indicators (KPIs), net promoter scores, satisfaction surveys, and revenue numbers to
help shape their strategic decision making and their backlog of changes.

You’ll need something similar to inform your improvement and optimization plans.
For example, consider collecting the following project, design, and runtime metrics to
get a better understanding of your improvement opportunities:

264 | Chapter 11: Managing Change

• Change time per microservice
• Frequency of changes per microservice
• Number of microservices changed per change request
• Lines of code in a microservice (as a datapoint, not a constraint!)
• Runtime latency per microservice
• Dependencies between microservices

We didn’t implement observability or reporting in our microser‐
vices architecture. That’s because we had limited space and wanted
to focus on some of the more foundational elements. But the good
news is that all the hooks are there for you to extend the system to
give you some of the metrics we’ve been describing.

Collectively, these kinds of analytic metrics can give you a better, holistic picture of
where improvements can be made. Then you can make a decision about where to
best spend your efforts. Of course, you’ll also need to balance the improvements you
can make against the impact that a change will have.

The Impact of Changes
There are many potential impacts that come from software change, but four in partic‐
ular seem to cause the most strife for modern organizations: implementation time,
coordination time, downtime, and consumer impact. When we review change costs
in a microservices system, it’s a good idea to consider these focus areas. Let’s take a
quick look at each of them:

Implementation time
A core part of any change cost is the time it takes to actually make the change.
This includes the time required to understand the current state, make the desired
changes, test changes, and update the production environment. A big factor for
implementation time is the readability, learnability, and maintainability of the
components to be changed.

Coordination time
In order to implement a change, there will almost always be some form of com‐
munication between teams. Coordination time is a subset of implementation
time, but it’s worth calling out on its own. In fact, it’s so important, we’ve men‐
tioned it a few times in this book. Coordination time can include the amount of
time spent getting access to resources and gaining permission and agreement on
change activities and the general “organizational friction” that comes from

Changes in a Microservices System | 265

working in a large organization. Coordination time is often a factor of organiza‐
tional design and structure.

Downtime
Downtime is a measurement of how long the system or a system component
remains unavailable while a change is being implemented. Years ago, downtime
was an accepted part of the software change process. But times and expectations
have changed. Now there is increasing pressure on technology teams to minimize
the downtime required for changes. In fact, in a microservices system it’s com‐
mon to strive for a “zero-downtime” change model in which the system remains
constantly available.

Consumer impact
An often forgotten impact is the cost that a change has on the users of the system.
Downtime captures one form of consumer impact, but even in a “zero-
downtime” model there can be costly impacts that could have been avoided. For
example, a change to an infrastructure module may have wide-reaching impact
on microservice developer teams. Similarly, a change to an interface can break
the code of every component that uses it.

Software architecture has a big role to play in the costs and impacts of change across
all four of the lenses we’ve described. But another part of the story is the way that
changes are applied. Microservices architectures, cloud infrastructures, and DevOps
practices have enabled practices that are a huge leap forward. Let’s take a look at two
modern deployment patterns as well as an older one that has managed to stick
around.

Three Deployment Patterns
There are lots of different ways to apply changes and deploy software components.
Before we dive into the changeability of the architecture we’ve built, it’s worth review‐
ing three deployment patterns that we’ll use when we make changes in our system:
blue-green, canary, and multiple versions. We’ll start by looking at blue-green
deployments.

Blue-green deployment
In a blue-green deployment, there are two parallel environments maintained. One is
live and accepts traffic while the other is idle. Change is applied to the idle environ‐
ment and when ready, traffic is routed to the changed environment. The two environ‐
ments now switch roles with idle becoming live and live becoming idle, ready for the
next change.

This is a useful deployment pattern because it allows you to make changes in a pro‐
duction environment safely. Switching the traffic over means that you don’t have to

266 | Chapter 11: Managing Change

https://oreil.ly/zj7g-

worry about repeating the change in a live system. The actual colors of the environ‐
ments are unimportant—the key to this pattern is that the two environments inter‐
change roles between live and idle.

A benefit of this pattern is that it can vastly reduce downtime, all the way down to a
zero-downtime model. However, maintaining two environments requires careful
handling of persistent systems like databases. Persistent, changing data needs to be
synchronized, replicated, or maintained entirely outside of the blue-green model.

Canary deployment
A canary deployment is similar to a blue-green deployment, but instead of maintain‐
ing two complete environments, you release two components in parallel. The “can‐
ary” in this pattern is the version that acts as a “canary in a coal mine”, alerting you to
danger early. For example, to perform a canary deployment of a web application,
you’d release a new canary version of the web application alongside the original web
application that continues to run.

Just like the blue-green pattern, canary deployments require traffic management and
routing logic in order to work. After deploying the new version of an application,
some traffic is routed to the new version. The traffic that hits the canary version
could be a percent of the total load or could be based on a unique header or special
identifier. However it’s done, over time more traffic is routed to the canary version
until it eventually gets promoted to full-fledged production state.

Although the canary pattern is similar to blue-green, it has the added advantage of
being finer-grained. Instead of maintaining an entire duplicate environment, we can
focus on a smaller, bounded change and make that change within a running system.
This can cause problems if the canary we are deploying impacts other parts of our
system. For example, if our canary deployment alters a shared system resource in a
new way, even handling 1% of traffic in the canary could have catastrophic effects.

But in a system that’s designed for independent deployment, the canary pattern can
work quite well. When changes are made to components that are well bounded and
own their own resources, the blast radius of damage is limited. So it’s a good pattern
to have in your tool belt if you are working with the right type of architecture. As
we’ll see, the canary pattern turns out to be a good fit for the microservices architec‐
ture we’ve built in this book.

Multiple versions
The last pattern to cover is one that considers users and clients as part of the change
process—running multiple versions in parallel. The blue-green and canary deploy‐
ment patterns we’ve covered already use a mechanism of temporarily running parallel
instances (sometimes called the expand and contract pattern). But in both of those
cases, you’d typically run your new and old instances privately, not sharing details of

Changes in a Microservices System | 267

https://oreil.ly/QXtSZ
https://oreil.ly/hr1Vk

the new function until it’s safe to use. The routing decision is implicit and hidden
from users of the system.

The multiple versions pattern makes changes more transparent to the users and cli‐
ents of the system. In this deployment pattern we explictly version a component or
interface and allow clients to choose which version of the component they want to
use. In this way, we can support the use of multiple versions at the same time.

The main reason to employ this technique is if we’re making a change that will
require a dependent system to make a change as well. We use this pattern when we
know people we don’t coordinate with will need to do work for the change to be com‐
pleted. A classic example of this situation is when you want to change an API in a way
that will break client code. In this scenario, managing migration for all parties would
require significant coordination effort. Instead, we can keep older versions running
so that we don’t need to wait for every client to change.

There are some significant challenges to using this approach. Every version of a com‐
ponent we introduce brings added maintenance and complexity costs for our system.
Versions need to be able to run safely together and parallel versions need to be con‐
tinually maintained, supported, documented, and kept secure. That overhead can
become an operational headache and can slow down changeability of the system over
time. Eventually, you’ll need to migrate users of old versions and do some contraction
of versions.

There are some systems that almost never contract their versions.
For example, at the time of this writing, the Salesforce SaaS API is
on version 49 and supporting 19 previous versions in parallel!

We now have a decent framework for assessing the impact of change and a set of typi‐
cal deployment patterns we can use to describe how change might be handled. Now
we can dive into an evaluation of the architecture we’ve built from a change perspec‐
tive across infrastructure, microservices, and data. We’ll start by examining the
changeability of our infrastructure platform.

Considerations for Our Architecture
If you followed along with the instructions in this book, you’ll have built a pretty
advanced microservices architecture in a fairly short amount of time. That speed of
engineering is a testament to the incredible tools, services, and software that are avail‐
able for us to use. But building something fast is no good if it doesn’t do the job it’s
supposed to do. For us, this means the architecture we built should hold its own
when it comes to changeability.

268 | Chapter 11: Managing Change

In this section, we’ll take a tour of the system and get a closer look at how the deci‐
sions we’ve made have impacted the changeability of the architecture. We’ll look at
change through the factors of implementation costs, coordination time, downtime,
and consumer impacts that we introduced earlier in this chapter. To make things eas‐
ier, we’ll split the architecture into three subsystems: infrastructure, microservices,
and data, considering each in turn. Let’s start by examining our infrastructure.

Infrastructure Changes
In Chapter 7, we developed a Terraform-based platform for our microservices that
included networking, Kubernetes, and a GitOps deployment tool. Later, we added
MySQL and Redis databases to the stack based on the emerging needs of the micro‐
services teams. It’s realistic to expect the infrastructure platform to continue to
change as the needs of users and teams evolve, and demand patterns and business
goals change.

For our infrastructure, we can divide change into two categories: changes that extend
the platform with new resources and changes that alter existing platform resources.
Creating new resources is a form of extension that has little impact on the running
system, while changes to existing resources need to be managed more carefully.

Examples of adding new resources to our architecture would be:

• Implementing a new event-streaming infrastructure using AWS SNS for new
microservices that are being developed

• Provisioning an Elastic Container Service (ECS) instance and VPC for the instal‐
lation of a third-party application

• Adding a new operator account to the IAM system

Here are some examples of changes that would alter an existing resource:

• Changing the network design of the VPC our EKS service is deployed within
• Upgrading the MySQL version of our RDS instance
• Modifying the configuration of the Kubernetes cluster

We’ll need to consider both types of changes when we assess the changeability of our
infrastructure. Let’s start by looking at implementation costs.

Considerations for Our Architecture | 269

Infrastructure change: Implementation costs
The implementation cost of making infrastructure changes is a function of how diffi‐
cult a change is to both understand and execute. This is where the investment we
made in our infrastructure design helps. Our decisions to embrace the principle of
immutable infrastructure, build a CI/CD pipeline, and write IaC combine to greatly
reduce the cost of making changes.

When it comes time for you to make an infrastructure change, you can employ a
change process that looks something like this, thanks to the tools we’ve implemented:

1. Decide on the infrastructure change you want to make.
2. Identify the infrastructure code you need to change (e.g., do you need to create a

new Terraform module? Are you just updating an environment definition?).
3. Test the infrastructure change in an infrastructure development environment.
4. Try to deploy applications and microservices to the updated infrastructure.
5. Run tests and release (e.g., integration tests, performance tests, and end-to-end

tests).

By adopting the principle of IaC, the changeability of our infrastructure design has
improved significantly. We only ever make changes through the infrastructure pipe‐
line, so we know that if it’s not in the code, it’s not in the infrastructure.

We use the same code modules in every environment, so we know that if your infra‐
structure changes work in a development environment, they should work in the pro‐
duction environment as well. Finally, our automated pipeline ensures that our
infrastructure code and tests will be run in the same way consistently and repeatedly.

What we’ve done in our system is to drive variation out of the change process. With
less uncertainty for us to worry about, we can focus more on making the change
itself. Writing IaC requires a bit more up-front effort, but the payoff when it comes to
changes makes it a worthwhile investment.

Overall, the infrastructure implementation costs should be lower with our architec‐
ture than they would be if we had just made changes directly using the AWS console.

Infrastructure change: Coordination costs
When we developed our operating model in Chapter 2, we made an important deci‐
sion about how infrastructure work would be done. We decided that a single team
called the platform team would be responsible for designing, maintaining, and run‐
ning our cloud-based infrastructure. Centralizing the infrastructure design within
this team means that we’ll pay a relatively low coordination cost for decision making.
That’s because we won’t need to gain consensus among all of the parties in your sys‐
tem whenever an infrastructure change is needed. Instead the platform team has

270 | Chapter 11: Managing Change

independent authority and autonomy (and responsibility!) over infrastructure
changes.

In practice, it’s difficult to offer an infrastructure platform in a pure x-as-a-service
manner. Enablement, engagement, and agreement are bound to be needed for micro‐
services teams to use the platform for delivery. The centralized nature of the platform
team is also a potential problem. What happens when teams require conflicting
changes? How are new changes tested across all the teams?

The platform model only works if there are tools and processes to properly enable a
self-service, low-coordination mode of interaction. That requires a lot of up-front
and continual work and shouldn’t be underestimated. For example, a Terraform-
based environment shouldn’t be offered to the microservices teams without appropri‐
ate documentation, issue tracking, and a reasonable level of support.

In a full-fledged microservices system for any reasonably sized
organization, infrastructure changes almost always incur additional
coordination costs from gating processes. The potential impact of a
poor infrastructure decision is high, so it’s common to require
security, business, and risk checks before an infrastructure change
can be deployed. One practical way to reduce coordination costs is
to treat these groups as consumers of the platform and design the
solution accordingly.

Infrastructure change: Downtime
It’s difficult to make infrastructure changes without introducing a little bit of down‐
time. That’s because infrastructure is such a foundational part of a software system.
For example, how do you upgrade a Kubernetes server or make a major network
change without bringing the system down temporarily?

The infrastructure system we’ve built can handle extensions and additions pretty
easily. All that’s needed is some Terraform code that will run through the pipeline.
However, our system isn’t great at handling changes to existing parts without at least a
small outage.

A big challenge for us is the immutable nature of our infrastructure. If we want to
make even a small change to a component, we need to first destroy it. That can be a
problem if we’re hoping to handle workload and traffic at the same time.

To make these kinds of in situ infrastructure changes, we could adopt the blue-green
deployment pattern (see “Blue-green deployment” on page 266). In fact, we’d even
take it a step further and use a phoenix deployment pattern. This pattern is similar to
blue-green, but instead of having an environment idling, we’ll create new environ‐
ments as needed using our IaC pipeline.

Considerations for Our Architecture | 271

https://oreil.ly/enM_P

This means we could spin up a new environment with our changes. After some test‐
ing we could deploy all our microservices into it and if everything looked good, we
could switch our live traffic over to the new environment. For example, an API gate‐
way or load balancer would give us the traffic-routing features we’d need to facilitate
this kind of maneuver.

But our big problem is data. We don’t have a clean separation between our data
instance and our application instances. For the sake of brevity and simplicity, we’ve
thrown all of our databases in the same network as the microservice instances. That
means we don’t have an easy way of spinning up a new environment without doing
some heavy data replication work. That’s going to add a lot of complexity to the
change process.

If zero downtime is an important principle for you, you’ll need to reconsider the
infrastructure design from the data perspective.

Infrastructure change: Consumer impact
Consumers of our applications won’t interact with the infrastructure directly. How‐
ever, since we’ve made the decision to offer the infrastructure “as a service” within our
operating model, we need to consider the impact of changes on our microservices
teams.

When you change any part of the infrastructure, you’ll need to consider how that
change might impact all of the microservices teams consuming and using the plat‐
form as a service. This can turn out to be a big coordination activity as the number of
microservices in your system grows.

In truth, the architecture we’ve built doesn’t do a lot to address this problem. If you
use the architecture as is, you’ll need to do some work to make sure that infrastruc‐
ture changes won’t break existing microservices. There will need to be some testing
involved whenever changes are made.

In order to keep coordination costs light, the platform and microservices teams need
to establish a method of communicating changes, keeping automated tests up to date,
and sharing the responsibility for overall reliability and quality in the system. As
always, that requires a mix of Team Topologies, architecture, and good tools and
technologies.

One thing we can expect for certain is that the number of microservices will grow
beyond the two services we used in our flight system example. So there will be lots of
changes for the microservices teams to handle. Let’s dive into those changes next.

272 | Chapter 11: Managing Change

Microservices Changes
Most of the changes you’ll need to make in the system will be to the microservices
themselves. When you want to offer new products, change the way that a user experi‐
ence works, or just fine-tune the system, chances are you’ll be making changes to the
microservices subsystem. That may mean creating a new microservice, updating the
logic of an existing service or even retiring, splitting, or combining services.

In our up and running architecture, it’s easy to imagine that we may want to add
more features to our travel system. For example, we might want to add train bookings
to our search and reservation system. In that case, it’s easy to imagine that we’d be
creating a new cluster of microservices and updating the API in the gateway to sup‐
port those new, extended features.

As we’ve seen across all of our domains, adding something new is usually the easiest
kind of change we can make. Things get more complicated when we need to change a
service that is already running. Consider the complications that might arise from
these kinds of changes:

• Splitting the flight-information microservice into services for domestic and inter‐
national flights

• Updating the flight-reservation service with a new “tentative” booking state
• Merging the flight-information and flight-reservation microservices together

In all of these cases, change management gets more complicated because these serv‐
ices are in use. Thankfully, the architecture we’ve built together does a great job of
minimizing these impacts. Let’s take a look at microservices changes through the lens
of our four key change impacts.

Microservices: Implementation costs
When it comes to changing a microservice, the main implementation costs come
from being able to understand, maintain, and test the code. In our architecture, we’ve
made some important decisions to bring down the cost of implementation:

Used Event Storming to rightsize microservices
Event Storming helped us define boundaries for our microservices that were
internally consistent and addressed specific parts of our domain. The net effect is
that code comprehension should be improved and changes can be implemented
in smaller batches with speed.

Considerations for Our Architecture | 273

All microservices use microservice-bootstrap
The microservice-bootstrap framework gives our teams a consistent way of
documenting and testing the microservices they develop. By making this frame‐
work mandatory we’ve reduced some of the burden of making and testing
changes across the organizations. Developers can quickly become familiar with
the tool, and the work of testing and building services can become a common
competency across teams.

Used CI/CD for microservices
Using a CI/CD pipeline means that all of our code changes are tested, linted, and
validated. The net effect of this is a greater chance that the code is in a usable,
maintainable state by the time it comes to make a new change.

Overall, the rightsizing of the service and the DevOps tooling we’ve put in place
should greatly reduce the costs of making code changes to microservices in our
architecture.

Microservices: Coordination costs
Coordination costs can be a big problem for making software changes. Over time, a
simple piece of application code can grow to contain a mess of interdependencies
with other libraries, components, and systems. Those interdependencies make it diffi‐
cult to make changes quickly because of the organizational friction that comes from
having to work with many other people and teams to understand if a change can be
made safely.

In our architecture, we’ve made a few decisions that should help reduce this cost. In
“What Are Microservices?” on page 2, we described a definition of microservice that
highlighted characteristics of independence for our microservice engineering and
release work. This line of thinking led us to make decisions that could increase the
independence of a microservices team:

• Every microservice is owned by only one team.
• Every microservice has its own repository and CI/CD pipeline.

Taken together, these decisions increase the autonomy of teams that are making
microservices code changes.

In addition to reducing interteam coordination, our decision to “rightsize” our ser‐
vice boundaries and keep team sizes constrained ensures that the coordination costs
within our team should stay relatively low as well. It’s fair to say that reducing coordi‐
nation costs for microservices code changes has been a primary driver for the archi‐
tecture we’ve built.

274 | Chapter 11: Managing Change

But there are two areas where coordination costs are difficult to avoid in our up and
running architecture: life-cycle events and interface changes.

In Chapter 2, we introduced the system team that owns responsibility for the health
and value of the system as a whole. The kinds of changes that come from the system
team can result in high levels of coordination. For example, what happens when the
system team decides that two microservices should be merged into one? Worse, what
happens if those microservices are owned by two different teams? In our architecture,
these types of changes will require much more negotiation, planning, and communi‐
cation than code changes to an individual microservice.

We’ve deemed this to be an acceptable cost trade-off. In our experience, life-cycle and
system-grooming changes are relatively rare compared to changing code to reflect
new business or technology requirements. It makes sense to optimize the change
model for the types of change that we expect to happen more frequently.

It’s one thing to change the code of a microservice, but you’ll often find yourself
needing to change the interface of a microservice as well. In these cases, there may be
additional coordination effort required due to the contractual nature of an API
between consumer and provider. We’ll touch on this change factor in more detail in
“Microservices: Consumer impact” on page 276.

Finally, in Chapter 2, we made a decision to have a single release team that would
own responsibility for updating the production environment. This decision has the
most potential to go wrong! We established a release team to give special attention to
changes and the coordination costs that often come with them. We’ve also tried to
arm the release team with deployment tools to minimize any impacts to velocity. But
ultimately if the release team becomes a bottleneck to change, the system design must
be revisited. We’ll reevaluate the topology and the tools that enable the release cycle.

Overall, the coordination costs of microservices change within our architecture are
low. This is thanks to the operating model, tools, and design decisions we’ve made
throughout this book.

Microservices: Downtime
Another change area that we’ve optimized for is in minimizing the downtime
required when an individual microservice is changed. That’s because of the tooling
and infrastructure we introduced at the platform level. The key to bringing this cost
down is our ability to use the canary deployment pattern (“Canary deployment” on
page 267) for microservices releases. When it comes time to release a new version of a
microservice you can use the tooling we’ve installed to perform the following change
process:

Considerations for Our Architecture | 275

1. Deploy the new version of the microservice as a canary, alongside the existing
version.

2. Implement a traffic routing rule to send a small percentage of traffic to the new
version.

3. Observe the health of the new version and verify that the results are as expected.
4. Promote the canary microservice by routing all traffic to the new version.
5. Drain and delete the older version of the microservice.

This pattern will work for most of the changes you need to make and you’ll be able to
use Argo CD to orchestrate the canary activities. However, be careful using this pat‐
tern when a new version of the microservice will make a change that could impact the
older version. For example, if a new version changes data in a shared database, make
sure that change is compatible with previous running versions.

Microservices: Consumer impact
So far, we’ve mostly focused on changes to microservices code. The logic, validation,
and behavior of the service is reflected in code, so that’s where a high frequency of
our changes will be found. But sometimes you’ll need to make changes to the inter‐
face (or API) of a microservice and that can cause some big problems.

Changing the interface of a microservice is almost inevitable. You’ll eventually want
to change the parameters of an operation or change the data that comes back from a
call. The problem is that as other services and components start to depend on the
interface, even small changes can result in a lot of work for everyone involved.

We haven’t really built anything into our architecture to reduce the consumer impact
of making changes. The best way to reduce the consumer impact of an API change is
to adhere to some good design practices: don’t change what you’ve already released,
write client code that tolerates new data, and don’t make new input parameters
mandatory.

Our favorite source for API design advice is Mike Amundsen. If
you’re interested in building evolvable APIs, we recommend learn‐
ing from the API change patterns in his book Design and Build
Great Web APIs (Pragmatic Bookshelf, 2020).

In addition to these kinds of design principles, some microservices practitioners have
adopted contract testing as a way to minimize coordination costs between teams
when changing interfaces. In contract testing, consumers and providers share a con‐
tract that describes how the interface will be used. This allows providers to run

276 | Chapter 11: Managing Change

contract tests independently and validate that their changes will not impact existing
clients of an API.

In order to get our system up and running as quickly as reasonably
possible, we didn’t include a contract testing component in our
architecture. But many practitioners have had success using Pact
for consumer-driven contract testing. Tools like Pact allow your
consumers and providers to continually share and test changes that
are made to their interfaces.

But even with contract testing, chances are that you’ll eventually need to introduce a
change that will break someone’s code. In that case, you’ll need to implement some
form of the multiple versions pattern (see “Multiple versions” on page 267) and main‐
tain an old microservice until the client team can make the changes they need to.

Ultimately, our architecture doesn’t do a whole lot to reduce the cost of consumer
impact changes. API change is hard, and it will take good design thinking and good
planning to make those changes affordable. Another area of danger is data and that’s
what we’ll cover next.

Data Changes
One of the most difficult aspects of maintaining a microservices architecture is deal‐
ing with the data. Data models are notoriously difficult to change. A persistence layer
is a much needed part of any software system, but when it comes time to change the
structure of data, things can get complicated. Software components grow to be
dependent on the data systems that they use and changing them can have a big cost
and impact to the system.

We’ve tried to make decisions that improve this situation and lessen the cost of data
model changes. Let’s take a look at the data architecture we’ve built through our four
lenses of change.

Data: Implementation costs
At its most basic level, the cost of changing a data model is a function of how complex
the structure, formats, and relationships are and the tooling or language that’s needed
to make the change. The complexity of a model can increase when there are compli‐
cated values and many different data types, unique keys, or complicated values. The
cost really comes from having to understand the model itself, so that changes can be
made safely.

We haven’t done much in our architecture explicitly to prevent a data model from
getting too complicated. But we did make a decision that microservices should own

Considerations for Our Architecture | 277

https://pact.io

their own data. This decision alone should help constrain the scope and size of a
model, in the same way it should help us reduce the cost of a code change.

So, just as with code changes, you should get a great deal of implementation cost ben‐
efit from the decision to prioritize independence. But, just like with code, you’ll need
to keep measuring the implementation costs to ensure that the service and its data
model don’t grow to a size that negates the benefits of a strong boundary.

Data: Coordination costs
An even bigger benefit of prioritizing independence is the reduction in coordination
costs. By deciding that microservices own their own data, we’re free to make changes
to our data structures without having to consult with other teams or system owners.
This is in stark contrast to more traditional models where multiple teams may be
using a shared data service and changes need to be coordinated carefully across all
data users.

However, you should beware: there’s a hidden cost to the independent data approach.
We’ve optimized our architecture for high-speed, autonomous local changes. This
made system-wide changes more costly. For example, if you need to globally change
the definition of an airline identifier code, you’ll need to coordinate across all of the
teams who have implemented a data model that uses it. In our architecture, that could
be more costly than if we had just used a shared database.

A good resource for understanding distributed data patterns is
Martin Kleppmann’s Designing Data-Intensive Applications
(O’Reilly, 2017).

We decided to optimize for local changes because in our experience there is a higher
change frequency of local changes. But you’ll need to change that decision if the sys‐
tem you’re building is likely to have sweeping, global changes.

If you find that you’re often making changes to multiple data mod‐
els in the system at the same time, it could be a sign that the
boundaries of your microservices need to be reevaluated.

Data: Downtime
Our independent data model gives us some big advantages when it comes to coordi‐
nation. But it isn’t built for zero-downtime data model changes. That’s especially true
for the MySQL database that our flight-information microservice uses.

278 | Chapter 11: Managing Change

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/

The root of our limitation is that we’re using a shared database instance to serve mul‐
tiple replicas of a microservice. When it comes time to make a change to a data
model, it’s difficult to do that without impacting existing microservices that are cur‐
rently running. This may be easier to do with the Redis store that our reservations
service uses, but we’ll still need to be wary of making changes that will break existing
versions.

In cases where we need to make an intrusive data model change, the simplest option
may be to destroy the existing microservice versions and replace them with new
instances that can implement the data change. In a Kubernetes environment, that can
be performed with minimal impact to service. But if any and all downtime is out of
the question, a more elaborate blue-green deployment would be needed.

Data: Consumer impact
Because we’ve made the decision that microservices should own their own data, the
impact of a data model change is restricted to the service itself. So we can freely make
changes without impacting the consumer of a service directly. Since the data model is
encapsulated within the microservice, your microservice teams will have more
autonomy to make changes to their model, although as we highlighted above, these
changes may require a small amount of downtime.

In practice, a data model change is likely to require code and even interface changes.
But we’re free to separate or stagger these modifications so that a data model change
can be made first, before we implement changes that will impact consumers directly.

Summary
Overall, we’ve seen that the architecture we’ve built is designed to make changes eas‐
ier and cost-efficient. Change can come from extrinsic or intrinsic sources, but the
key is to reduce the costs and impacts so that your teams have more freedom to
improve the system and the products and experience that the system powers.

We’ve looked at our architecture across infrastructure, code, APIs, and data from the
perspective of change. As you’ve seen in this chapter, the decisions we made through‐
out this book have combined to create a profile of changeability for this system. Some
of our decisions were trade-offs that were made to optimize for certain types of
change. Other decisions were trade-offs based on the constraints of the medium of a
design in a book!

Regardless of the reasons, we’ve now been able to both build a microservices architec‐
ture and evaluate its usefulness and suitability. The only thing left to do with our
architecture is to make it even better. That’s what we’ll cover in our final chapter.

Summary | 279

CHAPTER 12

A Journey’s End (and a New Beginning)

Congratulations, you’ve made it to the final chapter! While you may be reaching the
end of your journey with us, we hope it is only the beginning of a long and fruitful
journey in successfully implementing microservices on real projects. We make no
excuses for the fact that we are admirers of the microservices architecture and of the
benefits it can bring when deployed in the right context, with the right intentions and
skill. It is by no means the only choice and should never be implemented without
understanding all the implications, but it can certainly be a very powerful choice in
your arsenal of architectural tools.

We have witnessed many successful microservices projects. There is also no shortage
of failed attempts to adopting microservices. Our main motivation in writing this
book was to increase a reader’s chances of success, if they so choose to implement
their system in the microservices style. We tried to do it by providing step-by-step,
pragmatic guidelines on when, why, and how to deploy microservices, explaining
core concepts and demonstrating the implementation of those concepts, using simple
examples. We hope we were successful in achieving the goal of turning abstract con‐
cepts into a more approachable step-by-step explanation, but most importantly, we
hope you enjoyed reading this book, even if it provided only a handful of key ideas
you think you can use when implementing your own systems.

Before we part ways, we wanted to share some final thoughts that summarize our
understanding of the architectural decisions in microservices and an approach we
recommend for continually measuring the progress of a transformation, if you do
decide to embark on one.

281

On Complexity and Simplification Using Microservices
Throughout this book we have asserted that microservices are most applicable when
utilized to implement large, complex, continuously changing systems. Intuitively, this
statement makes sense: a microservices architecture itself is not simple, so embarking
on that journey has to be worth it—maybe when it helps solve something even more
complex. But what is the nature of complexity and how exactly do microservices
decrease complexity, if at all?

A seminal work on software complexity is Fred Brooks’s 1986 article, “No Silver Bul‐
let”, where he aptly notes:

There is no single development, in either technology or management technique, which
by itself promises even one order of magnitude improvement in productivity, in relia‐
bility, in simplicity.

Brooks continues to elaborate, explaining that the reason for this phenomena is the
presence of essential complexity in software systems. While in any codebase there is
always some accidental complexity (the complexity related to our own implementa‐
tion choices), the majority of the complexity that we deal with in software systems is
not accidental, it’s related to the very essence of the complexity of modeling the prob‐
lem domain itself. It is “essential complexity,” by which Brooks means the sophistica‐
ted datasets, relationships among data items, algorithms, and invocation flows that
represent the model a system is attempting to represent. If we tried to simplify a sys‐
tem beyond its essential complexity, we would be taking away from its core model,
and it would no longer be the same system.

When dealing with microservices, early adopters are often attracted by the promise of
microservices making building complex systems…wait for it…simpler! Most people
would rather microservices make it easier for them to get their jobs done than make
their lives unnecessarily difficult, so a promise of “it will be easier” is unsurprisingly a
powerful motivator. Quick, off-the-cuff explanations are readily provided: by imple‐
menting a “larger” system as a collection of many simple microservices, we are mak‐
ing the whole process simpler! Skeptics may immediately note that while each
microservice may be small and simple, orchestrating a large number of them into a
coherent, complex system cannot be expected to be an easy task. And they are cor‐
rect; but more importantly, for those of us who have read Brooks’s “No Silver Bullet,”
one additional, troublesome question is: have microservices broken Brooks’s conjec‐
ture that there is no way to take away essential complexity? Or is a microservices
architecture purely addressing the accidental part of system complexity, and does
such an amazing job that we can still feel the improvement?

The truth is that neither is the case. The microservices concept is not just about acci‐
dental complexity and not a methodology for better coding hygiene, it is an essen‐
tially different approach. And no—it does not invalidate Brooks’s observation. Rather,

282 | Chapter 12: A Journey’s End (and a New Beginning)

https://oreil.ly/4qh3l
https://oreil.ly/4qh3l

it achieves its goals in accord with it. You see, you cannot eliminate essential com‐
plexity, but you can shift it: you can move essential complexity from one part of the
system into another. This would not seem like a big deal, unless different parts of the
system required different levels of effort.

Simply speaking, when building any software system there’s the implementation part
of it (the code) and the operational part of it (the deployment and orchestration). We
can make the code simpler by breaking it up into many small microservices. Such
change will make your operations equally harder. It would seem that we haven’t
gained much, since by simplifying one part we have made another one more difficult,
but in reality this type of complexity shift can be quite beneficial if you can automate
the part that you are making “harder” but not the one that you have made simpler.
The increased complexity of operations matters much less if they can be automated.
And that is indeed the gain.

In the last decade or so we’ve gotten very good at automating software operations. A
vast arsenal of operation automation tooling such as Ansible, Puppet, Chef, Terra‐
form, Docker, and Kubernetes, together with serverless functions and a wide variety
of cloud services provided to us without us having to even think about it have made
building complex operations materially simpler, beyond anything Brooks could have
imagined in 1986. Actually designing and writing code, however, is more or less as
difficult as it was in the 1980s. Don’t get us wrong: there have been some advance‐
ments, sure, but nothing material. Therefore, if we shift complexity from coding into
operations we can make things easier, in nontrivial ways.

Microservices Can Provide Simplification

A microservices architecture can be materially simpler than its
alternatives when implementing complex systems. This does not
violate Brooks’s “No Silver Bullet” principle because microservices
do not eliminate essential complexity. Rather, this architectural
style is about shifting complexity from the area we cannot, yet,
automate, design and code, into the area we have gotten very good
at automating; operations. The net gain can be substantial.

Microservices Quadrant
Let’s dig deeper into the subject of complexity. Systems Theory distinguishes the defi‐
nition of a complicated system and a complex system. This was further expanded
upon and popularized for decision making in the Cynefin framework. A complicated
system can be very sophisticated and hard to understand, but in its essence is predict‐
able and based on a finite number of well-defined rules. In contrast, a complex sys‐
tem is by essence nondeterministic, composed of many components that interact at a
high degree of freedom, and can consequently produce emergent behaviors. If we

On Complexity and Simplification Using Microservices | 283

https://oreil.ly/3Wx_M

were to classify monoliths and microservices in these terms, monoliths would be con‐
sidered complicated, whereas microservices would be much more aligned with the
definition of complex systems.

Another interesting classification is the notion of “easy” versus “simple.” As most
designers would passionately attest, these seemingly synonymous adjectives could not
be any more different, in the context of design. Simple things are notoriously hard to
design (think Apple’s original iPod and iMac, or a simple invention such as the com‐
puter mouse), whereas easy designs are not necessarily simple to use.

Combining these two perspectives across the axis of architecture and implementa‐
tion, a couple of years ago we created the “microservices quadrant” that you can see
in Figure 12-1.

Figure 12-1. The microservices quadrant (source: https://oreil.ly/IO5t8)

This tongue-in-cheek quadrant visualization (beloved by business publications and
MBA graduates) states that when we think of the overall complexity–simplicity con‐
tinuum, we can align different solution types across four quadrants:

• Microservices would be a complex implementation, but a simple design
(architecture).

• Monoliths would be a complicated implementation, with an easy (but not neces‐
sarily simple) architectural design.

As for the other two quadrants:

284 | Chapter 12: A Journey’s End (and a New Beginning)

https://oreil.ly/IO5t8

• Many software engineers would like to have a solution that has a simple architec‐
ture, and at the same time, a predictable, even if complicated, implementation.
These would probably be the “dreamland”—nonmicroservices implementations
that are elegant and successful, so you may not call them “monoliths” to avoid the
now-established negative connotation. Candidly, these are quite rare; if your sys‐
tem is continuously and rapidly changing, achieving a solution in this quadrant is
tantamount to achieving a dream.

• In the lower right quadrant, we have a situation where we got away with an easy
design (think minimal effort), and ended up with a complex implementation that
somehow still functions despite the easy architecture. Well, that would be a uni‐
corn in more ways than one, including the need for the so-called “10x develop‐
ers” to support and maintain it. But we are sure such things also exist.

The microservices quadrant gives a shorthand representation of where microservices
and monolith solutions land vis-à-vis architectural simplicity compared to imple‐
mentation complexity.

Having discussed the nature of microservices architectures through the lens of com‐
plexity, we would like to give the reader another important perspective: how to think
about a microservice transformation over time.

In Chapter 11, we discussed both the role microservices architecture plays in helping
teams tackle change in complex systems and techniques to manage change when
implementing microservices. There is another important aspect of change in regards
to microservices: the transformation that an organization as a whole needs to go
through when transitioning from a nonmicroservices culture and adopting this novel
organizational–technical structure. In the next section we will discuss how to be suc‐
cessful with a microservices transformation by taking a holistic look at one and
avoiding the trap of technology-only blinders.

Measuring the Progress of a Microservices Transformation
When we discuss the migration to microservices, it’s important to remember that we
are talking about a style that encompasses complex technology and highly disruptive
cultural transformations of an organization. If not carefully managed, the odds of get‐
ting it wrong are naturally much higher than those of accidentally getting lucky with
it. If you have followed the various critical posts published about microservices in the
past several years, you could observe a fairly discernible pattern. First, a company
adopted a microservices architecture and wrote a cheerful blog post about its benefits
and promise; this was followed by a blog post years later, complaining about micro‐
services’ complexity and praising a switch back to a monolith. While for some teams,
projects, or companies, microservices may indeed be the wrong choice, the reality is

Measuring the Progress of a Microservices Transformation | 285

that genuine poor fit is not always the cause of the failure. More often than not,
flawed execution is the root cause of the disappointing results.

There is no turnkey software that teams can just buy from a vendor, or install with an
open source license, that can magically make us “microservices” overnight. Moreover,
there is not even some strict set of policies and guidelines that guarantee success. In
reality, many traits of microservices architectures are aspirational and not directly
quantifiable: independent deployability, decentralized governance, infrastructure
automation, and evolutionary architecture, among others, are not things that any
team can excel at right out of the gate or easily measure their progress toward! They
take a long time and a fair amount of patience to mature, and are seldom perfect. It
should not be a goal to perfect them in the early days of a transformation effort.

One of the most damaging things an organization can do at the
early stages of microservices adoption is to establish a “microser‐
vices police” that will strictly govern adherence to all of the micro‐
services principles and traits. Migrating to microservices is a long
process; it’s a journey that requires patience and measurement.

The thinking that teams need to adopt when considering their level of maturity vis-à-
vis microservices traits is largely similar to the philosophy we described in Chapter 4
when discussing rightsizing microservices: the size and granularity of a microservice
evolves over time organically and forcing an attempt to start with a target granularity
early on is detrimental. Similarly there are significant risks in prematurely insisting
on a “perfect” microservices implementation as it relates to traits like independent
deployability and automation too early in the transformation process. Instead, it is
imperative for teams to remain pragmatic and ask themselves questions such as:

• While Kubernetes is undoubtedly the leading container orchestration solution,
do we currently have the skills and developer capacity to support it? Even if it is
provided by our cloud hosting solution? Or should we start with something
much simpler (e.g., AWS ECS)?

• How automated does our infrastructure need to be in the early days? What level
of self-healing is absolutely necessary in the early days?

• What systems can we delegate to a cloud provider to manage (e.g., databases,
event streaming, etc.) even if eventually we may bring those back in-house? Do
we absolutely need to start with a new, shiny database system, or can we instead
initially use a less powerful, but cloud-provided database to cut down on mainte‐
nance overhead?

In most cases, the right thing to do in regard to these, and similar, questions is to cut
yourselves a fair amount of slack in the early days. It may be wise to stick to “boring”
tech, and avoid upgrading MySQL to Cassandra or replacing Java with Golang at the

286 | Chapter 12: A Journey’s End (and a New Beginning)

https://oreil.ly/_aFU8

same time you’re also trying to adopt microservices, especially if your teams are unfa‐
miliar with these new technologies. Instead, teams must concentrate on things that
make business difference, and avoid getting bogged down by endless cycles of infra‐
structure setup, tech stack upgrades, and experimentation with cool new tools, criti‐
cally delaying delivery of business value. Such delays can easily lead to stakeholders
shutting down a transformation effort before it even gets properly started.

It is extremely important to remember that microservices architec‐
ture is a journey, not just a destination. In this journey, the trajec‐
tory of the progress means everything, and surprising as it may
sound, current state is of much less significance. This is especially
true in the early days of the transformation efforts.

We discussed in Chapter 1 that minimizing coordination costs is a core technique of a
microservices architecture. It is so fundamental that teams that can demonstrate
movement towards the diminishing levels of coordination needs are going to do well
regardless of how many principles from Newman, Lewis, Fowler, or Mitra/Nadareish‐
vili they adhere to initially. As long as they move in the right direction, the trajectory
will win in the long run—every single time. The approach here is similar to the con‐
cept of Fitness Functions, as described in Building Evolutionary Architectures by Neal
Ford, Rebecca Parsons, and Patrick Kua (O’Reilly).

How do we know if we are on the right trajectory? Sure, understanding that coordi‐
nation costs are our main enemy is helpful, but we cannot directly measure “coordi‐
nation cost” as a value. Some teams try measuring “speed” or “safety,” but that is
equally problematic, as these values are derivatives and measurements are indefensi‐
ble. You will almost certainly notice a perceived increase in speed and safety, but to
claim causality, what are you going to compare the new speed to? Nobody builds the
same exact system once as a monolith and then as a microservices architecture. Any
increase in speed will be intuitively rewarding but unscientific. The same idea applies
to attempts of measuring increases in safety as well.

Instead, we propose measuring three values, two of which are directly related to the
trajectory of increasing team autonomy, and the third that best indicates the overall
efficiency of software teams (as described in Accelerate by N. Forsgren, J. Humble,
and G. Kim (IT Revolution Press)):

• The average size of an autonomous team, across all teams
• The average length of time an autonomous team can work without getting halted

on waiting for another team (waiting usually being caused by a critical
dependency)

• The frequency of successful deployments

Measuring the Progress of a Microservices Transformation | 287

https://www.oreilly.com/library/view/building-evolutionary-architectures/9781491986356
https://www.oreilly.com/library/view/accelerate/9781457191435

In a healthy microservices transformation that is on the right trajectory, you should
see a gradual decrease in the size of autonomous teams and an increase in the amount
of time that teams can work independently. For instance, you may observe that aver‐
age autonomous team size in your organization used to be 15 to 20 members and
after implementing microservices it starts to gradually decrease to 10, 8, 6…

Likewise, you should observe a decrease in frequency of coordination-related dead‐
locks. A coordination deadlock is a stoppage during which an autonomous team is
waiting on another team for a shared capability to be made available for them; e.g., an
infrastructure team provisioning a highly available Kafka or Cassandra cluster, or a
security review team completing a code audit. Another common example of a team
getting halted is when they need to wait for the outcome of a coordination meeting in
which various stakeholders are making a critical decision.

Scheduling such meetings can take time due to varying priorities of the stakeholders.
Tracking the number of dependencies that a team needs to clear before a code release
to production is also a quantity worth measuring. Another important example of the
type of event to track is whether teams need to often wait for other teams to make
code changes, caused by the change in a shared data model. The triggers and duration
of stoppages will vary depending on an organization and the business contexts. It’s
important to track both trigger types as well as stoppage duration, so that meaningful,
actionable lessons learned can be derived and improvements can be made.

The third metric, deployment frequency, does not directly measure coordination
costs, but is a general metric that has been scientifically proven by Forsgren et al. to
be a powerful indicator of team agility. When applied to independently deployable
microservices, in our experience it can also indicate the health of a microservices
transformation trajectory.

By consistently measuring the three metrics and ensuring the transformation is on
the right track, teams can free themselves from the anxiety of achieving perfection in
every single microservices trait, freeing themselves for long-term success.

Summary
In this last, closing chapter of the book we shared with you how we think of micro‐
services. Microservices can make your complex systems simpler, but it is no “silver
bullet” and it is important to understand that the final effect is achieved by shifting
complexity, not necessarily magically eliminating it. When we make such assertions,
it also helps to be clear what we mean by “complexity,” and it is different from the
notion of “complicated” systems, and what role “easy” versus “simple” architectural
approaches play in classifying various system delivery approaches.

We then shared our perspective on the importance of patience and a long-term out‐
look during a microservices transformation. It is a journey and a marathon, not a

288 | Chapter 12: A Journey’s End (and a New Beginning)

https://www.oreilly.com/library/view/accelerate/9781457191435

sprint, and teams intending to be successful need to be equipped with proper tools
and concentrate on the trajectory of transformation much more than the current
state. Make sure you get in the habit of measuring some reliable metrics to ensure you
are still on the right track and that your trajectory is healthy.

We hope you have enjoyed reading this book. We hope it provided more hands-on
and practical guidance than what has been previously available, and that you had fun
going through the code and examples.

We wish you much success on your own microservices transformation journey and
would love to hear from you—what you learn when you embark on implementing
microservices in your own work.

All the best.

Summary | 289

Index

A
ACID

atomicity, 82
consistency, 82
durability, 82
isolation, 82
sagas and, 84

ACL (anti-corruption layer), 64
open host service, 65

actions
JTBDs, 45-47, 48
OAS (OpenAPI Specification), 49

actors, SEED(S)
identifying, 37-39
identifying jobs, 39-41
JTBDs (jobs to be done)

job stories, 41-43
ADR (architecture decision record), 10-11

alternatives, 10
choice, 10
context, 10
impact, 11

analysis paralysis, 7
API (application programming interface)

AWS (Amazon Web Services)
Terraform and, 110, 171

BFF, 198
consumer teams, 32-33
consumers, 40
customers, 37
microservices and, 3
OAS (OpenAPI Specification), 48-52

feedback, 53
overabstraction, 37

product-oriented perspective, 37, 39
Reservations API, 45
versus microservices, 54-56

architecture, 3
(see also microservices)
change and, 266
data isolation, 85
design for failure, 2
design traits, 3
ECS (Elastic Container Service), 269
evolutionary design, 2
monolith architectures, 60
resources, adding, 269
smart endpoints and dumb pipes, 2
software architecture, 3
technology, 5

Argo CD, 141
deployment, applications and, 257-259
GitOps and, 255
Helm charts, 249
Helm package, 253-254
Kubernetes module, 171-173
log in, 255-256
sandbox repository, 174-175
variables, 173-174

ARN (Amazon Resource Name), 114
asset publishing, 131-132
asynchronous integration, DDD (domain-

driven design), 65
atomicity (ACID), 82
automated testing, workspace, 184
AWS (Amazon Web Services)

APIs, Terraform and, 110
ARN (Amazon Resource Name), 114

291

authenticator, 129
CLI (command-line interface), configuring,

110-111
configuring, 106
EKS (Elastic Kubernetes Service), 113, 140

cluster, 162-164
node group, 164-167

IAM (Identity and Access Management),
106

Lambdas, 58
operations account, 106-110
permissions setup, 112-114
S3 storage

names, 158
Terraform, 115-116

B
Bezos, Jeff, 17
BFF APIs, 198
blue-green deployment, 266
boundaries, 57

DDD (domain-driven design), 59-62
collaboration, 63

dependencies, 73
granularity, 58
Lambdas and, 58
technical needs, 58

bounded contexts, 61
Ubiquitous Language, 61

branching, version control, 185

C
canary deployment, 267
CAP theorem, 94-95
Cassandra, 192-193
change, 263

architecture and, 266
as feature, 263
consumer impact, 266
coordination time and, 265
data, 264-265

consumer impact, 279
coordination costs, 278
downtime, 278
implementation costs, 277

deployment patterns, 266
blue-green deployment, 266
canary deployment, 267
expand and contract, 267

multiple-versions, 267
downtime and, 266
implementation time and, 265
infrastructure, 269

change process, 270
consumer impact, 272
coordination costs, 270-271
downtime, 271-272
implementation costs, 270

measurements and, 264-265
microservices, 273

CI/CD pipeline, 274
consumer impact, 276-277
coordination costs, 274-275
downtime, 275
event storming, 273
implementation costs, 273-274

reasons for, 263
charts, 248

Helm charts, creating, 250
templates, 249
values, 249

CI/CD (Continuous Integration/Continuous
Delivery), 102-104
tooling, 103

CI/CD pipeline, 97, 103, 123, 179
configuring, 242
GitHub Actions and, 103
microservices change, 274

CIDR (Classless Inter-Domain Routing), 148
cloud platform, 9
cloud platform teams, 29
code

implementing, 212-213
sandbox repository, 120-123

coding standards, 180
collaboration interaction mode, Team Topol‐

ogy, 23
collaboration, DDD (domain-driven design),

63
complicated-subsystem teams, 22

enabling, 31-32
componentization via services, 2
conformist relationship, 64
consistency (ACID), 82
consumer impact

data changes, 279
infrastructure cost and, 272
microservice change, 276-277

292 | Index

consumer teams, 32-33
APIs, 32-33

consumers, APIs, 40
container registry, 241
containerization, 183, 187
containers

commands, launching, 189-190
Docker, installing, 190-191
flights microservice, 246
shipping, 241

Docker Hub, 241
Docker Hub secrets, 243
flights microservice, 244-246
pipeline configuration, 242

context mapping, 62-65
ACL (anti-corruption layer), 64

open host service, 65
conformist relationship, 64
Upstream-Downstream mapping, 63

Conway, Mel, 16
coordination cost

data changes, 278
infrastructure cost and, 270-271
issues, 4-6
microservice change, 274-275

CQRS (Command Query Responsibility Segre‐
gation), 91, 93-94
CAP theorem and, 94

cross-functional teams, 18

D
data

change and
consumer impact, 279
coordination costs, 278
downtime, 278
implementation costs, 277

embedding, 77
data delegate pattern and, 79-81
databases, number, 78

SOR (system of record) and, 81
data delegate pattern, 79-81
data design, 9
data duplication, independence and, 81-82
data implementation, 208

MySQL data model, 211-212
Redis, 209-210

data lakes, 81
data management, 75

ACID transactions, 83
data space co-ownership, 76
Event Sourcing and, 89
independence and, 78
monolithic, 79

data modeling, Event Sourcing and, 89
data sharing, 77

indexes, 81
database clusters, 78
database module, staging environment, 234
databases

ACID and, 82
data lakes and, 81
dataset ownership, 77
embedded data and, 78
local, 183
migrations, 184

make commands, 215
relational, 87
shared data, 81

DDD (domain-driven design)
aggregate, 66
asynchronous integration, 65
boundaries and, 59-62

collaboration, 63
context mapping, 62-65

ACL (anti-corruption layer), 64, 65
conformist relationship, 64
Upstream-Downstream mapping, 63

event storming, 66-73
granularity, 58
synchronous integration, 65

decentralized governance, 2
decision records, 10-11
dependencies, 4

boundaries and, 73
Docker as, 181
installing, 128-130

deployment, 76
(see also independent deployability)
Argo CD applications, 257-259
blue-green deployment, 266
canary deployment, 267
change and, 266-268
containers, flights microservice, 246
expand and contract pattern, 267
GitOps, Argo CD, 255
Helm package

Argo CD, 253-254

Index | 293

testing, 254
Kubernetes, 247

Helm charts, 248-249
multiple-versions, 267
repository, 249-250

Deployment controller, Kubernetes, 248
deployment template, 250
design

data design, 9
endpoints, 197

JTBDs, 198-201
SEED(S), 198

for failure, 2
microservice design, 9
OpenAPI spec, 202-208
team design, 8
Team Topologies, 24

DevOps, 98
CI/CD (Continuous Integration/Continu‐

ous Delivery), 102-104
IaC (infrastructure as code), 100-101

environment setup, 104
Terraform, 101, 105

immutable infrastructure, 99-100
IaC (infrastructure as code) and, 101

principles and practices, 98
diagramming tools, 28
distributed transactions

failures and, 82-83
Sagas, 83-85

Docker
as dependency, 181
Cassandra, 192-193
containers in, 190-191
Linux installation, 187
testing, 191-192

Docker Compose, 183
Docker Hub, 241

configuring, 242
container registry, 241
registry set up, 242
secrets, configuring, 243

Docker4Mac, 187
Docker4Windows, 187
Dockerfiles, images, 183
downtime

data changes, 278
infrastructure cost and, 271-272
microservice change, 275

Dreyfus Model of Skill Acquisition, 8
Dunbar, Robert, 17
duplicating events, 92
durability (ACID), 82

E
ECS (Elastic Container Service), 269
EKS (Elastic Kubernetes Service), 113, 140

AmazonEKSClusterPolicy, 163
cluster, 160, 162-164

definition, 164
custom-eks-policy.json file, 113
load balancers and, 148
node group, 164-167
subnets, 148

tags, 149
elastic IP addresses, 152
embedding data, 77

data delegate pattern and, 79-81
databases, number, 78

enabling teams, 22
endpoint design, 197

JTBDs, 198-201
SEED(S), 198

environment variables, MySQL databases, 252
event duplication, 92
Event Sourcing, 85-86

accounting, 86
CAP theorem and, 94
chess, 86
data management and, 89
data modeling and, 89
projections, 90
rolling snapshots, 91
versus relational modeling, 87-89

event stores, 92-93
event storming

DDD (domain-driven design), 66-73
microservices change, 273

evolutionary design, 2
expand-and-contract pattern, 267

F
facilitating interaction mode, Team Topology,

23
feedback loops, 6
Flask, 220-225
flights microservice

container, shipping, 241

294 | Index

deployment package, 247
deployment template, 250
Docker Hub secrets, 243
Helm charts, 250
Helm package, 249

testing, 254
MySQL and, 240
repository, 242
shipping, 244-246
testing, 259-260

folders, mapping, 189-190
forking staging infrastructure, 234

G
GCP (Google Cloud Platform), AWS (Amazon

Web Services) and, 106
George, Fred, 20
Git, 104
GitHub, 104

account setup, 104
forking repository, 235
gitignore file, 145
sandbox repository, 117
secrets storage area, 123
set up, 104
ZIP files, 176

GitHub Actions, CI/CD pipeline, 103
GitOps, 140-141

Argo CD, 141
deployment, 255

Gore, Bill, 17

H
HCL

encapsulation, 120
fmt command, 122
JSON and, 119
sandbox repository, 120
Terraform and, 119
validation, 122

health checks, 218-220
Helm (Kubernetes), 171, 248-249

chart creation, 250
Helm package

testing, 254
values, 253-254

heterogeneous-ready workspace, 182

I
IaC (infrastructure as code), DevOps, 100-101

environment setup, 104
GitHub and, 104-104
pipeline, building, 116-132

asset publishing, 131-132
dependencies, 128-130
GitHub secrets, 123-124
sandbox repository, 117-119
Terraform, 119-123
Terraform files, 130-131
testing, 133-135
trigger, 127-128
workflow creation, 125-126

Terraform, 101
installation, 105

IAM (Identity and Access Management), AWS,
106

IBM MQ, 81
immutable infrastructure (DevOps), 99-100

IaC (infrastructure as code) and, 101
implementation cost

data changes, 277
infrastructure cost and, 270
microservice change, 273-274

independent deployability, 76
data duplication and, 81-82

indexes, shared data, 81
infrastructure, 97

(see also CI/CD pipeline)
change and, 269

change process, 270
consumer impact, 272
coordination costs, 270-271
downtime, 271-272
implementation costs, 270

CI/CD (Continuous Integration/Continu‐
ous Delivery), 102-104

clean up, 177
dependencies, installing, 128-130
environment, testing, 175-176
GitOps, 140-141
IaC (infrastructure as code), DevOps,

100-101
immutable infrastructure (DevOps), 99-100
kubectl, installing, 142
Kubernetes, 139

cluster, 140
control plane, 140

Index | 295

nodes, 140
Kubernetes module, 160

Argo CD setup, 171-173
Argo CD variables, 173-174
outputs, 161
sandbox repository, 169-171
variables, 168-169

network module, 145
configuration, 146-154
outputs, 146

networks, 138
routing, 139
security, 139
subnets, 138
VPC (virtual private cloud), 138

staging
code editing, 237-239
forking, 234
ingress module, 233-234
setup, 232-233
workflow configuration, 235

Terraform module
AWS provider, 147
internet gateway, 151
local variables, 147
main configuration, 146-154
outputs, 145
repositories, 142-145
sandbox network, 157-160
variables, 154-157
VPC, 148

infrastructure automation, 2
ingress module, staging environment, 233-234
Ingress object, Kubernetes, 248
interaction patterns, sequence diagrams, 43-45
internet gateway, 151
IP addresses

CIDR, 148
elastic, 152

isolation (ACID), 82

J
job stories, 41-43
JSON

curl command and, 225
custom-eks-policy.json file, 113
EKS-management policy, 114
Multipass and, 188
multipassd-vm-instances.json, 189

MySQL and, 211
RedisJSON module, 211
seat map, 211

JTBDs (jobs to be done)
actions, 45-47, 48
endpoint design, 198-201
job stories, 41-43
queries, 45-47

K
kubeconfig file

generating, 166
Terraform and, 167
workflow staging, 237
YAML content, 167

kubectl
configuration details, 239
installing, 142
request forwarding, 256

kubectl CLI, 166
application setup, 175

Kubernetes, 139
client environment, 239
cluster, 140

access testing, 239-240
sandbox network, 169-171

control plane, 140
deployment, 247

Helm charts, 248-249
Helm, 171
Helm charts, creating, 250
installing, 193-194
module, 160

Argo CD setup, 171-173
Argo CD variables, 173-174
outputs, 161
variables, 168-169

nodes, 140
objects

Deployment controller, 248
description file, 250
Ingress, 248
Pods, 247
ReplicaSets, 247
Services, 248

YAML templates, 250

296 | Index

L
LADR (lightweight architectural decision

record), 11-13
(see also ADR)

Lambdas, 58
Linux

Docker installation, 187
OAS (OpenAPI Specification), 49

LiveUML, 44
load balancing

EKS (Elastic Kubernetes Service), 148
immutable infrastructure, 99
Traefik, 259

local variables, Terraform modules, 147
local workspace, 182

M
makefiles, targets, 185
mapping

context mapping, DDD (domain-driven
design), 62-65

folders, 189-190
Markdown, 11-13

character, 12
Context section, 12
Status header, 12

merging, version control, 185
messaging

IBM MQ, 81
RabbitMQ, 81

microservice architecture, 3
(see also microservices)

microservice design, 9
microservice-bootstrap, 274
microservices

APIs (application programming interfaces)
and, 3

change and
CI/CD pipeline, 274
consumer impact, 276-277
coordination costs, 274-275
downtime, 275
event storming, 273
implementation costs, 273-274

changes, 273
characteristics, 2
complex, 282-283
definition, 2, 3
development, 9

goals, 58
implementing, 53
overview, 2-3
ownership, 27
scope, 8
secrets management, 123
simplification, 282-283
sizing, 59

universal sizing, 73-74
software architecture, 3
transformation, measuring, 285-288
versus APIs, 54-56

microservices quadrant, 283
microservices system

culture, 16
team design and, 16

Microsoft Azure, 106
migration, databases, 184

make commands, 215
modules

Kubernetes, 160
Argo CD setup, 171-173
Argo CD variables, 173-174
outputs, 161
variables, 168-169

repositories, 142-145
Terraform, 142-145

AWS provider, 147
local variables, 147
main configuration, 146-154
outputs, 145
sandbox network, 157-160
variables, 154-157
VPC, 148

monolith architectures, 60
monolithic data management, 79
monorepo, 118
Multipass installation, 188-189
MySQL, 211-212

connection values, 253
environment variables, 252
health checks and, 219
JSON data type, 211
Kubernetes secrets, 240
RDS (Relational Database) and, 234
staging environment, 234
tables, 215
workflow staging, 235

Index | 297

N
NAT (Network Address Translation) gateway,

152
network module, 145

configuration, 146-154
outputs, 146

networks
routing, 139
security, 139
subnets, 138, 148
VPC (virtual private cloud), 138

Nodebootstrap microservice, 213
nodes

EKS (Elastic Kubernetes Service), 160, 164
EKS cluster, 164
Kubernetes cluster, 140

O
OAS (OpenAPI Specification), 48-52

actions, 49
design, 202-208
feedback, 53
RESTful APIs, 49
YAML file, 49

objects
Kubernetes

Deployment controller, 248
description file, 250
Ingress, 248
Pods, 247
ReplicaSets, 247
Services, 248

open host service, 65
operating model

overview, 15
people and, 16
teams and, 16

organized around business capabilities, 2

P
permissions, AWS (Amazon Web Services),

112-114
PlantUML, 43

UML sequence diagrams, 199
platform teams, 22, 29-30, 270

cloud platform, 29
pods

Argo CD, 176

Kubernetes, 140, 247
products not projects, 2
products, definition, 40
Programmer Anarchy, 20
projections (Event Sourcing), 90
Python, 220-225

Q
queries, 93

(see also CQRS)
JTBDs, 45-47

R
RabbitMQ, 81
Redis, 209-210
RedisJSON module, 211
registries

container registry, 241
hosting, 242

relational modeling, Event Sourcing and, 87
release, 9
remote workspace, 182
ReplicaSets, Kubernetes, 247
repositories

microservice deployment, 249-250
monorepo, 118
sandbox, 117-119
staging environment, 234

Reservations API, 45
RESTful APIs, 36

synchronous integration, 65
rolling snapshots, 91
routing, 139
Rule of Twos, 182

S
S3 (Simple Storage Service)

JSON objects, 116
names, 158
Terraform and, 115-116

Sagas, 83-85
sagas

ACID and, 84
transactions, 83

sandbox repository
Argo CD, 174-175
building, 117-119
code, 120-123

298 | Index

GitHub interface, 117
HCL code, 120
Kubernetes cluster, 169-171
Terraform CLI tool, 120
Terraform module, 157-160

secrets
Docker Hub, 243
Kubernetes

built-in functions, 240
MySQL, 240

repositories, 235
setup, 243

security
collaboration and, 23
EKS (Elastic Kubernetes Service), 162, 164
GitHub Actions, 236
networks, 139
subsystem and, 22
VPC (virtual private cloud), 163

SEED(S), 35
endpoint design, 198
GraphQL APIs, 36
identifying actors, 37-39
identifying jobs for actors, 39-41
JTBDs (jobs to be done)

actions, 45-47, 48
job stories, 41-43
queries, 45-47

sequence diagrams, 43-45
UML, 43

sequence diagrams
interaction patterns, 43-45
UML, 43

Services, Kubernetes, 248
Seven Essential Evolutions of Design for Serv‐

ices (see SEED(S))
Shared_Kernel, 63
sharing data (see data sharing)
shipping container, 241

Docker Hub, 241
secrets, 243

flights microservice, 244-246
pipeline configuration, 242

skills
Dreyfus Model of Skill Acquisition, 8
teams, 18-19

smart endpoints and dumb pipes, 2
software architecture, 3
SOR (system of record), 81

staging environment
code editing, 237-239
forking, 234
Kubernetes cluster, testing access, 239-240
main.tf file, 237
repositories, 234
setup, 232-233

database module, 234
ingress module, 233-234

workflow
configuring, 235
kubeconfig file, 237

stream-aligned teams, 22, 27
subnets, 138, 148

EKS (Elastic Kubernetes Service), 148
tags, 149

private, 152
routing rules, 151

synchronous integration, DDD (domain-driven
design), 65

syncing microservices, 257-259
system design team, 24

guardrails, 25
improvements, 25
incentives, 25
standards, 25
structures, 25

Systems Theory, 283

T
team design, 8
Team Topologies, 21

complicated-subsystem, 22
enabling, 31-32

consumer teams, 32-33
designing, 24
enabling, 22
interaction modes

collaboration, 23
facilitating, 23
X-as-a-service, 23

platform, 22, 29-30
cloud platform, 29

stream-aligned, 22, 27
teams

coordination and collaboration, 19-21
cross-functional, 18
platform, 270
size, 17-18

Index | 299

skills, 18-19
system design, 24

guardrails, 25
improvements, 25
incentives, 25
standards, 25
structures, 25

template, 26-29
technology architecture, 5
templates

charts, 249
deployment, 250
teams, 26-29
YAML, 250

Terraform, 101
AWS S3 bucket backend, 115-116
data element, 151
files, applying, 130
HCL and, 119-120
installation, 105
JSON-based state file, 115
modules, 142-145

AWS provider, 147
local variables, 147
main configuration, 146
outputs, 145
sandbox network, 157-160
variables, 154-157
VPC, 148

sandbox repository and, 120
testing

automated, 184
Docker, 191-192
flight microservice, 259-260
IaC (infrastructure as code) pipeline,

133-135
Traefik, 259
transactions

distributed
failures and, 82-83
Sagas, 83-85

sagas, 83
trigger, workflow, 127-128

U
Ubiquitous Language, 61
umbrella projects, 226-228
UML

LiveUML, 44

PlantUML, 43
sequence diagrams, 43

PlantUML format, 199
universal sizing, 73-74
up and running microservices model

change, 9
cloud platform, 9
data design, 9
microservice design, 9
microservice development, 9
release, 9
team design, 8

Upstream-Downstream mapping, 63

V
values, charts, 249
variables

Kubernetes module, 168-169
Terraform modules, 147, 154-157

version control
branching, 185
merging, 185

VPC (virtual private cloud), 138, 148

W
workflow, 125-126

staging environment
configuring, 235
kubeconfig file, 237

trigger, 127-128
workspace

containerization, 183
databases

local, 183
migrations, 184

Docker
as dependency, 181
Linux, 187

heterogeneous-ready, 182
local, 182
makefiles, targets, 185
microservices

single, 183
subsystem, 183

Multipass, 188-189
remote, 182
Rule of Twos, 182
testing, automated, 184
version control

300 | Index

branching, 185
merging, 185

X
X-as-a-service interaction mode, Team Topol‐

ogy, 23

Y
YAML, 126, 130

deployment object, 247, 251
kubeconfig file, 167
spacing, 129
templates, 250

Index | 301

About the Authors
Ronnie Mitra is an author, strategist, and consultant with over 25 years of experience
working with web and connectivity technologies. He is the coauthor of Microservice
Architecture and Continuous API Management (both O’Reilly).

Irakli Nadareishvili is the vice president of Core Innovation at Capital One Financial
Corporation, leading the teams responsible for building Capital One’s modern, cloud
native, microservices-based core banking platform. Before Capital One, Irakli was
cofounder and CTO of ReferWell, a successful New York City–based health technol‐
ogy startup, and held technology leadership roles at CA Technologies and NPR. Irakli
is the coauthor of Microservice Architecture (O’Reilly). You can follow Irakli on Twit‐
ter at @inadarei.

Colophon
The animal on the cover of Microservices: Up and Running is the sparkling violetear
hummingbird (Colibri coruscans). This hummingbird lives in a range that runs along
the northwestern coast of South America, in higher-elevation habitats among the
Andes mountains. Known in the Quechua language as Siwar q’inti, these humming‐
birds have a place in local folklore as a sign of good luck.

Sparkling violetears are iridescent green with purple markings on the head and chest.
The longer purple feathers at their ears extend outward from their heads during dis‐
play. Large for hummingbirds, they average about five to six inches long, and weigh
about a quarter ounce. Females lay two eggs in a nest of their own making, and incu‐
bate the eggs. The chicks fledge from the nest at three weeks.

Because they live at higher, colder altitudes, sparkling violetears are among the spe‐
cies of hummingbirds that enter a deep torpor each night to sleep. In this
hibernation-like state of reduced body functions and a near-acclimation to surround‐
ing cold temperatures, which it then reverses at dawn, the bird is able to survive long,
cold nights without the food it would otherwise need to stay warm. The mechanisms
by which they accomplish this complicated feat are the subject of ongoing scientific
studies.

The sparkling violetear is common across its range, and is rated by the IUCN to be of
Least Concern. Many of the animals on O’Reilly covers are endangered; all of them
are important to the world.

The color illustration on the cover is by Karen Montgomery, based on a black-and-
white engraving from Wood’s Natural History. The cover fonts are Gilroy Semibold
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://learning.oreilly.com/library/view/microservice-architecture/9781491956328
https://learning.oreilly.com/library/view/microservice-architecture/9781491956328
https://learning.oreilly.com/library/view/continuous-api-management/9781492043546
https://learning.oreilly.com/library/view/microservice-architecture/9781491956328

	Cover
	NGINX
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	What You’ll Need
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Toward a Microservices Architecture
	What Are Microservices?
	Reducing Coordination Costs
	The Coordination Cost Problem
	The Hard Parts

	Learning by Doing
	The “Up and Running” Microservices Model

	Decisions, Decisions…
	Writing a Lightweight Architectural Decision Record

	Summary

	Chapter 2. Designing a Microservices Operating Model
	Why Teams and People Matter
	Team Size
	Team Skills
	Interteam Coordination

	Introducing Team Topologies
	Team Types
	Interaction Modes

	Designing a Microservices Team Topology
	Establish a System Design Team
	Building a Microservices Team Template
	Platform Teams
	Enabling and Complicated-Subsystem Teams
	Consumer Teams
	Summary

	Chapter 3. Designing Microservices:
The SEED(S) Process
	Introducing the Seven Essential Evolutions of Design for Services: The SEED(S) Method
	Identifying Actors
	Example Actors in Our Sample Project

	Identifying Jobs That Actors Have to Do
	Using Job Story Format to Capture JTBDs
	Example JTBDs in Our Sample Project

	Discovering Interaction Patterns with Sequence Diagrams
	Deriving Actions and Queries from JTBDs
	Example Queries and Actions for Our Sample Project

	Describing Each Query and Action as a Specification with an Open Standard
	Example OAS for an Action in Our Sample Project

	Getting Feedback on the API Specification
	Implementing Microservices
	Microservices Versus APIs
	Summary

	Chapter 4. Rightsizing Your Microservices:
Finding Service Boundaries
	Why Boundaries Matter, When They Matter, and How to Find Them
	Domain-Driven Design and Microservice Boundaries
	Context Mapping
	Synchronous Versus Asynchronous Integrations
	A DDD Aggregate

	Introduction to Event Storming
	The Event-Storming Process

	Introducing the Universal Sizing Formula
	The Universal Sizing Formula

	Summary

	Chapter 5. Dealing with the Data
	Independent Deployability and Data Sharing
	Microservices Embed Their Data
	Embedding Data Should Not Lead to an Explosion in the Number of Database Clusters
	Data Embedding and the Data Delegate Pattern
	Using Data Duplication to Solve for Independence
	Distributed Transactions and Surviving Failures

	Event Sourcing and CQRS
	Event Sourcing
	Improving Performance with Rolling Snapshots
	Event Store
	Command Query Responsibility Segregation

	Event Sourcing and CQRS Beyond Microservices
	Summary

	Chapter 6. Building an Infrastructure Pipeline
	DevOps Principles and Practices
	Immutable Infrastructure
	Infrastructure as Code
	Continuous Integration and Continuous Delivery

	Setting Up the IaC Environment
	Set Up GitHub
	Install Terraform

	Configuring Amazon Web Services
	Setting Up an AWS Operations Account
	Configure the AWS CLI
	Setting Up AWS Permissions
	Creating an S3 Backend for Terraform

	Building an IaC Pipeline
	Creating the Sandbox Repository
	Understanding Terraform
	Writing the Code for the Sandbox Environment
	Building the Pipeline
	Testing the Pipeline

	Summary

	Chapter 7. Building a Microservices Infrastructure
	Infrastructure Components
	The Network
	The Kubernetes Service
	The GitOps Deployment Server

	Implementing the Infrastructure
	Installing kubectl
	Setting Up the Module Repositories
	The Network Module
	The Kubernetes Module
	Setting Up Argo CD
	Testing the Environment
	Cleaning Up the Infrastructure

	Summary

	Chapter 8. Developer Workspace
	Coding Standards and the Developer’s Setup
	10 Workspace Guidelines for a Superior Developer Experience

	Setting Up a Containerized Environment Locally
	Installing Multipass
	Entering the Container and Mapping Folders

	Installing Docker
	Testing Docker

	Advanced Local Docker Usage: Installing Cassandra
	Installing Kubernetes
	Summary

	Chapter 9. Developing Microservices
	Designing Microservice Endpoints
	Flights Microservice
	Reservations Microservice
	Designing an OpenAPI Specification

	Implementing the Data for a Microservice
	Redis for the Reservations Data Model
	MySQL Data Model for the Flights Microservice

	Implementing Code for a Microservice
	The Code Behind the Flights Microservice
	Health Checks

	Introducing a Second Microservice to the Project
	Hooking Services Up with an Umbrella Project
	Summary

	Chapter 10. Releasing Microservices
	Setting Up the Staging Environment
	The Ingress Module
	The Database Module
	Forking the Staging Infrastructure Project
	Configuring the Staging Workflow
	Editing the Staging Infrastructure Code

	Shipping the Flight Information Container
	Introducing Docker Hub
	Configuring Docker Hub
	Configuring the Pipeline

	Deploying the Flights Service Container
	Understanding Kubernetes Deployments
	Creating a Helm Chart
	Creating the Microservices Deployment Repository
	Argo CD for GitOps Deployment

	Clean Up
	Summary

	Chapter 11. Managing Change
	Changes in a Microservices System
	Be Data-Oriented
	The Impact of Changes
	Three Deployment Patterns

	Considerations for Our Architecture
	Infrastructure Changes
	Microservices Changes
	Data Changes

	Summary

	Chapter 12. A Journey’s End (and a New Beginning)
	On Complexity and Simplification Using Microservices
	Microservices Quadrant

	Measuring the Progress of a Microservices Transformation
	Summary

	Index
	About the Authors
	Colophon

