
01

From Design to Deployment

02

From Design to Deployment
by Chris Richardson

with Floyd Smith

© NGINX, Inc. 2016

i

Foreword . iii

Introduction to Microservices . 1
Building Monolithic Applications . 1
Marching Toward Monolithic Hell . 3
Microservices – Tackling the Complexity 4
The Benefits of Microservices . 8
The Drawbacks of Microservices . 9
Summary . 11
Microservices in Action: NGINX Plus as a Reverse Proxy Server . . 11

Using an API Gateway . 12
Introduction . 12
Direct Client-to-Microservice Communication 15
Using an API Gateway . 15
Benefits and Drawbacks of an API Gateway 17
Implementing an API Gateway . 17
	 Performance and Scalability . 17
	 Using a Reactive Programming Model 18
	 Service Invocation . 18
	 Service Discovery . 19
	 Handling Partial Failures . 19
Summary . 20
Microservices in Action: NGINX Plus as an API Gateway 20

Inter-Process Communication . 21
Introduction . 21
Interaction Styles . 22
Defining APIs . 24
Evolving APIs . 24
Handling Partial Failure . 25
IPC Technologies . 26
Asynchronous, Message-Based Communication 26
Synchronous, Request/Response IPC 29
	 REST . 29
	 Thrift . 31
Message Formats . 31
Summary . 32
Microservices in Action: NGINX and Application Architecture . . 33

Table of Contents

1

2

3

ii

Service Discovery . 34
Why Use Service Discovery? . 34
The Client-Side Discovery Pattern 35
The Server-Side Discovery Pattern 37
The Service Registry . 38
Service Registration Options . 39
The Self-Registration Pattern . 39
The Third-Party Registration Pattern 41
Summary . 42
Microservices in Action: NGINX Flexibility 43

Event-Driven Data Management for Microservices 44
Microservices and the Problem of Distributed
Data Management . 44
Event-Driven Architecture . 47
Achieving Atomicity . 50
Publishing Events Using Local Transactions 50
Mining a Database Transaction Log 51
Using Event Sourcing . 52
Summary . 54
Microservices in Action: NGINX and Storage Optimization . . . 54

Choosing a Microservices Deployment Strategy 55
Motivations . 55
Multiple Service Instances per Host Pattern 56
Service Instance per Host Pattern 58
Service Instance per Virtual Machine Pattern 58
Service Instance per Container Pattern 60
Serverless Deployment . 62
Summary . 63
Microservices in Action: Deploying Microservices
Across Varying Hosts with NGINX . 63

Refactoring a Monolith into Microservices 64
Overview of Refactoring to Microservices 65
Strategy #1: Stop Digging . 66
Strategy #2: Split Frontend and Backend 67
Strategy #3: Extract Services . 69
	 Prioritizing Which Modules to Convert into Services 69
	 How to Extract a Module . 69
Summary . 71
Microservices in Action: Taming a Monolith with NGINX 72

Resources for Microservices and NGINX 73

4

5

6

7

iii

The rise of microservices has been a remarkable advancement in application
development and deployment. With microservices, an application is developed,
or refactored, into separate services that “speak” to one another in a well-defined way –
via APIs, for instance. Each microservice is self-contained, each maintains its own
data store (which has significant implications), and each can be updated independently
of others.

Moving to a microservices-based approach makes app development faster and easier
to manage, requiring fewer people to implement more new features. Changes can be
made and deployed faster and easier. An application designed as a collection of
microservices is easier to run on multiple servers with load balancing, making it easy
to handle demand spikes and steady increases in demand over time, while reducing
downtime caused by hardware or software problems.

Microservices are a critical part of a number of significant advancements that are
changing the nature of how we work. Agile software development techniques, moving
applications to the cloud, DevOps culture, continuous integration and continuous
deployment (CI/CD), and the use of containers are all being used alongside microservices
to revolutionize application development and delivery.

NGINX software is strongly associated with microservices and all of the technologies
listed above. Whether deployed as a reverse proxy, or as a highly efficient web server,
NGINX makes microservices-based application development easier and keeps
microservices-based solutions running smoothly.

With the tie between NGINX and microservices being so strong, we’ve run a seven-part
series on microservices on the NGINX website. Written by Chris Richardson, who has
had early involvement with the concept and its implementation, the blog posts cover
the major aspects of microservices for app design and development, including how to
make the move from a monolithic application. The blog posts offer a thorough overview
of major microservices issues and have been extremely popular.

Foreword
 by Floyd Smith

iv

In this ebook, we’ve converted each blog post to a book chapter, and added a sidebar
to each chapter with information relevant to implementing microservices in NGINX.
If you follow the advice herein carefully, you’ll solve many potential development
problems before you even start writing code. This book is also a good companion
to the NGINX Microservices Reference Architecture, which implements much of the
theory presented here.

The book chapters are:

1.	� Introduction to Microservices – A clear and simple introduction to microservices,
from its perhaps overhyped conceptual definition to the reality of how microservices
are deployed in creating and maintaining applications.

2.	� Using an API Gateway – An API Gateway is the single point of entry for your entire
microservices-based application, presenting the API for each microservice. NGINX Plus
can effectively be used as an API Gateway with load balancing, static file caching,
and more.

3.	� Inter-process Communication in a Microservices Architecture – Once you break
a monolithic application into separate pieces – microservices – the pieces need to
speak to each other. And it turns out that you have many options for inter-process
communication, including representational state transfer (REST). This chapter gives
the details.

4.	� Service Discovery in a Microservices Architecture – When services are running
in a dynamic environment, finding them when you need them is not a trivial issue.
In this chapter, Chris describes a practical solution to this problem.

5.	� Event-Driven Data Management for Microservices – Instead of sharing a unified
application-wide data store (or two) across a monolithic application, each microservice
maintains its own unique data representation and storage. This gives you great
flexibility, but can also cause complexity, and this chapter helps you sort through it.

6.	� Choosing a Microservices Deployment Strategy – In a DevOps world, how you do
things is just as important as what you set out to do in the first place. Chris describes
the major patterns for microservices deployment so you can make an informed
choice for your own application.

7.	� Refactoring a Monolith into Microservices – In a perfect world, we would always get
the time and money to convert core software into the latest and greatest technologies,
tools, and approaches, with no real deadlines. But you may well find yourself converting
a monolith into microservices, one… small… piece… at… a… time. Chris presents a
strategy for doing this sensibly.

We think you’ll find every chapter worthwhile, and we hope that you’ll come back to this
ebook as you develop your own microservices apps.

Floyd Smith
NGINX, Inc.

https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/

1Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

Introduction to
Microservices1

Microservices are currently getting a lot of attention: articles, blogs, discussions on
social media, and conference presentations. They are rapidly heading towards the peak
of inflated expectations on the Gartner Hype cycle. At the same time, there are skeptics
in the software community who dismiss microservices as nothing new. Naysayers claim
that the idea is just a rebranding of service-oriented architecture (SOA). However, despite
both the hype and the skepticism, the Microservices Architecture pattern has significant
benefits – especially when it comes to enabling the agile development and delivery of
complex enterprise applications.

This chapter is the first in this seven-chapter ebook about designing, building,
and deploying microservices. You will learn about the microservices approach and
how it compares to the more traditional Monolithic Architecture pattern. This ebook
will describe the various elements of a microservices architecture. You will learn about
the benefits and drawbacks of the Microservices Architecture pattern, whether it makes
sense for your project, and how to apply it.

Let’s first look at why you should consider using microservices.

Building Monolithic Applications

Let’s imagine that you were starting to build a brand new taxi-hailing application
intended to compete with Uber and Hailo. After some preliminary meetings and
requirements gathering, you would create a new project either manually or by using
a generator that comes with a platform such as Rails, Spring Boot, Play, or Maven.

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/monolithic.html

2Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

This new application would have a modular hexagonal architecture, like in Figure 1-1:

At the core of the application is the business logic, which is implemented by modules
that define services, domain objects, and events. Surrounding the core are adapters
that interface with the external world. Examples of adapters include database access
components, messaging components that produce and consume messages, and web
components that either expose APIs or implement a UI.

Figure 1-1. A sample taxi-hailing application.

MYSQL

Monolithic
Architecture

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT

TRIP
MANAGEMENT

BILLING NOTIFICATION PAYMENTS

YOURBANK

0000 0000 0000 0000

00/00

YOUR NAME

TWILIO
ADAPTER

SENDGRID
ADAPTER

STRIPE
ADAPTER

WEB
UI

REST
API

PASSENGER

DRIVER

MYSQL
ADAPTER

http://www.infoq.com/news/2014/10/exploring-hexagonal-architecture

3Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

Despite having a logically modular architecture, the application is packaged and
deployed as a monolith. The actual format depends on the application’s language
and framework. For example, many Java applications are packaged as WAR files and
deployed on application servers such as Tomcat or Jetty. Other Java applications are
packaged as self-contained executable JARs. Similarly, Rails and Node.js applications
are packaged as a directory hierarchy.

Applications written in this style are extremely common. They are simple to develop
since our IDEs and other tools are focused on building a single application. These kinds
of applications are also simple to test. You can implement end-to-end testing by simply
launching the application and testing the UI with a testing package such as Selenium.
Monolithic applications are also simple to deploy. You just have to copy the packaged
application to a server. You can also scale the application by running multiple copies
behind a load balancer. In the early stages of the project it works well.

Marching Toward Monolithic Hell

Unfortunately, this simple approach has a huge limitation. Successful applications have
a habit of growing over time and eventually becoming huge. During each sprint, your
development team implements a few more user stories, which, of course, means adding
many lines of code. After a few years, your small, simple application will have grown into
a monstrous monolith. To give an extreme example, I recently spoke to a developer who
was writing a tool to analyze the dependencies between the thousands of JARs in their
multi-million lines of code (LOC) application. I’m sure it took the concerted effort of a
large number of developers over many years to create such a beast.

Once your application has become a large, complex monolith, your development
organization is probably in a world of pain. Any attempts at agile development and
delivery will flounder. One major problem is that the application is overwhelmingly
complex. It’s simply too large for any single developer to fully understand. As a result,
fixing bugs and implementing new features correctly becomes difficult and time
consuming. What’s more, this tends to be a downwards spiral. If the codebase is difficult
to understand, then changes won’t be made correctly. You will end up with a monstrous,
incomprehensible big ball of mud.

The sheer size of the application will also slow down development. The larger the
application, the longer the start-up time is. I surveyed developers about the size and
performance of their monolithic applications, and some reported start-up times as long
as 12 minutes. I’ve also heard anecdotes of applications taking as long as 40 minutes to
start up. If developers regularly have to restart the application server, then a large part
of their day will be spent waiting around and their productivity will suffer.

Another problem with a large, complex monolithic application is that it is an obstacle to
continuous deployment. Today, the state of the art for SaaS applications is to push changes
into production many times a day. This is extremely difficult to do with a complex monolith,

http://microservices.io/patterns/monolithic.html
http://www.laputan.org/mud/
https://plainoldobjects.com/2015/05/13/monstrous-monoliths-how-bad-can-it-get/

4Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

since you must redeploy the entire application in order to update any one part of it.
The lengthy start-up times that I mentioned earlier won’t help either. Also, since the impact
of a change is usually not very well understood, it is likely that you have to do extensive
manual testing. Consequently, continuous deployment is next to impossible to do.

Monolithic applications can also be difficult to scale when different modules have conflicting
resource requirements. For example, one module might implement CPU-intensive image
processing logic and would ideally be deployed in Amazon EC2 Compute Optimized
instances. Another module might be an in-memory database and best suited for EC2
Memory-optimized instances. However, because these modules are deployed together,
you have to compromise on the choice of hardware.

Another problem with monolithic applications is reliability. Because all modules are running
within the same process, a bug in any module, such as a memory leak, can potentially bring
down the entire process. Moreover, since all instances of the application are identical,
that bug will impact the availability of the entire application.

Last but not least, monolithic applications make it extremely difficult to adopt new
frameworks and languages. For example, let’s imagine that you have 2 million lines of code
written using the XYZ framework. It would be extremely expensive (in both time and cost)
to rewrite the entire application to use the newer ABC framework, even if that framework
was considerably better. As a result, there is a huge barrier to adopting new technologies.
You are stuck with whatever technology choices you made at the start of the project.

To summarize: you have a successful business-critical application that has grown into a
monstrous monolith that very few, if any, developers understand. It is written using obsolete,
unproductive technology that makes hiring talented developers difficult. The application is
difficult to scale and is unreliable. As a result, agile development and delivery of applications
is impossible.

So what can you do about it?

Microservices – Tackling the Complexity

Many organizations, such as Amazon, eBay, and Netflix, have solved this problem by
adopting what is now known as the Microservices Architecture pattern. Instead of building
a single monstrous, monolithic application, the idea is to split your application into set of
smaller, interconnected services.

A service typically implements a set of distinct features or functionality, such as order
management, customer management, etc. Each microservice is a mini-application that has
its own hexagonal architecture consisting of business logic along with various adapters.
Some microservices would expose an API that’s consumed by other microservices or
by the application’s clients. Other microservices might implement a web UI. At runtime,
each instance is often a cloud virtual machine (VM) or a Docker container.

http://aws.amazon.com/about-aws/whats-new/2013/11/14/announcing-new-amazon-ec2-compute-optimized-instances/
http://aws.amazon.com/about-aws/whats-new/2013/11/14/announcing-new-amazon-ec2-compute-optimized-instances/
http://aws.amazon.com/about-aws/whats-new/2014/04/10/r3-announcing-the-next-generation-of-amazon-ec2-memory-optimized-instances/
http://aws.amazon.com/about-aws/whats-new/2014/04/10/r3-announcing-the-next-generation-of-amazon-ec2-memory-optimized-instances/
http://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
http://microservices.io/patterns/microservices.html

5Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

For example, a possible decomposition of the system described earlier is shown in
Figure 1-2:

Figure 1-2. A monolithic application decomposed into microservices.

API
GATEWAY PASSENGER

MANAGEMENT

PASSENGER
WEB UI

DRIVER
WEB UI

DRIVER
MANAGEMENT

TRIP
MANAGEMENT

BILLING

NOTIFICATION

PAYMENTS

YOURBANK

0000 0000 0000 0000

00/00

YOUR NAME

TWILIO
ADAPTER

SENDGRID
ADAPTER

STRIPE
ADAPTER

REST
API

REST
API

REST
API

REST
API

REST
API

REST
API

Figure 1-2. A monolithic application decomposed into microservices.

Each functional area of the application is now implemented by its own microservice.
Moreover, the web application is split into a set of simpler web applications – such as
one for passengers and one for drivers, in our taxi-hailing example. This makes it easier
to deploy distinct experiences for specific users, devices, or specialized use cases.

Each backend service exposes a REST API and most services consume APIs provided by
other services. For example, Driver Management uses the Notification server to tell an
available driver about a potential trip. The UI services invoke the other services in order to
render web pages. Services might also use asynchronous, message-based communication.
Inter-service communication will be covered in more detail later in this ebook.

6Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

Figure 1-3. The Scale Cube, used in both development and delivery.

Y axis -
functional
decomposition
Scale by splitting
different things

X axis - horizontal duplication
Scale by cloning

Z a
xis

 - d
at

a p
ar

tit
io

nin
g

Sca
le

by
 sp

lit
tin

g si
m

ila
r t

hin
gs

Some REST APIs are also exposed to the mobile apps used by the drivers and
passengers. The apps don’t, however, have direct access to the backend services.
Instead, communication is mediated by an intermediary known as an API Gateway.
The API Gateway is responsible for tasks such as load balancing, caching, access control,
API metering, and monitoring, and can be implemented effectively using NGINX.
Chapter 2 discusses the API Gateway in detail.

The Microservices Architecture pattern corresponds to the Y-axis scaling of the Scale Cube,
which is a 3D model of scalability from the excellent book The Art of Scalability. The other
two scaling axes are X-axis scaling, which consists of running multiple identical copies
of the application behind a load balancer, and Z-axis scaling (or data partitioning), where an
attribute of the request (for example, the primary key of a row or identity of a customer)
is used to route the request to a particular server.

Applications typically use the three types of scaling together. Y-axis scaling decomposes
the application into microservices as shown above in Figure 1-2.

http://microservices.io/patterns/apigateway.html
http://www.nginx.com/solutions/api-gateway/
http://microservices.io/articles/scalecube.html
http://theartofscalability.com/

7Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

At runtime, X-axis scaling runs multiple instances of each service behind a load balancer
for throughput and availability. Some applications might also use Z-axis scaling to partition
the services. Figure 1-4 shows how the Trip Management service might be deployed
with Docker running on Amazon EC2.

Figure 1-4. Deploying the Trip Management service using Docker.

TRIP
MANAGEMENT

DOCKER
CONTAINER

DOCKER
CONTAINER

DOCKER
CONTAINER

DOCKER
CONTAINER

EC2 INSTANCE

TRIP
MANAGEMENT

EC2 INSTANCE

TRIP
MANAGEMENT

REST
API

REST
API

REST
API

LOAD
BALANCER

At runtime, the Trip Management service consists of multiple service instances. Each
service instance is a Docker container. In order to be highly available, the containers are
running on multiple Cloud VMs. In front of the service instances is a load balancer such
as NGINX that distributes requests across the instances. The load balancer might also
handle other concerns such as caching, access control, API metering, and monitoring.

The Microservices Architecture pattern significantly impacts the relationship between the
application and the database. Rather than sharing a single database schema with other
services, each service has its own database schema. On the one hand, this approach is
at odds with the idea of an enterprise-wide data model. Also, it often results in duplication
of some data. However, having a database schema per service is essential if you want
to benefit from microservices, because it ensures loose coupling. Figure 1-5 shows the
database architecture for the sample application.

Each of the services has its own database. Moreover, a service can use a type of database
that is best suited to its needs, the so-called polyglot persistence architecture. For example,
Driver Management, which finds drivers close to a potential passenger, must use a
database that supports efficient geo-queries.

http://www.nginx.com/solutions/load-balancing/
http://www.nginx.com/solutions/load-balancing/
http://www.nginx.com/resources/admin-guide/content-caching/
http://www.nginx.com/resources/admin-guide/restricting-access/
http://www.nginx.com/solutions/api-gateway/
http://www.nginx.com/products/live-activity-monitoring/

8Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

Figure 1-5. Database architecture for the taxi-hailing application.

PASSENGER
MANAGEMENT

PASSENGER
MANAGEMENT

DATABASE

DRIVER
MANAGEMENT

DATABASE

TRIP
MANAGEMENT

DATABASE

REST
API

DRIVER
MANAGEMENT

REST
API

TRIP
MANAGEMENT

REST
API

DATABASE
ADAPTER

DATABASE
ADAPTER

DATABASE
ADAPTER

On the surface, the Microservices Architecture pattern is similar to SOA. With both
approaches, the architecture consists of a set of services. However, one way to think
about the Microservices Architecture pattern is that it’s SOA without the commercialization
and perceived baggage of web service specifications (WS-*) and an Enterprise Service
Bus (ESB). Microservice-based applications favor simpler, lightweight protocols such as
REST, rather than WS-*. They also very much avoid using ESBs and instead implement
ESB-like functionality in the microservices themselves. The Microservices Architecture
pattern also rejects other parts of SOA, such as the concept of a canonical schema for
data access.

The Benefits of Microservices

The Microservices Architecture pattern has a number of important benefits. First, it
tackles the problem of complexity. It decomposes what would otherwise be a monstrous
monolithic application into a set of services. While the total amount of functionality is
unchanged, the application has been broken up into manageable chunks or services.
Each service has a well-defined boundary in the form of a remote procedure call
(RPC)-driven or message-driven API. The Microservices Architecture pattern enforces
a level of modularity that in practice is extremely difficult to achieve with a monolithic
code base. Consequently, individual services are much faster to develop, and much
easier to understand and maintain.

http://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/Canonical_schema_pattern

9Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

Second, this architecture enables each service to be developed independently by a team
that is focused on that service. The developers are free to choose whatever technologies
make sense, provided that the service honors the API contract. Of course, most
organizations would want to avoid complete anarchy by limiting technology options.
However, this freedom means that developers are no longer obligated to use the possibly
obsolete technologies that existed at the start of a new project. When writing a new
service, they have the option of using current technology. Moreover, since services are
relatively small, it becomes more feasible to rewrite an old service using current technology.

Third, the Microservices Architecture pattern enables each microservice to be deployed
independently. Developers never need to coordinate the deployment of changes that are
local to their service. These kinds of changes can be deployed as soon as they have been
tested. The UI team can, for example, perform A|B testing and rapidly iterate on UI changes.
The Microservices Architecture pattern makes continuous deployment possible.

Finally, the Microservices Architecture pattern enables each service to be scaled
independently. You can deploy just the number of instances of each service that satisfy
its capacity and availability constraints. Moreover, you can use the hardware that best
matches a service’s resource requirements. For example, you can deploy a CPU-intensive
image processing service on EC2 Compute Optimized instances and deploy an in-memory
database service on EC2 Memory-optimized instances.

The Drawbacks of Microservices

As Fred Brooks wrote almost 30 years ago, in The Mythical Man-Month, there are no
silver bullets. Like every other technology, the Microservices architecture pattern has
drawbacks. One drawback is the name itself. The term microservice places excessive
emphasis on service size. In fact, there are some developers who advocate for building
extremely fine-grained 10-100 LOC services. While small services are preferable, it’s
important to remember that small services are a means to an end, and not the primary
goal. The goal of microservices is to sufficiently decompose the application in order to
facilitate agile application development and deployment.

Another major drawback of microservices is the complexity that arises from the fact that
a microservices application is a distributed system. Developers need to choose and
implement an inter-process communication mechanism based on either messaging or
RPC. Moreover, they must also write code to handle partial failure, since the destination
of a request might be slow or unavailable. While none of this is rocket science, it’s much
more complex than in a monolithic application, where modules invoke one another via
language-level method/procedure calls.

Another challenge with microservices is the partitioned database architecture. Business
transactions that update multiple business entities are fairly common. These kinds of
transactions are trivial to implement in a monolithic application because there is a single
database. In a microservices-based application, however, you need to update multiple

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

10Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

databases owned by different services. Using distributed transactions is usually not an
option, and not only because of the CAP theorem. They simply are not supported by many
of today’s highly scalable NoSQL databases and messaging brokers. You end up having to
use an eventual consistency-based approach, which is more challenging for developers.

Testing a microservices application is also much more complex. For example, with a modern
framework such as Spring Boot, it is trivial to write a test class that starts up a monolithic
web application and tests its REST API. In contrast, a similar test class for a service
would need to launch that service and any services that it depends upon, or at least
configure stubs for those services. Once again, this is not rocket science, but it’s important
to not underestimate the complexity of doing this.

Another major challenge with the Microservices Architecture pattern is implementing
changes that span multiple services. For example, let’s imagine that you are implementing
a story that requires changes to services A, B, and C, where A depends upon B and B
depends upon C. In a monolithic application you could simply change the corresponding
modules, integrate the changes, and deploy them in one go. In contrast, in a Microservices
Architecture pattern you need to carefully plan and coordinate the rollout of changes
to each of the services. For example, you would need to update service C, followed by
service B, and then finally service A. Fortunately, most changes typically impact only
one service; multi-service changes that require coordination are relatively rare.

Deploying a microservices-based application is also much more complex. A monolithic
application is simply deployed on a set of identical servers behind a traditional load balancer.
Each application instance is configured with the locations (host and ports) of infrastructure
services such as the database and a message broker. In contrast, a microservice
application typically consists of a large number of services. For example, Hailo has
160 different services and Netflix has more than 600, according to Adrian Cockcroft.

Each service will have multiple runtime instances. That’s many more moving parts that
need to be configured, deployed, scaled, and monitored. In addition, you will also need to
implement a service discovery mechanism that enables a service to discover the locations
(hosts and ports) of any other services it needs to communicate with. Traditional trouble
ticket-based and manual approaches to operations cannot scale to this level of complexity.
Consequently, successfully deploying a microservices application requires greater control
of deployment methods by developers and a high level of automation.

One approach to automation is to use an off-the-shelf platform-as-a-service (PaaS) such
as Cloud Foundry. A PaaS provides developers with an easy way to deploy and manage
their microservices. It insulates them from concerns such as procuring and configuring
IT resources. At the same time, the systems and network professionals who configure
the PaaS can ensure compliance with best practices and with company policies.

Another way to automate the deployment of microservices is to develop what is
essentially your own PaaS. One typical starting point is to use a clustering solution, such
as Kubernetes, in conjunction with a container technology such as Docker. Later in this

http://en.wikipedia.org/wiki/CAP_theorem
https://sudo.hailoapp.com/services/2015/03/09/journey-into-a-microservice-world-part-3/
https://sudo.hailoapp.com/services/2015/03/09/journey-into-a-microservice-world-part-3/
https://twitter.com/adrianco
https://www.cloudfoundry.org/
http://kubernetes.io/

11Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

ebook we will look at how software-based application delivery approaches like NGINX,
which easily handles caching, access control, API metering, and monitoring at the
microservice level, can help solve this problem.

Summary

Building complex applications is inherently difficult. The Monolithic Architecture pattern
only makes sense for simple, lightweight applications. You will end up in a world of pain
if you use it for complex applications. The Microservices Architecture pattern is
the better choice for complex, evolving applications, despite the drawbacks and
implementation challenges.

In later chapters, I’ll dive into the details of various aspects of the Microservices Architecture
pattern and discuss topics such as service discovery, service deployment options,
and strategies for refactoring a monolithic application into services.

Microservices in Action: NGINX Plus as a Reverse Proxy Server
by Floyd Smith

NGINX powers more than 50% of the top 10,000 websites, and that’s largely because of its
capabilities as a reverse proxy server. You can “drop NGINX in front of” current applications and
even database servers to gain all sorts of capabilities – higher performance, greater security,
scalability, flexibility, and more. All with little or no change to your existing application and
configuration code. For sites suffering performance stress – or anticipating high loads in the future –
the effect may seem little short of miraculous.

So what does this have to do with microservices? Implementing a reverse proxy server, and using
the other capabilities of NGINX, gives you architectural flexibility. A reverse proxy server, static
and application file caching, and SSL/TLS and HTTP/2 termination all take load off your application,
freeing it to “do what only it” – the application – “can do”.

NGINX also serves as a load balancer, a crucial role in microservices implementations. The ad-
vanced features in NGINX Plus, including sophisticated load-balancing algorithms, multiple
methods for session persistence, and management and monitoring, are especially useful with
microservices. (NGINX has recently added support for service discovery using DNS SRV records,
a cutting-edge feature.) And, as mentioned in this chapter, NGINX can help in automating the
deployment of microservices.

In addition, NGINX provides the necessary functionality to power the three models in the NGINX
Microservices Reference Architecture. The Proxy Model uses NGINX as an API Gateway; the Router
Mesh model uses an additional NGINX server as a hub for inter-process communication; and the
Fabric Model uses one NGINX server per microservice, controlling HTTP traffic and, optionally,
implementing SSL/TLS between microservices, a breakthrough capability.

http://www.nginx.com/products/
http://w3techs.com/technologies/cross/web_server/ranking
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/

12Microservices – From Design to Deployment Ch. 2 – Using an API Gateway

The first chapter in this seven-chapter book about designing, building, and deploying
microservices introduced the Microservices Architecture pattern. It discussed the
benefits and drawbacks of using microservices and how, despite the complexity of
microservices, they are usually the ideal choice for complex applications. This is the
second article in the series and will discuss building microservices using an API Gateway.

When you choose to build your application as a set of microservices, you need to decide
how your application’s clients will interact with the microservices. With a monolithic
application there is just one set of endpoints, which are typically replicated, with load
balancing used to distribute traffic among them.

In a microservices architecture, however, each microservice exposes a set of what are
typically fine-grained endpoints. In this article, we examine how this impacts client-to-
application communication and propose an approach that uses an API Gateway.

Introduction

Let’s imagine that you are developing a native mobile client for a shopping application.
It’s likely that you need to implement a product details page, which displays information
about any given product.

For example, Figure 2-1 shows what you will see when scrolling through the product
details in Amazon’s Android mobile application.

Using an
API Gateway2

http://microservices.io/patterns/apigateway.html

13Microservices – From Design to Deployment Ch. 2 – Using an API Gateway

Even though this is a smartphone application, the product details page displays a lot of
information. For example, not only is there basic product information, such as name,
description, and price, but this page also shows:

1.	 Number of items in the shopping cart
2.	 Order history
3.	 Customer reviews
4.	 Low inventory warning
5.	 Shipping options
6.	� Various recommendations, including other products this product is frequently

bought with, other products bought by customers who bought this product, and
other products viewed by customers who bought this product

7.	 Alternative purchasing options

When using a monolithic application architecture, a mobile client retrieves this data by
making a single REST call to the application, such as:

 GET api.company.com/productdetails/productId

A load balancer routes the request to one of several identical application instances.
The application then queries various database tables and return the response to the client.

Figure 2-1. A sample shopping application.

14Microservices – From Design to Deployment Ch. 2 – Using an API Gateway

In contrast, when using the microservices architecture, the data displayed on the
product details page is owned by multiple microservices. Here are some of the potential
microservices that own data displayed on the sample product-specific page:

•	� Shopping Cart Service – Number of items in the shopping cart
•	� Order Service – Order history
•	� Catalog Service – Basic product information, such as product name, image, and price
•	� Review Service – Customer reviews
•	� Inventory Service – Low inventory warning
•	� Shipping Service – Shipping options, deadlines, and costs, drawn separately from the

shipping provider’s API
•	� Recommendation Service(s) – Suggested items

Figure 2-2. Mapping a mobile client’s needs to relevant microservices.

We need to decide how the mobile client accesses these services. Let’s look at the options.

15Microservices – From Design to Deployment Ch. 2 – Using an API Gateway

Direct Client-to-Microservice Communication

In theory, a client could make requests to each of the microservices directly.
Each microservice would have a public endpoint:

 https://serviceName.api.company.name

This URL would map to the microservice’s load balancer, which distributes requests
across the available instances. To retrieve the product-specific page information,
the mobile client would make requests to each of the services listed above.

Unfortunately, there are challenges and limitations with this option. One problem is the
mismatch between the needs of the client and the fine-grained APIs exposed by each
of the microservices. The client in this example has to make seven separate requests.
In more complex applications it might have to make many more. For example, Amazon
describes how hundreds of services are involved in rendering their product page.
While a client could make that many requests over a LAN, it would probably be too
inefficient over the public Internet and would definitely be impractical over a mobile
network. This approach also makes the client code much more complex.

Another problem with the client directly calling the microservices is that some might use
protocols that are not web-friendly. One service might use Thrift binary RPC while another
service might use the AMQP messaging protocol. Neither protocol is particularly browser-
or firewall-friendly, and is best used internally. An application should use protocols such
as HTTP and WebSocket outside of the firewall.

Another drawback with this approach is that it makes it difficult to refactor the microservices.
Over time we might want to change how the system is partitioned into services. For example,
we might merge two services or split a service into two or more services. If, however,
clients communicate directly with the services, then performing this kind of refactoring
can be extremely difficult.

Because of these kinds of problems it rarely makes sense for clients to talk directly
to microservices.

Using an API Gateway

Usually a much better approach is to use what is known as an API Gateway. An API
Gateway is a server that is the single entry point into the system. It is similar to the Facade
pattern from object-oriented design. The API Gateway encapsulates the internal system
architecture and provides an API that is tailored to each client. It might have other
responsibilities such as authentication, monitoring, load balancing, caching, request
shaping and management, and static response handling.

http://microservices.io/patterns/apigateway.html
https://en.wikipedia.org/wiki/Facade_pattern

16Microservices – From Design to Deployment Ch. 2 – Using an API Gateway

Figure 2-3 shows how an API Gateway typically fits into the architecture.

The API Gateway is responsible for request routing, composition, and protocol translation.
All requests from clients first go through the API Gateway. It then routes requests to the
appropriate microservice. The API Gateway will often handle a request by invoking multiple
microservices and aggregating the results. It can translate between web protocols such
as HTTP and WebSocket and web-unfriendly protocols that are used internally.

The API Gateway can also provide each client with a custom API. It typically exposes a
coarse-grained API for mobile clients. Consider, for example, the product details scenario.
The API Gateway can provide an endpoint (/productdetails?productid=xxx) that

Figure 2-3. Using an API Gateway with microservices.

17Microservices – From Design to Deployment Ch. 2 – Using an API Gateway

enables a mobile client to retrieve all of the product details with a single request. The API
Gateway handles the request by invoking the various services – product information,
recommendations, reviews, etc. – and combining the results.

A great example of an API Gateway is the Netflix API Gateway. The Netflix streaming
service is available on hundreds of different kinds of devices including televisions,
set-top boxes, smartphones, gaming systems, tablets, etc. Initially, Netflix attempted
to provide a one-size-fits-all API for their streaming service. However, they discovered
that it didn’t work well because of the diverse range of devices and their unique needs.
Today, they use an API Gateway that provides an API tailored for each device by running
device-specific adapter code. An adapter typically handles each request by invoking,
on average, six to seven backend services. The Netflix API Gateway handles billions of
requests per day.

Benefits and Drawbacks of an API Gateway

As you might expect, using an API Gateway has both benefits and drawbacks. A major
benefit of using an API Gateway is that it encapsulates the internal structure of the
application. Rather than having to invoke specific services, clients simply talk to the
gateway. The API Gateway provides each kind of client with a specific API. This reduces the
number of round trips between the client and application. It also simplifies the client code.

The API Gateway also has some drawbacks. It is yet another highly available component
that must be developed, deployed, and managed. There is also a risk that the API Gateway
becomes a development bottleneck. Developers must update the API Gateway in order
to expose each microservice’s endpoints.

It is important that the process for updating the API Gateway be as lightweight as possible.
Otherwise, developers will be forced to wait in line in order to update the gateway. Despite
these drawbacks, however, for most real-world applications it makes sense to use an
API Gateway.

Implementing an API Gateway

Now that we have looked at the motivations and the trade-offs for using an API Gateway,
let’s look at various design issues you need to consider.

Performance and Scalability

Only a handful of companies operate at the scale of Netflix and need to handle billions
of requests per day. However, for most applications the performance and scalability of
the API Gateway is usually very important. It makes sense, therefore, to build the API
Gateway on a platform that supports asynchronous, non-blocking I/O. There are a variety
of different technologies that can be used to implement a scalable API Gateway. On the
JVM you can use one of the NIO-based frameworks such Netty, Vertx, Spring Reactor,

http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://www.programmableweb.com/news/why-rest-keeps-me-night/2012/05/15

18Microservices – From Design to Deployment Ch. 2 – Using an API Gateway

or JBoss Undertow. One popular non-JVM option is Node.js, which is a platform built on
Chrome’s JavaScript engine. Another option is to use NGINX Plus.

NGINX Plus offers a mature, scalable, high-performance web server and reverse proxy that
is easily deployed, configured, and programmed. NGINX Plus can manage authentication,
access control, load balancing requests, caching responses, and provides application-
aware health checks and monitoring.

Using a Reactive Programming Model

The API Gateway handles some requests by simply routing them to the appropriate
backend service. It handles other requests by invoking multiple backend services and
aggregating the results. With some requests, such as a product details request, the
requests to backend services are independent of one another. In order to minimize
response time, the API Gateway should perform independent requests concurrently.

Sometimes, however, there are dependencies between requests. The API Gateway
might first need to validate the request by calling an authentication service before
routing the request to a backend service. Similarly, to fetch information about the
products in a customer’s wish list, the API Gateway must first retrieve the customer’s
profile containing that information, and then retrieve the information for each product.
Another interesting example of API composition is the Netflix Video Grid.

Writing API composition code using the traditional asynchronous callback approach
quickly leads you to callback hell. The code will be tangled, difficult to understand, and
error-prone. A much better approach is to write API Gateway code in a declarative style
using a reactive approach. Examples of reactive abstractions include Future in Scala,
CompletableFuture in Java 8, and Promise in JavaScript. There is also Reactive Extensions
(also called Rx or ReactiveX), which was originally developed by Microsoft for the .NET
platform. Netflix created RxJava for the JVM specifically to use in their API Gateway.
There is also RxJS for JavaScript, which runs in both the browser and Node.js. Using a
reactive approach will enable you to write simple yet efficient API Gateway code.

Service Invocation

A microservices-based application is a distributed system and must use an
inter-process communication mechanism. There are two styles of inter-process
communication. One option is to use an asynchronous, messaging-based mechanism.
Some implementations use a message broker such as JMS or AMQP. Others, such
as Zeromq, are brokerless and the services communicate directly.

The other style of inter-process communication is a synchronous mechanism such as
HTTP or Thrift. A system will typically use both asynchronous and synchronous styles.
It might even use multiple implementations of each style. Consequently, the API Gateway
will need to support a variety of communication mechanisms.

http://www.nginx.com/solutions/api-gateway/
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://docs.scala-lang.org/overviews/core/futures.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://reactivex.io/

19Microservices – From Design to Deployment Ch. 2 – Using an API Gateway

Service Discovery

The API Gateway needs to know the location (IP address and port) of each microservice
with which it communicates. In a traditional application, you could probably hardwire the
locations, but in a modern, cloud-based microservices application, finding the needed
locations is a non-trivial problem.

Infrastructure services, such as a message broker, will usually have a static location,
which can be specified via OS environment variables. However, determining the location
of an application service is not so easy.

Application services have dynamically assigned locations. Also, the set of instances
of a service changes dynamically because of autoscaling and upgrades. Consequently,
the API Gateway, like any other service client in the system, needs to use the system’s
service discovery mechanism: either server-side discovery or client-side discovery.
Chapter 4 describes service discovery in more detail. For now, it is worthwhile to note that
if the system uses client-side discovery, then the API Gateway must be able to query the
service registry, which is a database of all microservice instances and their locations.

Handling Partial Failures

Another issue you have to address when implementing an API Gateway is the problem of
partial failure. This issue arises in all distributed systems whenever one service calls another
service that is either responding slowly or is unavailable. The API Gateway should never
block indefinitely waiting for a downstream service. However, how it handles the failure
depends on the specific scenario and which service is failing. For example, if the
recommendation service is unresponsive in the product details scenario, the API Gateway
should return the rest of the product details to the client since they are still useful to
the user. The recommendations could either be empty or replaced by, for example,
a hardwired top ten list. If, however, the product information service is unresponsive,
then the API Gateway should return an error to the client.

The API Gateway could also return cached data if that is available. For example, since
product prices change infrequently, the API Gateway could return cached pricing data if
the pricing service is unavailable. The data can be cached by the API Gateway itself or
be stored in an external cache, such as Redis or Memcached. By returning either default
data or cached data, the API Gateway ensures that system failures minimally impact the
user experience.

Netflix Hystrix is an incredibly useful library for writing code that invokes remote services.
Hystrix times out calls that exceed the specified threshold. It implements a circuit breaker
pattern, which stops the client from waiting needlessly for an unresponsive service. If the
error rate for a service exceeds a specified threshold, Hystrix trips the circuit breaker
and all requests will fail immediately for a specified period of time. Hystrix lets you define
a fallback action when a request fails, such as reading from a cache or returning a default
value. If you are using the JVM you should definitely consider using Hystrix. And, if you
are running in a non-JVM environment, you should use an equivalent library.

http://microservices.io/patterns/server-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/service-registry.html
https://github.com/Netflix/Hystrix

20Microservices – From Design to Deployment Ch. 2 – Using an API Gateway

Summary

For most microservices-based applications, it makes sense to implement an API Gateway,
which acts as a single entry point into a system. The API Gateway is responsible for request
routing, composition, and protocol translation. It provides each of the application’s clients
with a custom API. The API Gateway can also mask failures in the backend services by
returning cached or default data. In the next chapter, we will look at communication
between services.

Microservices in Action: NGINX Plus as an API Gateway
by Floyd Smith

This chapter discusses how an API Gateway serves as a single entry point into a system. And it can
handle other functions such as load balancing, caching, monitoring, protocol translation, and others –
while NGINX, when implemented as a reverse proxy server, functions as a single entry point into
a system and supports all the additional functions mentioned for an API Gateway. So using NGINX
as the host for an API Gateway can work very well indeed.

Thinking of NGINX as an API Gateway is not an idea that’s original to this ebook. NGINX Plus is a
leading platform for managing and securing HTTP-based API traffic. You can implement your own
API Gateway or use an existing API management platform, many of which leverage NGINX.

Reasons for using NGINX Plus as an API Gateway include:

•	� Access management – You can use a variety of access control list (ACL) methods and easily
implement SSL/TLS, either at the web application level as is typical, or also down to the level
of each individual microservice.

•	� Manageability and resilience – You can update your NGINX Plus-based API server without
downtime, using the NGINX dynamic reconfiguration API, a Lua module, Perl, live restarts without
downtime, or changes driven by Chef, Puppet, ZooKeeper, or DNS.

•	 �Integration with third-party tools – NGINX Plus is already integrated with leading-edge tools
such as 3scale, Kong, and the MuleSoft integration platform (to mention only tools described
on the NGINX website.)

NGINX Plus is used extensively as an API Gateway in the NGINX Microservices Reference Archi-
tecture. Use the articles assembled here and, when publicly available, the MRA, for examples of
how to implement this in your own applications.

https://www.nginx.com/products/
https://www.nginx.com/solutions/api-gateway/
https://www.nginx.com/blog/manage-api-gateway-less-3scale-nginx-plus/
https://www.nginx.com/blog/nginx-powers-kong-api-management-solution/
https://www.nginx.com/blog/mulesoft-implements-nginx-plus/
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/

21Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

Inter-Process
Communication 3

This is the third chapter in this ebook about building applications with a microservices
architecture. Chapter 1 introduces the Microservices Architecture pattern, compares
it with the Monolithic Architecture pattern, and discusses the benefits and drawbacks
of using microservices. Chapter 2 describes how clients of an application communicate
with the microservices via an intermediary known as an API Gateway. In this chapter,
we take a look at how the services within a system communicate with one another.
Chapter 4 explores the closely related problem of service discovery.

Introduction

In a monolithic application, components invoke one another via language-level method
or function calls. In contrast, a microservices-based application is a distributed system
running on multiple machines. Each service instance is typically a process.

Consequently, as Figure 3-1 shows, services must interact using an inter-process
communication (IPC) mechanism.

Later on we will look at specific IPC technologies, but first let’s explore various design issues.

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/apigateway.html

22Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

Figure 3-1. Microservices use inter-process communication to interact.

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT

TRIP
MANAGEMENT

BILLING

NOTIFICATION

PAYMENTS

YOURBANK

0000 0000 0000 0000

00/00

YOUR NAME

TWILIO
ADAPTER

SENDGRID
ADAPTER

STRIPE
ADAPTER

REST
API

REST
API

REST
API

REST
API

REST
API

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT

TRIP
MANAGEMENT

BILLING NOTIFICATION PAYMENTS

Interaction Styles

When selecting an IPC mechanism for a service, it is useful to think first about how services
interact. There are a variety of client1 service interaction styles. They can be categorized
along two dimensions. The first dimension is whether the interaction is one-to-one or
one-to-many:

•	� One-to-one – Each client request is processed by exactly one service instance.
•	� One-to-many – Each request is processed by multiple service instances.

The second dimension is whether the interaction is synchronous or asynchronous:

•	� Synchronous – The client expects a timely response from the service and might even
block while it waits.

•	� Asynchronous – The client doesn’t block while waiting for a response, and the
response, if any, isn’t necessarily sent immediately.

The following table shows the various interaction styles.

Table 3-1. Inter-process communication styles.

ONE-TO-ONE ONE-TO-MANY

SYNCHRONOUS Request/response —

ASYNCHRONOUS
Notification Publish/subscribe

Request/async response Publish/async responses

23Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

There are the following kinds of one-to-one interactions, both synchronous (request/
response) and asynchronous (notification and request/async response):

•	� Request/response – A client makes a request to a service and waits for a response.
The client expects the response to arrive in a timely fashion. In a thread-based
application, the thread that makes the request might even block while waiting.

•	� Notification (a.k.a. a one-way request) – A client sends a request to a service but
no reply is expected or sent.

•	� Request/async response – A client sends a request to a service, which replies
asynchronously. The client does not block while waiting and is designed with the
assumption that the response might not arrive for a while.

There are the following kinds of one-to-many interactions, both of which are asynchronous:

•	� Publish/subscribe – A client publishes a notification message, which is consumed by
zero or more interested services.

•	� Publish/async responses – A client publishes a request message, and then waits a
certain amount of time for responses from interested services.

Each service typically uses a combination of these interaction styles. For some services,
a single IPC mechanism is sufficient. Other services might need to use a combination of
IPC mechanisms.

Figure 3-2 shows how services in a taxi-hailing application might interact when the user
requests a trip.

TRIP
MANAGEMENT

DISPATCHER NOTIFICATION

PASSENGER
MANAGEMENT

REQUEST PICKUP
NOTIFICATION1

2

3
4

5

TRIP CREATED
PUB�SUB

NOTIFY PASSENGER
NOTIFICATION

5 NOTIFY PASSENGER
NOTIFICATION

DRIVER PROPOSED
PUB�SUB

4 DRIVER PROPOSED
PUB�SUB

GET PASSENGER INFO
REQUEST�RESPONSE

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT

PASSENGER
SMARTPHONE

Figure 3-2. Using multiple IPC mechanisms for service interactions.

24Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

The services use a combination of notifications, request/response, and publish/subscribe.
For example, the passenger’s smartphone sends a notification to the Trip Management
service to request a pickup. The Trip Management service verifies that the passenger’s
account is active by using request/response to invoke the Passenger Management
service. The Trip Management service then creates the trip and uses publish/subscribe
to notify other services including the Dispatcher, which locates an available driver.

Now that we have looked at interaction styles, let’s take a look at how to define APIs.

Defining APIs

A service’s API is a contract between the service and its clients. Regardless of your choice
of IPC mechanism, it’s important to precisely define a service’s API using some kind of
interface definition language (IDL). There are even good arguments for using an API‑first
approach to defining services. You begin the development of a service by writing the
interface definition and reviewing it with the client developers. It is only after iterating on
the API definition that you implement the service. Doing this design up front increases
your chances of building a service that meets the needs of its clients.

As you will see later in this article, the nature of the API definition depends on which IPC
mechanism you are using. If you are using messaging, the API consists of the message
channels and the message types. If you are using HTTP, the API consists of the URLs and
the request and response formats. Later on we will describe some IDLs in more detail.

Evolving APIs

A service’s API invariably changes over time. In a monolithic application it is usually
straightforward to change the API and update all the callers. In a microservices-based
application it is a lot more difficult, even if all of the consumers of your API are other
services in the same application. You usually cannot force all clients to upgrade in lockstep
with the service. Also, you will probably incrementally deploy new versions of a service
such that both old and new versions of a service will be running simultaneously. It is
important to have a strategy for dealing with these issues.

How you handle an API change depends on the size of the change. Some changes are
minor and backward compatible with the previous version. You might, for example, add
attributes to requests or responses. It makes sense to design clients and services so
that they observe the robustness principle. Clients that use an older API should continue
to work with the new version of the service. The service provides default values for the
missing request attributes and the clients ignore any extra response attributes. It is
important to use an IPC mechanism and a messaging format that enable you to easily
evolve your APIs.

Sometimes, however, you must make major, incompatible changes to an API. Since you
can’t force clients to upgrade immediately, a service must support older versions of the

http://www.programmableweb.com/news/how-to-design-great-apis-api-first-design-and-raml/how-to/2015/07/10
http://www.programmableweb.com/news/how-to-design-great-apis-api-first-design-and-raml/how-to/2015/07/10
http://techblog.netflix.com/2013/08/deploying-netflix-api.html
https://en.wikipedia.org/wiki/Robustness_principle

25Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

API for some period of time. If you are using an HTTP-based mechanism such as REST,
one approach is to embed the version number in the URL. Each service instance might
handle multiple versions simultaneously. Alternatively, you could deploy different
instances that each handle a particular version.

Handling Partial Failure

As mentioned in Chapter 2 about the API Gateway, in a distributed system there is the
ever-present risk of partial failure. Since clients and services are separate processes,
a service might not be able to respond in a timely way to a client’s request. A service might
be down because of a failure or for maintenance. Or the service might be overloaded
and responding extremely slowly to requests.

Consider, for example, the product details scenario from Chapter 2. Let’s imagine that the
Recommendation Service is unresponsive. A naive implementation of a client might block
indefinitely waiting for a response. Not only would that result in a poor user experience,
but also, in many applications it would consume a precious resource such as a thread.
Eventually the runtime would run out of threads and become unresponsive, as shown in
Figure 3-3.

Figure 3-3. Threads block due to an unresponsive service.

IF THE SERVICE IS
DOWN THEN THREAD
WILL BE BLOCKED

EVENTUALLY ALL THREADS WILL BE BLOCKED

HTTP REQUEST

THREAD 1

THREAD 2

THREAD 3

THREAD N

TOMCAT

RPC CLIENT CODE RECOMMENDATION
SERVICE

EXECUTE THREAD POOL

To prevent this problem, it is essential that you design your services to handle partial failures.

26Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

A good approach to follow is the one described by Netflix. The strategies for dealing
with partial failures include:

•	� Network timeouts – Never block indefinitely and always use timeouts when waiting
for a response. Using timeouts ensures that resources are never tied up indefinitely.

•	� Limiting the number of outstanding requests – Impose an upper bound on the number
of outstanding requests that a client can have with a particular service. If the limit has
been reached, it is probably pointless to make additional requests, and those attempts
need to fail immediately.

•	� Circuit breaker pattern – Track the number of successful and failed requests. If the error
rate exceeds a configured threshold, trip the circuit breaker so that further attempts
fail immediately. If a large number of requests are failing, that suggests the service is
unavailable and that sending requests is pointless. After a timeout period, the client
should try again and, if successful, close the circuit breaker.

•	� Provide fallbacks – Perform fallback logic when a request fails. For example, return
cached data or a default value, such as an empty set of recommendations.

Netflix Hystrix is an open source library that implements these and other patterns. If you
are using the JVM you should definitely consider using Hystrix. And, if you are running in
a non-JVM environment, you should use an equivalent library.

IPC Technologies

There are lots of different IPC technologies to choose from. Services can use synchronous
request/response-based communication mechanisms such as HTTP-based REST
or Thrift. Alternatively, they can use asynchronous, message-based communication
mechanisms such as AMQP or STOMP.

There are also a variety of different message formats. Services can use human readable,
text-based formats such as JSON or XML. Alternatively, they can use a binary format
(which is more efficient) such as Avro or Protocol Buffers. Later on we will look at
synchronous IPC mechanisms, but first let’s discuss asynchronous IPC mechanisms.

Asynchronous, Message-Based Communication

When using messaging, processes communicate by asynchronously exchanging
messages. A client makes a request to a service by sending it a message. If the service
is expected to reply, it does so by sending a separate message back to the client.
Since the communication is asynchronous, the client does not block waiting for a reply.
Instead, the client is written assuming that the reply will not be received immediately.

http://techblog.netflix.com/2012/02/fault-tolerance-in-high-volume.html
http://martinfowler.com/bliki/CircuitBreaker.html
https://github.com/Netflix/Hystrix

27Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

A message consists of headers (metadata such as the sender) and a message body.
Messages are exchanged over channels. Any number of producers can send messages
to a channel. Similarly, any number of consumers can receive messages from a channel.
There are two kinds of channels, point‑to‑point and publish‑subscribe:

•	� A point‑to‑point channel delivers a message to exactly one of the consumers that are
reading from the channel. Services use point‑to‑point channels for the one‑to‑one
interaction styles described earlier.

•	� A publish‑subscribe channel delivers each message to all of the attached consumers.
Services use publish‑subscribe channels for the one‑to‑many interaction styles
described above.

Figure 3-4 shows how the taxi-hailing application might use publish‑subscribe channels.

Figure 3-4. Using publish-subscribe channels in a taxi-hailing application.

The Trip Management service notifies interested services, such as the Dispatcher, about a
new Trip by writing a Trip Created message to a publish‑subscribe channel. The Dispatcher
finds an available driver and notifies other services by writing a Driver Proposed message
to a publish‑subscribe channel.

DISPATCHER

TRIP CREATED

DRIVER PROPOSED

TRIP
MANAGEMENT

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT

NEW TRIPS � PUBLISH�SUBSCRIBE CHANNEL

DISPATCHING � PUBLISH�SUBSCRIBE CHANNEL

http://www.enterpriseintegrationpatterns.com/Message.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html

28Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

There are many messaging systems to choose from. You should pick one that supports
a variety of programming languages.

Some messaging systems support standard protocols such as AMQP and STOMP.
Other messaging systems have proprietary but documented protocols.

There are a large number of open source messaging systems to choose from, including
RabbitMQ, Apache Kafka, Apache ActiveMQ, and NSQ. At a high level, they all support
some form of messages and channels. They all strive to be reliable, high-performance,
and scalable. However, there are significant differences in the details of each broker’s
messaging model.

There are many advantages to using messaging:

•	� Decouples the client from the service – A client makes a request simply by sending a
message to the appropriate channel. The client is completely unaware of the service
instances. It does not need to use a discovery mechanism to determine the location
of a service instance.

•	� Message buffering – With a synchronous request/response protocol, such as HTTP, both
the client and service must be available for the duration of the exchange. In contrast,
a message broker queues up the messages written to a channel until the consumer can
process them. This means, for example, that an online store can accept orders from
customers even when the order fulfillment system is slow or unavailable. The order
messages simply queue up.

•	� Flexible client-service interactions – Messaging supports all of the interaction styles
described earlier.

•	� Explicit inter-process communication – RPC-based mechanisms attempt to make
invoking a remote service look the same as calling a local service. However, because
of the laws of physics and the possibility of partial failure, they are in fact quite different.
Messaging makes these differences very explicit so developers are not lulled into a
false sense of security.

There are, however, some downsides to using messaging:

•	� Additional operational complexity – The messaging system is yet another system
component that must be installed, configured, and operated. It’s essential that the
message broker be highly available, otherwise system reliability is impacted.

•	� Complexity of implementing request/response-based interaction – Request/response-
style interaction requires some work to implement. Each request message must
contain a reply channel identifier and a correlation identifier. The service writes a
response message containing the correlation ID to the reply channel. The client uses
the correlation ID to match the response with the request. It is often easier to use an
IPC mechanism that directly supports request/response.

Now that we have looked at using messaging-based IPC, let’s examine request/response-
based IPC.

http://www.rabbitmq.com/
http://kafka.apache.org/
http://activemq.apache.org/
https://github.com/bitly/nsq

29Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

Synchronous, Request/Response IPC

When using a synchronous, request/response-based IPC mechanism, a client sends a
request to a service. The service processes the request and sends back a response.

In many clients, the thread that makes the request blocks while waiting for a response.
Other clients might use asynchronous, event-driven client code that is perhaps
encapsulated by Futures or Rx Observables. However, unlike when using messaging,
the client assumes that the response will arrive in a timely fashion.

There are numerous protocols to choose from. Two popular protocols are REST and Thrift.
Let’s first take a look at REST.

REST

Today it is fashionable to develop APIs in the RESTful style. REST is an IPC mechanism
that (almost always) uses HTTP.

A key concept in REST is a resource, which typically represents a business object such
as a Customer or Product, or a collection of such business objects. REST uses the HTTP
verbs for manipulating resources, which are referenced using a URL. For example, a GET
request returns the representation of a resource, which might be in the form of an XML
document or JSON object. A POST request creates a new resource, and a PUT request
updates a resource.

To quote Roy Fielding, the creator of REST:

 “REST provides a set of architectural constraints that, when applied as a whole, emphasizes
scalability of component interactions, generality of interfaces, independent deployment of
components, and intermediary components to reduce interaction latency, enforce security,
and encapsulate legacy systems.”
—�Roy Fielding, Architectural Styles and the Design of Network-based Software Architectures

Figure 3-5 shows one of the ways that the taxi-hailing application might use REST.

TRIP
MANAGEMENT

POST �trips GET �passengers/<<passengerld>>

201 CREATED
PASSENGER

MANAGEMENT

PASSENGER
SMARTPHONE

200 OK

REST
API

REST
API

Figure 3-5. A taxi-hailing application uses RESTful interaction.

http://docs.scala-lang.org/overviews/core/futures.html
http://reactivex.io/documentation/observable.html
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

30Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

The passenger’s smartphone requests a trip by making a POST request to the /trips
resource of the Trip Management service. This service handles the request by sending a
GET request for information about the passenger to the Passenger Management service.
After verifying that the passenger is authorized to create a trip, the Trip Management
service creates the trip and returns a 201 response to the smartphone.

Many developers claim their HTTP-based APIs are RESTful. However, as Fielding describes
in this blog post, not all of them actually are.

Leonard Richardson (no relation) defines a very useful maturity model for REST that
consists of the following levels:

•	� Level 0 – Clients of a level 0 API invoke the service by making HTTP POST requests to
its sole URL endpoint. Each request specifies the action to perform, the target of the
action (for example, the business object), and any parameters.

•	� Level 1 – A level 1 API supports the idea of resources. To perform an action on a
resource, a client makes a POST request that specifies the action to perform and
any parameters.

•	� Level 2 – A level 2 API uses HTTP verbs to perform actions: GET to retrieve, POST to
create, and PUT to update. The request query parameters and body, if any, specify
the action’s parameters. This enables services to leverage web infrastructure such
as caching for GET requests.

•	� Level 3 – The design of a level 3 API is based on the terribly named principle, HATEOAS
(Hypertext As The Engine Of Application State). The basic idea is that the representation
of a resource returned by a GET request contains links for performing the allowable
actions on that resource. For example, a client can cancel an order using a link in the
Order representation returned in response to the GET request sent to retrieve the order.

One of the benefits of HATEOAS is include no longer having to hardwire URLs into
client code. Another benefit is that because the representation of a resource contains
links for the allowable actions, the client doesn’t have to guess what actions can be
performed on a resource in its current state.

There are numerous benefits to using a protocol that is based on HTTP:

•	� HTTP is simple and familiar.
•	� You can test an HTTP API from within a browser using an extension such as Postman,

or from the command line using curl (assuming JSON or some other text format
is used).

•	� It directly supports request/response-style communication.
•	� HTTP is, of course, firewall-friendly.
•	� It doesn’t require an intermediate broker, which simplifies the system’s architecture.

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.infoq.com/news/2009/04/hateoas-restful-api-advantages
https://www.getpostman.com/

31Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

There are some drawbacks to using HTTP:

•	� HTTP only directly supports the request/response style of interaction. You can use
HTTP for notifications but the server must always send an HTTP response.

•	� Because the client and service communicate directly (without an intermediary to buffer
messages), they must both be running for the duration of the exchange.

•	� The client must know the location (that is, the URL) of each service instance. As described
in Chapter 2 about the API Gateway, this is a non-trivial problem in a modern application.
Clients must use a service discovery mechanism to locate service instances.

The developer community has recently rediscovered the value of an interface definition
language for RESTful APIs. There are a few options, including RAML and Swagger. Some
IDLs, such as Swagger, allow you to define the format of request and response messages.
Others, such as RAML, require you to use a separate specification such as JSON Schema.
As well as describing APIs, IDLs typically have tools that generate client stubs and server
skeletons from an interface definition.

Thrift

Apache Thrift is an interesting alternative to REST. It is a framework for writing cross-
language RPC clients and servers. Thrift provides a C-style IDL for defining your APIs.
You use the Thrift compiler to generate client-side stubs and server-side skeletons.
The compiler generates code for a variety of languages including C++, Java, Python,
PHP, Ruby, Erlang, and Node.js.

A Thrift interface consists of one or more services. A service definition is analogous
to a Java interface. It is a collection of strongly typed methods.

Thrift methods can either return a (possibly void) value or, if they are defined as one-way,
no value. Methods that return a value implement the request/response style of interaction;
the client waits for a response and might throw an exception. One-way methods correspond
to the notification style of interaction; the server does not send a response.

Thrift supports various message formats: JSON, binary, and compact binary. Binary is more
efficient than JSON because it is faster to decode. And, as the name suggests, compact
binary is a space-efficient format. JSON is, of course, human- and browser-friendly.
Thrift also gives you a choice of transport protocols including raw TCP and HTTP.
Raw TCP is likely to be more efficient than HTTP. However, HTTP is firewall-friendly,
browser-friendly, and human-friendly.

Message Formats

Now that we have looked at HTTP and Thrift, let’s examine the issue of message formats.
If you are using a messaging system or REST, you get to pick your message format.
Other IPC mechanisms such as Thrift might support only a small number of message
formats, or even just one. In either case, it’s important to use a cross-language message

http://raml.org/
http://swagger.io/
http://json-schema.org/
https://thrift.apache.org/
https://en.wikipedia.org/wiki/Remote_procedure_call

32Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

format. Even if you are writing your microservices in a single language today, it’s likely
that you will use other languages in the future.

There are two main kinds of message formats: text and binary. Examples of text-based
formats include JSON and XML. An advantage of these formats is that not only are they
human-readable, they are self-describing. In JSON, the attributes of an object are
represented by a collection of name-value pairs. Similarly, in XML the attributes are
represented by named elements and values. This enables a consumer of a message to
pick out the values that it is interested in and ignore the rest. Consequently, minor changes
to the message format can be easily made backward compatible.

The structure of XML documents is specified by an XML schema. Over time, the developer
community has come to realize that JSON also needs a similar mechanism. One option
is to use JSON Schema, either stand-alone or as part of an IDL such as Swagger.

A downside of using a text-based message format is that the messages tend to be verbose,
especially XML. Because the messages are self-describing, every message contains the
name of the attributes in addition to their values. Another drawback is the overhead of
parsing text. Consequently, you might want to consider using a binary format.

There are several binary formats to choose from. If you are using Thrift RPC, you can use
binary Thrift. If you get to pick the message format, popular options include Protocol
Buffers and Apache Avro. Both of these formats provide a typed IDL for defining the
structure of your messages. One difference, however, is that Protocol Buffers uses
tagged fields, whereas an Avro consumer needs to know the schema in order to
interpret messages. As a result, API evolution is easier with Protocol Buffers than with
Avro. This blog post is an excellent comparison of Thrift, Protocol Buffers, and Avro.

Summary

Microservices must communicate using an inter-process communication mechanism.
When designing how your services will communicate, you need to consider various issues:
how services interact, how to specify the API for each service, how to evolve the APIs, and
how to handle partial failure. There are two kinds of IPC mechanisms that microservices
can use: asynchronous messaging and synchronous request/response. In order to
communicate, one service must be able to find another. In Chapter 4 we will look at the
problem of service discovery in a microservices architecture.

https://www.w3.org/XML/Schema
http://json-schema.org/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
https://avro.apache.org/
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html

33Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

Microservices in Action: NGINX and Application Architecture
by Floyd Smith

NGINX enables you to implement various scaling and mirroring options that make your application
more responsive and highly available. The choices you make for scaling and mirroring affect how
you do inter-process communication, the topic of this chapter.

We at NGINX recommend that you consider a four-tier architecture when implementing your
microservices-based application. Forrester has a detailed report on the topic which you can down-
load, at no charge, from NGINX.

The tiers represent clients (the newest layer – including desktop or laptop and mobile, wearable,
or IoT clients), delivery, aggregation (including data storage), and services, which incorporate
application functionality and service-specific, rather than shared, data stores.

The four-tier architecture is much more flexible, scalable, responsive, mobile-friendly, and inherently
supportive of microservices-based application development and delivery than the previous,
three-tier architecture. Industry leaders such as Netflix and Uber are able to achieve the level of
performance their users demand because they use this kind of architecture.

NGINX is inherently well-suited to the four-tier architecture, with capabilities ranging from media
streaming for the client tier, to load balancing and caching for the delivery tier, tools for high-
performance and secure API-based communication at the aggregation tier, and support for flexible
management of ephemeral services instances in the services tier.

This same flexibility makes it possible to implement robust scaling and mirroring patterns for handling
changes in traffic volumes, to protect against security attacks, and to provide high availability with
failover configurations available at a moment’s notice.

In these more complex architectures, which include service instance instantiation as demand requires
and the need for constant service discovery, decoupled inter-process communications tend to
be favored. The asynchronous and one-to-many communication styles here may be more flexible,
and ultimately offer higher performance and reliability, than tightly coupled communication styles.

https://www.nginx.com/blog/time-to-move-to-a-four-tier-application-architecture/
https://www.nginx.com/resources/library/mobile-needs-a-four-tier-engagement-platform/
https://www.nginx.com/resources/library/mobile-needs-a-four-tier-engagement-platform/

34Microservices – From Design to Deployment Ch. 4 – Service Discovery

Service
Discovery4

This is the fourth chapter in this ebook, which is about building applications with
microservices. Chapter 1 introduces the Microservices Architecture pattern and discussed
the benefits and drawbacks of using microservices. Chapter 2 and Chapter 3 describe
different aspects of communication between microservices. In this chapter, we explore the
closely related problem of service discovery.

Why Use Service Discovery?

Let’s imagine that you are writing some code that invokes a service that has a REST API
or Thrift API. In order to make a request, your code needs to know the network location
(IP address and port) of a service instance. In a traditional application running on
physical hardware, the network locations of service instances are relatively static.
For example, your code can read the network locations from a configuration file that
is occasionally updated.

In a modern, cloud-based microservices application, however, this is a much more
difficult problem to solve, as shown in Figure 4-1.

Service instances have dynamically assigned network locations. Moreover, the set
of service instances changes dynamically because of autoscaling, failures, and
upgrades. Consequently, your client code needs to use a more elaborate service
discovery mechanism.

http://microservices.io/patterns/microservices.html

35Microservices – From Design to Deployment Ch. 4 – Service Discovery

Figure 4-1. A client or API Gateway needs help finding services.

There are two main service discovery patterns: client-side discovery and server-side
discovery. Let’s first look at client-side discovery.

The Client-Side Discovery Pattern

When using client-side discovery pattern, the client is responsible for determining the
network locations of available service instances and load balancing requests across them.
The client queries a service registry, which is a database of available service instances.
The client then uses a load-balancing algorithm to select one of the available service
instances and makes a request.

Dynamically
changing

How to load
balance?

?SERVICE
CLIENT

10.4.3.1:8756

10.4.3.20:333

SERVICE
INSTANCE A

SERVICE
INSTANCE B

SERVICE
INSTANCE C

REST
API

Registry
Client

REST
API

Registry
Client

REST
API

Registry
Client

10.4.3.99:4545

Dynamically
 assigned

Client or API
Gateway

http://microservices.io/patterns/client-side-discovery.html

36Microservices – From Design to Deployment Ch. 4 – Service Discovery

Figure 4-2 shows the structure of this pattern:

10.4.3.1:8756

10.4.3.20:333
SERVICE

REGISTRY

SERVICE
INSTANCE A

SERVICE
INSTANCE A

SERVICE
INSTANCE B

SERVICE
INSTANCE C

Registry-
aware
HTTP
Client

REST
API

Registry
Client

REST
API

Registry
Client

REST
API

Registry
Client

10.4.3.99:4545

Figure 4-2. Clients can take on the task of discovering services.

The network location of a service instance is registered with the service registry when it
starts up. It is removed from the service registry when the instance terminates. The service
instance’s registration is typically refreshed periodically using a heartbeat mechanism.

Netflix OSS provides a great example of the client-side discovery pattern. Netflix Eureka
is a service registry. It provides a REST API for managing service-instance registration and
for querying available instances. Netflix Ribbon is an IPC client that works with Eureka to
load balance requests across the available service instances. We will discuss Eureka in
more depth later in this chapter.

https://netflix.github.io/
https://github.com/Netflix/eureka
https://github.com/Netflix/ribbon

37Microservices – From Design to Deployment Ch. 4 – Service Discovery

The client-side discovery pattern has a variety of benefits and drawbacks. This pattern is
relatively straightforward and, except for the service registry, there are no other moving
parts. Also, since the client knows about the available services instances, it can make
intelligent, application-specific load-balancing decisions such as using hashing consistently.
One significant drawback of this pattern is that it couples the client with the service registry.
You must implement client-side service discovery logic for each programming language
and framework used by your service clients.

Now that we have looked at client-side discovery, let’s take a look at server-side discovery.

The Server-Side Discovery Pattern

The other approach to service discovery is the server-side discovery pattern. Figure 4-3
shows the structure of this pattern:

ROUTER

SERVICE
REGISTRY

QUERY

REQUEST

LOAD
BALANCE

REGISTER

SERVICE
INSTANCE A

10.4.3.1:8756

10.4.3.20:333

SERVICE
INSTANCE A

SERVICE
INSTANCE B

SERVICE
INSTANCE C

REST
API

Registry
Client

REST
API

Registry
Client

REST
API

Registry
Client

10.4.3.99:4545

Figure 4-3. Service discovery can also be handled among servers.

The client makes a request to a service via a load balancer. The load balancer queries the
service registry and routes each request to an available service instance. As with client-
side discovery, service instances are registered and deregistered with the service registry.

The AWS Elastic Load Balancer (ELB) is an example of a server-side discovery router.
ELB is commonly used to load balance external traffic from the Internet. However, you
can also use ELB to load balance traffic that is internal to a virtual private cloud (VPC).

http://microservices.io/patterns/server-side-discovery.html
https://aws.amazon.com/elasticloadbalancing/

38Microservices – From Design to Deployment Ch. 4 – Service Discovery

A client makes requests (HTTP or TCP) via the ELB using its DNS name. The ELB load
balances the traffic among a set of registered Elastic Compute Cloud (EC2) instances
or EC2 Container Service (ECS) containers. There isn’t a separately visible service
registry. Instead, EC2 instances and ECS containers are registered with the ELB itself.

HTTP servers and load balancers such as NGINX Plus and NGINX can also be used as a
server-side discovery load balancer. For example, this blog post describes using Consul
Template to dynamically reconfigure NGINX reverse proxying. Consul Template is a tool
that periodically regenerates arbitrary configuration files from configuration data stored in
the Consul service registry. It runs an arbitrary shell command whenever the files change.
In the example described in the blog post, Consul Template generates an nginx.conf
file, which configures the reverse proxying, and then runs a command that tells NGINX
to reload the configuration. A more sophisticated implementation could dynamically
reconfigure NGINX Plus using either its HTTP API or DNS.

Some deployment environments such as Kubernetes and Marathon run a proxy on each
host in the cluster. The proxy plays the role of a server-side discovery load balancer. In order
to make a request to a service, a client routes the request via the proxy using the host’s
IP address and the service’s assigned port. The proxy then transparently forwards the
request to an available service instance running somewhere in the cluster.

The server-side discovery pattern has several benefits and drawbacks. One great benefit
of this pattern is that details of discovery are abstracted away from the client. Clients simply
make requests to the load balancer. This eliminates the need to implement discovery
logic for each programming language and framework used by your service clients. Also,
as mentioned above, some deployment environments provide this functionality for free.
This pattern also has some drawbacks, however. Unless the load balancer is provided
by the deployment environment, it is yet another highly available system component
that you need to set up and manage.

The Service Registry

The service registry is a key part of service discovery. It is a database containing the
network locations of service instances. A service registry needs to be highly available
and up to date. Clients can cache network locations obtained from the service registry.
However, that information eventually becomes out of date and clients become unable
to discover service instances. Consequently, a service registry consists of a cluster of
servers that use a replication protocol to maintain consistency.

As mentioned earlier, Netflix Eureka is good example of a service registry. It provides a
REST API for registering and querying service instances. A service instance registers its
network location using a POST request. Every 30 seconds it must refresh its registration
using a PUT request. A registration is removed by either using an HTTP DELETE request
or by the instance registration timing out. As you might expect, a client can retrieve the
registered service instances by using an HTTP GET request.

https://www.nginx.com/products/
https://www.airpair.com/scalable-architecture-with-docker-consul-and-nginx
https://www.hashicorp.com/blog/introducing-consul-template.html
https://www.consul.io/
https://www.nginx.com/products/on-the-fly-reconfiguration/
http://kubernetes.io/
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
http://microservices.io/patterns/service-registry.html
https://github.com/Netflix/eureka

39Microservices – From Design to Deployment Ch. 4 – Service Discovery

Netflix achieves high availability by running one or more Eureka servers in each Amazon
EC2 availability zone. Each Eureka server runs on an EC2 instance that has an Elastic IP
address. DNS TEXT records are used to store the Eureka cluster configuration, which is
a map from availability zones to a list of the network locations of Eureka servers. When a
Eureka server starts up, it queries DNS to retrieve the Eureka cluster configuration,
locates its peers, and assigns itself an unused Elastic IP address.

Eureka clients – services and service clients – query DNS to discover the network locations
of Eureka servers. Clients prefer to use a Eureka server in the same availability zone.
However, if none is available, the client uses a Eureka server in another availability zone.

Other examples of service registries include:

•	� etcd – A highly available, distributed, consistent, key-value store that is used for
shared configuration and service discovery. Two notable projects that use etcd are
Kubernetes and Cloud Foundry.

•	� Consul – A tool for discovering and configuring services. It provides an API that
allows clients to register and discover services. Consul can perform health checks to
determine service availability.

•	� Apache ZooKeeper – A widely used, high-performance coordination service for
distributed applications. Apache ZooKeeper was originally a subproject of Hadoop,
but is now a separate, top-level project.

Also, as noted previously, some systems such as Kubernetes, Marathon, and AWS do
not have an explicit service registry. Instead, the service registry is just a built-in part of
the infrastructure.

Now that we have looked at the concept of a service registry, let’s look at how service
instances are registered with the service registry.

Service Registration Options

As previously mentioned, service instances must be registered with and unregistered from
the service registry. There are a couple of different ways to handle the registration and
unregistration. One option is for service instances to register themselves, the self-
registration pattern. The other option is for some other system component to manage
the registration of service instances, the third-party registration pattern. Let’s first look
at the self-registration pattern.

The Self-Registration Pattern

When using the self-registration pattern, a service instance is responsible for registering
and unregistering itself with the service registry. Also, if required, a service instance sends
heartbeat requests to prevent its registration from expiring.

https://github.com/Netflix/eureka/wiki/Configuring-Eureka-in-AWS-Cloud
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://github.com/coreos/etcd
http://pivotal.io/platform
https://www.consul.io/
http://zookeeper.apache.org/
http://microservices.io/patterns/self-registration.html
http://microservices.io/patterns/self-registration.html
http://microservices.io/patterns/3rd-party-registration.html
http://microservices.io/patterns/self-registration.html

40Microservices – From Design to Deployment Ch. 4 – Service Discovery

Figure 4-4 shows the structure of this pattern.

SERVICE REGISTRY

SERVICE
INSTANCE A

register(”serviceName, “10.4.3.1:8756”)
heartbeat()
unregister()

10.4.3.1:8756 REST
API

Figure 4-4. Services can handle their own registration.

A good example of this approach is the Netflix OSS Eureka client. The Eureka client handles
all aspects of service instance registration and unregistration. The Spring Cloud project,
which implements various patterns including service discovery, makes it easy to
automatically register a service instance with Eureka. You simply annotate your Java
Configuration class with an @EnableEurekaClient annotation.

The self-registration pattern has various benefits and drawbacks. One benefit is that it
is relatively simple and doesn’t require any other system components. However, a major
drawback is that it couples the service instances to the service registry. You must
implement the registration code in each programming language and framework used
by your services.

The alternative approach, which decouples services from the service registry, is the
third-party registration pattern.

https://github.com/Netflix/eureka
http://projects.spring.io/spring-cloud/

41Microservices – From Design to Deployment Ch. 4 – Service Discovery

The Third-Party Registration Pattern

When using the third-party registration pattern, service instances aren’t responsible for
registering themselves with the service registry. Instead, another system component
known as the service registrar handles the registration. The service registrar tracks
changes to the set of running instances by either polling the deployment environment
or subscribing to events. When it notices a newly available service instance, it registers
the instance with the service registry. The service registrar also unregisters terminated
service instances.

Figure 4-5 shows the structure of this pattern:

REGISTRAR

SERVICE
REGISTRY

HEALTHCHECK

SERVICE
INSTANCE A

register(”serviceName, “10.4.3.1:8756”)
heartbeat()
unregister()

10.4.3.1:8756 REST
API

Figure 4-5. A separate registrar service can be responsible for registering others.

One example of a service registrar is the open source Registrator project. It automatically
registers and unregisters service instances that are deployed as Docker containers.
Registrator supports several service registries, including etcd and Consul.

Another example of a service registrar is NetflixOSS Prana. Primarily intended for services
written in non-JVM languages, it is a sidecar application that runs side by side with a
service instance. Prana registers and unregisters the service instance with Netflix Eureka.

The service registrar is a built-in component in some deployment environments. The EC2
instances created by an Autoscaling Group can be automatically registered with an ELB.
Kubernetes services are automatically registered and made available for discovery.

http://microservices.io/patterns/3rd-party-registration.html
https://github.com/gliderlabs/registrator
https://github.com/Netflix/Prana

42Microservices – From Design to Deployment Ch. 4 – Service Discovery

The third-party registration pattern has various benefits and drawbacks. A major benefit
is that services are decoupled from the service registry. You don’t need to implement
service-registration logic for each programming language and framework used by your
developers. Instead, service instance registration is handled in a centralized manner
within a dedicated service.

One drawback of this pattern is that unless it’s built into the deployment environment,
it is yet another highly available system component that you need to set up and manage.

Summary

In a microservices application, the set of running service instances changes dynamically.
Instances have dynamically assigned network locations. Consequently, in order for a client
to make a request to a service it must use a service-discovery mechanism.

A key part of service discovery is the service registry. The service registry is a database
of available service instances. The service registry provides a management API and a
query API. Service instances are registered with and unregistered from the service registry
using the management API. The query API is used by system components to discover
available service instances.

There are two main service-discovery patterns: client-side discovery and service-side
discovery. In systems that use client-side service discovery, clients query the service
registry, select an available instance, and make a request. In systems that use server-
side discovery, clients make requests via a router, which queries the service registry
and forwards the request to an available instance.

There are two main ways that service instances are registered with and unregistered from
the service registry. One option is for service instances to register themselves with the
service registry, the self-registration pattern. The other option is for some other system
component to handle the registration and unregistration on behalf of the service,
the third-party registration pattern.

In some deployment environments you need to set up your own service-discovery
infrastructure using a service registry such as Netflix Eureka, etcd, or Apache ZooKeeper.
In other deployment environments, service discovery is built in. For example, Kubernetes
and Marathon handle service instance registration and unregistration. They also run a
proxy on each cluster host that plays the role of server-side discovery router.

An HTTP reverse proxy and load balancer such as NGINX can also be used as a server-
side discovery load balancer. The service registry can push the routing information to
NGINX and invoke a graceful configuration update; for example, you can use Consul
Template. NGINX Plus supports additional dynamic reconfiguration mechanisms – it can
pull information about service instances from the registry using DNS, and it provides an
API for remote reconfiguration.

http://microservices.io/patterns/service-registry.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/server-side-discovery.html
http://microservices.io/patterns/server-side-discovery.html
http://microservices.io/patterns/self-registration.html
http://microservices.io/patterns/3rd-party-registration.html
https://github.com/Netflix/eureka
https://github.com/coreos/etcd
http://zookeeper.apache.org/
http://kubernetes.io/
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
http://microservices.io/patterns/server-side-discovery.html
https://hashicorp.com/blog/introducing-consul-template.html
https://hashicorp.com/blog/introducing-consul-template.html
https://www.nginx.com/products/on-the-fly-reconfiguration/

43Microservices – From Design to Deployment Ch. 4 – Service Discovery

Microservices in Action: NGINX Flexibility
by Floyd Smith

In a microservices environment, your backend infrastructure is likely to be constantly changing
as services are created, deployed, and scaled up and down as a result of autoscaling, failures, and
upgrades. As described in this chapter, a service discovery mechanism is required in environ-
ments where service locations are dynamically reassigned.

Part of the benefit of using NGINX for microservices is that you can easily configure it to automat-
ically react to changes in backend infrastructure. NGINX configuration is not only easy and flexible,
it’s also compatible with the use of templates, as used in Amazon Web Services, making it easier
to manage changes for a specific service and to manage changing sets of services subject to
load balancing.

NGINX Plus features an on-the-fly reconfiguration API, eliminating the need to restart NGINX Plus
or manually reload its configuration to get it to recognize changes to the set of services being load
balanced. In NGINX Plus Release 8 and later, the changes you make with the API can be configured
to persist across restarts and configuration reloads. (Reloads do not require a restart and do not
drop connections.) And NGINX Plus Release 9 and later have support for service discovery using
DNS SRV records, enabling tighter integration with existing server discovery platforms, such as
Consul and etcd.

We here at NGINX have created a model for managing service discovery:

1.	� Run separate Docker containers for each of several apps, including a service discovery app
such as etcd, a service registration tool, one or more backend servers, and NGINX Plus itself to
load balance the other containers.

2.	�The registration tool monitors Docker for new containers and registers new services with the
service discovery tool, also removing containers that disappear.

3.	�Containers and the services they run are automatically added to or removed from the group of
load-balanced upstream servers.

Demo apps for this process are available for several service-discovery apps: Consul APIs, DNS
SRV records from Consul, etcd, and ZooKeeper.

http://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-configuration-template.html
https://www.nginx.com/products/
https://www.nginx.com/products/on-the-fly-reconfiguration/
https://www.nginx.com/blog/nginx-plus-r8-released/#on-the-fly
https://www.nginx.com/blog/nginx-plus-r9-released/#dns-srv
https://www.nginx.com/blog/service-discovery-with-nginx-plus-and-consul/
https://www.nginx.com/blog/service-discovery-nginx-plus-srv-records-consul-dns/
https://www.nginx.com/blog/service-discovery-nginx-plus-srv-records-consul-dns/
https://www.nginx.com/blog/service-discovery-nginx-plus-etcd/
https://www.nginx.com/blog/service-discovery-nginx-plus-zookeeper/

44Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

Event-Driven Data
Management for
Microservices

5
This is the fifth chapter of this ebook about building applications with microservices.
The first chapter introduces the Microservices Architecture pattern and discusses the
benefits and drawbacks of using microservices. The second and third describe different
aspects of communication within a microservices architecture. The fourth chapter explores
the closely related problem of service discovery. In this chapter, we change gears and look
at the distributed data management problems that arise in a microservices architecture.

Microservices and the Problem of Distributed Data Management

A monolithic application typically has a single relational database. A key benefit of using
a relational database is that your application can use ACID transactions, which provide
some important guarantees:

•	� Atomicity – Changes are made atomically
•	� Consistency – The state of the database is always consistent
•	� Isolation – Even though transactions are executed concurrently, it appears they

are executed serially
•	� Durable – Once a transaction has committed, it is not undone

As a result, your application can simply begin a transaction, change (insert, update,
and delete) multiple rows, and commit the transaction.

https://en.wikipedia.org/wiki/ACID

45Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

Another great benefit of using a relational database is that it provides SQL, which is a
rich, declarative, and standardized query language. You can easily write a query that
combines data from multiple tables. The RDBMS query planner then determines the
optimal way to execute the query. You don’t have to worry about low-level details such
as how to access the database. And, because all of your application’s data is in one
database, it is easy to query.

Unfortunately, data access becomes much more complex when we move to a
microservices architecture. That is because the data owned by each microservice
is private to that microservice and can only be accessed via its API. Encapsulating the
data ensures that the microservices are loosely coupled and can evolve independently
of one another. If multiple services access the same data, schema updates require
time-consuming, coordinated updates to all of the services.

To make matters worse, different microservices often use different kinds of databases.
Modern applications store and process diverse kinds of data, and a relational database
is not always the best choice. For some use cases, a particular NoSQL database might
have a more convenient data model and offer much better performance and scalability.
For example, it makes sense for a service that stores and queries text to use a text search
engine such as Elasticsearch. Similarly, a service that stores social graph data should
probably use a graph database, such as Neo4j. Consequently, microservices-based
applications often use a mixture of SQL and NoSQL databases, the so-called polyglot
persistence approach.

A partitioned, polyglot-persistent architecture for data storage has many benefits, including
loosely coupled services and better performance and scalability. However, it does introduce
some distributed data management challenges.

The first challenge is how to implement business transactions that maintain consistency
across multiple services. To see why this is a problem, let’s take a look at an example of
an online B2B store. The Customer Service maintains information about customers,
including their credit lines. The Order Service manages orders and must verify that a
new order doesn’t violate the customer’s credit limit. In the monolithic version of this
application, the Order Service can simply use an ACID transaction to check the available
credit and create the order.

http://microservices.io/patterns/data/database-per-service.html
http://martinfowler.com/bliki/PolyglotPersistence.html
http://martinfowler.com/bliki/PolyglotPersistence.html

46Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

In contrast, in a microservices architecture the ORDER and CUSTOMER tables are private
to their respective services, as shown in Figure 5-1:

Figure 5-1. Microservices each have their own data.

The Order Service cannot access the CUSTOMER table directly. It can only use the API
provided by the Customer Service. The Order Service could potentially use distributed
transactions, also known as two-phase commit (2PC). However, 2PC is usually not a viable
option in modern applications. The CAP theorem requires you to choose between
availability and ACID-style consistency, and availability is usually the better choice.
Moreover, many modern technologies, such as most NoSQL databases, do not
support 2PC. Maintaining data consistency across services and databases is essential,
so we need another solution.

The second challenge is how to implement queries that retrieve data from multiple
services. For example, let’s imagine that the application needs to display a customer and
his recent orders. If the Order Service provides an API for retrieving a customer’s orders
then you can retrieve this data using an application-side join. The application retrieves
the customer from the Customer Service and the customer’s orders from the Order
Service. Suppose, however, that the Order Service only supports the lookup of orders
by their primary key (perhaps it uses a NoSQL database that only supports primary
key-based retrievals). In this situation, there is no obvious way to retrieve the needed data.

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/CAP_theorem

47Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

Event-Driven Architecture

For many applications, the solution is to use an event-driven architecture. In this
architecture, a microservice publishes an event when something notable happens,
such as when it updates a business entity. Other microservices subscribe to those
events. When a microservice receives an event it can update its own business entities,
which might lead to more events being published.

You can use events to implement business transactions that span multiple services.
A transaction consists of a series of steps. Each step consists of a microservice updating
a business entity and publishing an event that triggers the next step. The following
sequence of diagrams shows how you can use an event-driven approach to checking
for available credit when creating an order.

The microservices exchange events via a Message Broker:

•	� The Order Service creates an Order with status NEW and publishes an Order
Created event.

Figure 5-2. The Order Service publishes an event.

http://martinfowler.com/eaaDev/EventNarrative.html

48Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

•	� The Customer Service consumes the Order Created event, reserves credit for the
order, and publishes a Credit Reserved event.

Figure 5-3. The Customer Service responds.

Figure 5-4. The Order Service acts on the response.

•	� The Order Service consumes the Credit Reserved event and changes the status of
the order to OPEN.

A more complex scenario could involve additional steps, such as reserving inventory at
the same time as the customer’s credit is checked.

49Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

Provided that (a) each service atomically updates the database and publishes an event
– more on that later – and (b) the Message Broker guarantees that events are delivered
at least once, then you can implement business transactions that span multiple services.
It is important to note that these are not ACID transactions. They offer much weaker
guarantees such as eventual consistency. This transaction model has been referred to
as the BASE model.

You can also use events to maintain materialized views that pre-join data owned by
multiple microservices. The service that maintains the view subscribes to the relevant
events and updates the view. Figure 5-5 depicts a Customer Order View Updater Service
that updates the Customer Order View based on events published by the Customer
Service and Order Service.

Figure 5-5. The Customer Order View is accessed by two services.

When the Customer Order View Updater Service receives a Customer or Order event, it
updates the Customer Order View datastore. You could implement the Customer Order
View using a document database such as MongoDB and store one document for each
Customer. The Customer Order View Query Service handles requests for a customer
and recent orders by querying the Customer Order View datastore.

An event-driven architecture has several benefits and drawbacks. It enables the
implementation of transactions that span multiple services and provide eventual
consistency. Another benefit is that it also enables an application to maintain
materialized views.

https://en.wikipedia.org/wiki/Eventual_consistency
http://queue.acm.org/detail.cfm?id=1394128
https://en.wikipedia.org/wiki/Materialized_view

50Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

One drawback is that the programming model is more complex than when using ACID
transactions. Often you must implement compensating transactions to recover from
application-level failures; for example, you must cancel an order if the credit check fails.
Also, applications must deal with inconsistent data. That is because changes made by
in-flight transactions are visible. The application can also see inconsistencies if it reads
from a materialized view that is not yet updated. Another drawback is that subscribers
must detect and ignore duplicate events.

Achieving Atomicity

In an event-driven architecture there is also the problem of atomically updating the
database and publishing an event. For example, the Order Service must insert a row
into the ORDER table and publish an Order Created event. It is essential that these two
operations are done atomically. If the service crashes after updating the database but
before publishing the event, the system becomes inconsistent. The standard way to
ensure atomicity is to use a distributed transaction involving the database and the
Message Broker. However, for the reasons described above, such as the CAP theorem,
this is exactly what we do not want to do.

Publishing Events Using Local Transactions

One way to achieve atomicity is for the application to publish events using a multi-step
process involving only local transactions. The trick is to have an EVENT table, which
functions as a message queue, in the database that stores the state of the business
entities. The application begins a (local) database transaction, updates the state of the
business entities, inserts an event into the EVENT table, and commits the transaction.
A separate application thread or process queries the EVENT table, publishes the events
to the Message Broker, and then uses a local transaction to mark the events as published.
Figure 5-6 shows the design.

Figure 5-6. Achieving atomicity with local transactions.

http://queue.acm.org/detail.cfm?id=1394128
http://queue.acm.org/detail.cfm?id=1394128

51Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

The Order Service inserts a row into the ORDER table and inserts an Order Created event
into the EVENT table. The Event Publisher thread or process queries the EVENT table for
unpublished events, publishes the events, and then updates the EVENT table to mark
the events as published.

This approach has several benefits and drawbacks. One benefit is that it guarantees an
event is published for each update without relying on 2PC. Also, the application publishes
business-level events, which eliminates the need to infer them. One drawback of this
approach is that it is potentially error-prone since the developer must remember to publish
events. A limitation of this approach is that it is challenging to implement when using
some NoSQL databases because of their limited transaction and query capabilities.

This approach eliminates the need for 2PC by having the application use local transactions
to update state and publish events. Let’s now look at an approach that achieves atomicity
by having the application simply update state.

Mining a Database Transaction Log

Another way to achieve atomicity without 2PC is for the events to be published by a thread
or process that mines the database’s transaction or commit log. The application updates
the database, so changes are recorded in the database’s transaction log. The Transaction
Log Miner thread or process reads the transaction log and publishes events to the
Message Broker. Figure 5-7 shows the design.

Figure 5-7. A Message Broker can arbitrate data transactions.

52Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

An example of this approach is the open source LinkedIn Databus project. Databus mines
the Oracle transaction log and publishes events corresponding to the changes. LinkedIn
uses Databus to keep various derived data stores consistent with the system of record.

Another example is the streams mechanism in AWS DynamoDB, which is a managed
NoSQL database. A DynamoDB stream contains the time-ordered sequence of changes
(create, update, and delete operations) made to the items in a DynamoDB table in the
last 24 hours. An application can read those changes from the stream and, for example,
publish them as events.

Transaction log mining has various benefits and drawbacks. One benefit is that it
guarantees that an event is published for each update without using 2PC. Transaction
log mining can also simplify the application by separating event publishing from the
application’s business logic. A major drawback is that the format of the transaction log
is proprietary to each database and can even change between database versions.
Also, it can be difficult to reverse engineer the high-level business events from the
low-level updates recorded in the transaction log.

Transaction log mining eliminates the need for 2PC by having the application do one
thing: update the database. Let’s now look at a different approach that eliminates the
updates and relies solely on events.

Using Event Sourcing

Event sourcing achieves atomicity without 2PC by using a radically different, event-
centric approach to persisting business entities. Rather than store the current state of
an entity, the application stores a sequence of state-changing events. The application
reconstructs an entity’s current state by replaying the events. Whenever the state of a
business entity changes, a new event is appended to the list of events. Since saving an
event is a single operation, it is inherently atomic.

To see how event sourcing works, consider the Order entity as an example. In a traditional
approach, each order maps to a row in an ORDER table and to rows in, for example,
an ORDER_LINE_ITEM table.

But when using event sourcing, the Order Service stores an Order in the form of its
state-changing events: Created, Approved, Shipped, Cancelled. Each event contains
sufficient data to reconstruct the Order’s state.

https://github.com/linkedin/databus
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://github.com/cer/event-sourcing-examples/wiki/WhyEventSourcing

53Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

Figure 5-8. Events can have complete recovery data.

Events persist in an Event Store, which is a database of events. The store has an API for
adding and retrieving an entity’s events. The Event Store also behaves like the Message
Broker in the architectures we described previously. It provides an API that enables services
to subscribe to events. The Event Store delivers all events to all interested subscribers.
The Event Store is the backbone of an event-driven microservices architecture.

Event sourcing has several benefits. It solves one of the key problems in implementing an
event-driven architecture and makes it possible to reliably publish events whenever state
changes. As a result, it solves data consistency issues in a microservices architecture.
Also, because it persists events rather than domain objects, it mostly avoids the object‑
relational impedance mismatch problem. Event sourcing also provides a 100% reliable
audit log of the changes made to a business entity and makes it possible to implement
temporal queries that determine the state of an entity at any point in time. Another major
benefit of event sourcing is that your business logic consists of loosely coupled business
entities that exchange events. This makes it a lot easier to migrate from a monolithic
application to a microservices architecture.

Event sourcing also has some drawbacks. It is a different and unfamiliar style of
programming and so there is a learning curve. The event store only directly supports
the lookup of business entities by primary key. You must use command query
responsibility separation (CQRS) to implement queries. As a result, applications
must handle eventually consistent data.

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://github.com/cer/event-sourcing-examples/wiki
https://github.com/cer/event-sourcing-examples/wiki

54Microservices – From Design to Deployment Ch. 5 – Event-Driven Data Management for Microservices

Summary

In a microservices architecture, each microservice has its own private datastore. Different
microservices might use different SQL and NoSQL databases. While this database
architecture has significant benefits, it creates some distributed data management
challenges. The first challenge is how to implement business transactions that maintain
consistency across multiple services. The second challenge is how to implement queries
that retrieve data from multiple services.

For many applications, the solution is to use an event-driven architecture. One challenge
with implementing an event-driven architecture is how to atomically update state and
how to publish events. There are a few ways to accomplish this, including using the
database as a message queue, transaction log mining, and event sourcing.

Microservices in Action: NGINX and Storage Optimization
by Floyd Smith

A microservices-based approach to storage involves a greater number and variety of data stores,
more complexity in how you access and update data, and greater challenges for both Dev and Ops
in maintaining data consistency. NGINX provides crucial support for this kind of data management,
in three main areas:

1.	� Caching and microcaching of data – Caching static files and microcaching application-gen-
erated content with NGINX reduces the load on your application, increasing performance and
reducing the potential for problems.

2.	�Flexibility and scalability per data store – Once you implement NGINX as a reverse proxy
server, your apps gain great flexibility in creating, sizing, running, and resizing data storage
servers to meet changing requirements – vital when every service has its own data store.

3.	�Monitoring and management of services, including data services – With the number of data
servers multiplying, supporting complex operations is critical, as are monitoring and management
tools. NGINX Plus has built-in tools and interfaces to application performance management
partners such as Data Dog, Dynatrace, and New Relic.

Examples of microservice-specific data management are included in the three Models of the
NGINX Microservices Reference Architecture, giving you a starting point for your own design
decisions and implementation.

https://www.nginx.com/products/
https://www.nginx.com/partners/
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/

55Microservices – From Design to Deployment Ch. 6 – Choosing a Microservices Deployment Strategy

Choosing a
Microservices
Deployment
Strategy

6

This is the sixth chapter in this ebook about building applications with microservices.
Chapter 1 introduces the Microservices Architecture pattern and discusses the benefits
and drawbacks of using microservices. The following chapters discuss different aspects
of the microservices architecture: using an API Gateway, inter-process communication,
service discovery, and event-driven data management. In this chapter, we look at strategies
for deploying microservices.

Motivations

Deploying a monolithic application means running one or more identical copies of a
single, usually large, application. You typically provision N servers (physical or virtual)
and run M instances of the application on each server. The deployment of a monolithic
application is not always entirely straightforward, but it is much simpler than deploying
a microservices application.

A microservices application consists of tens or even hundreds of services. Services are
written in a variety of languages and frameworks. Each one is a mini-application with its
own specific deployment, resource, scaling, and monitoring requirements. For example,
you need to run a certain number of instances of each service based on the demand for
that service. Also, each service instance must be provided with the appropriate CPU,
memory, and I/O resources. What is even more challenging is that despite this
complexity, deploying services must be fast, reliable and cost-effective.

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/monolithic.html
http://microservices.io/patterns/microservices.html

56Microservices – From Design to Deployment Ch. 6 – Choosing a Microservices Deployment Strategy

There are a few different microservice deployment patterns. Let’s look first at the
Multiple Service Instances per Host pattern.

Multiple Service Instances Per Host Pattern

One way to deploy your microservices is to use the Multiple Service Instances per Host
pattern. When using this pattern, you provision one or more physical or virtual hosts and
run multiple service instances on each one. In many ways, this is the traditional approach
to application deployment. Each service instance runs at a well-known port on one or
more hosts. The host machines are commonly treated like pets.

Figure 6-1 shows the structure of this pattern:

Host (Physical or VM)

SERVICE-A
INSTANCE-1

SERVICE-B
INSTANCE-1

SERVICE-C
INSTANCE-1

Host (Physical or VM)

SERVICE-A
INSTANCE-2

SERVICE-B
INSTANCE-2

SERVICE-C
INSTANCE-2

Figure 6-1. Hosts can each support multiple service instances.

http://microservices.io/patterns/deployment/multiple-services-per-host.html
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/#stateless-servers

57Microservices – From Design to Deployment Ch. 6 – Choosing a Microservices Deployment Strategy

There are a couple of variants of this pattern. One variant is for each service instance to
be a process or a process group. For example, you might deploy a Java service instance
as a web application on an Apache Tomcat server. A Node.js service instance might
consist of a parent process and one or more child processes.

The other variant of this pattern is to run multiple service instances in the same process
or process group. For example, you could deploy multiple Java web applications on the
same Apache Tomcat server or run multiple OSGI bundles in the same OSGI container.

The Multiple Service Instances per Host pattern has both benefits and drawbacks.
One major benefit is its resource usage is relatively efficient. Multiple service instances
share the server and its operating system. It’s even more efficient if a process or group
runs multiple service instances, for example, multiple web applications sharing the same
Apache Tomcat server and JVM.

Another benefit of this pattern is that deploying a service instance is relatively fast.
You simply copy the service to a host and start it. If the service is written in Java, you copy
a JAR or WAR file. For other languages, such as Node.js or Ruby, you copy the source
code. In either case, the number of bytes copied over the network is relatively small.

Also, because of the lack of overhead, starting a service is usually very fast. If the service
is its own process, you simply start it. Otherwise, if the service is one of several instances
running in the same container process or process group, you either dynamically deploy
it into the container or restart the container.

Despite its appeal, the Multiple Service Instances per Host pattern has some significant
drawbacks. One major drawback is that there is little or no isolation of the service
instances, unless each service instance is a separate process. While you can accurately
monitor each service instance’s resource utilization, you cannot limit the resources each
instance uses. It’s possible for a misbehaving service instance to consume all of the
memory or CPU of the host.

There is no isolation at all if multiple service instances run in the same process.
All instances might, for example, share the same JVM heap. A misbehaving service
instance could easily break the other services running in the same process. Moreover,
you have no way to monitor the resources used by each service instance.

Another significant problem with this approach is that the operations team that deploys a
service has to know the specific details of how to do it. Services can be written in a variety
of languages and frameworks, so there are lots of details that the development team must
share with operations. This complexity increases the risk of errors during deployment.

As you can see, despite its familiarity, the Multiple Service Instances per Host pattern has
some significant drawbacks. Let’s now look at other ways of deploying microservices
that avoid these problems.

http://tomcat.apache.org/
https://nodejs.org/

58Microservices – From Design to Deployment Ch. 6 – Choosing a Microservices Deployment Strategy

Service Instance per Host Pattern

Another way to deploy your microservices is the Service Instance per Host pattern.
When you use this pattern, you run each service instance in isolation on its own host.
There are two different different specializations of this pattern: Service Instance per
Virtual Machine and Service Instance per Container.

Service Instance per Virtual Machine Pattern

When you use Service Instance per Virtual Machine pattern, you package each service
as a virtual machine (VM) image such as an Amazon EC2 AMI. Each service instance is
a VM (for example, an EC2 instance) that is launched using that VM image.

Figure 6-2 shows the structure of this pattern:

SERVICE

Packaged As
VM Image

VM

SERVICE
INSTANCE

Deployed As

VM

SERVICE
INSTANCE

VM

SERVICE
INSTANCE

Figure 6-2. Services can each live in their own virtual machine.

http://microservices.io/patterns/deployment/single-service-per-host.html
http://microservices.io/patterns/deployment/service-per-vm.html
https://aws.amazon.com/ec2/

59Microservices – From Design to Deployment Ch. 6 – Choosing a Microservices Deployment Strategy

This is the primary approach used by Netflix to deploy its video streaming service.
Netflix packages each of its services as an EC2 AMI using Aminator. Each running service
instance is an EC2 instance.

There are a variety tools that you can use to build your own VMs. You can configure your
continuous integration (CI) server (for example, Jenkins) to invoke Aminator to package
your services as an EC2 AMI. Packer is another option for automated VM image creation.
Unlike Aminator, it supports a variety of virtualization technologies including EC2,
DigitalOcean, VirtualBox, and VMware.

The company Boxfuse has a compelling way to build VM images, which overcomes the
drawbacks of VMs that I describe below. Boxfuse packages your Java application as a
minimal VM image. These images are fast to build, boot quickly, and are more secure
since they expose a limited attack surface.

The company CloudNative has the Bakery, a SaaS offering for creating EC2 AMIs. You can
configure your CI server to invoke the Bakery after the tests for your microservice pass.
The Bakery then packages your service as an AMI. Using a SaaS offering such as the Bakery
means that you don’t have to waste valuable time setting up the AMI creation infrastructure.

The Service Instance per Virtual Machine pattern has a number of benefits. A major benefit
of VMs is that each service instance runs in complete isolation. It has a fixed amount of
CPU and memory and can’t steal resources from other services.

Another benefit of deploying your microservices as VMs is that you can leverage mature
cloud infrastructure. Clouds such as AWS provide useful features such as load balancing
and autoscaling.

Another great benefit of deploying your service as a VM is that it encapsulates your
service’s implementation technology. Once a service has been packaged as a VM it
becomes a black box. The VM’s management API becomes the API for deploying the
service. Deployment becomes much simpler and more reliable.

The Service Instance per Virtual Machine pattern has some drawbacks, however.
One drawback is less efficient resource utilization. Each service instance has the overhead
of an entire VM, including the operating system. Moreover, in a typical public IaaS, VMs
come in fixed sizes and it is possible that the VM will be underutilized.

Moreover, a public IaaS typically charges for VMs regardless of whether they are busy
or idle. An IaaS such as AWS provides autoscaling, but it is difficult to react quickly to
changes in demand. Consequently, you often have to overprovision VMs, which increases
the cost of deployment.

Another downside of this approach is that deploying a new version of a service is usually
slow. VM images are typically slow to build due to their size. Also, VMs are typically slow
to instantiate, again because of their size. Also, an operating system typically takes some
time to start up. Note, however, that this is not universally true, since lightweight VMs such
as those built by Boxfuse exist.

https://github.com/Netflix/aminator
https://jenkins-ci.org/
https://www.packer.io/
https://boxfuse.com/
https://cloudnative.io/
http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html
http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html

60Microservices – From Design to Deployment Ch. 6 – Choosing a Microservices Deployment Strategy

Another drawback of the Service Instance per Virtual Machine pattern is that usually you
(or someone else in your organization) are responsible for a lot of undifferentiated heavy
lifting. Unless you use a tool such as Boxfuse that handles the overhead of building and
managing the VMs, then it is your responsibility. This necessary but time-consuming
activity distracts from your core business.

Let’s now look at an alternative way to deploy microservices that is more lightweight,
yet still has many of the benefits of VMs.

Service Instance per Container Pattern

When you use the Service Instance per Container pattern, each service instance runs in
its own container. Containers are a virtualization mechanism at the operating system level.
A container consists of one or more processes running in a sandbox. From the perspective
of the processes, they have their own port namespace and root filesystem. You can limit
a container’s memory and CPU resources. Some container implementations also have
I/O rate limiting. Examples of container technologies include Docker and Solaris Zones.

Figure 6-3 shows the structure of this pattern:

SERVICE

Packaged As
Container

Image

Deployed As

VM

Container

SERVICE
INSTANCE

VM

Container

SERVICE
INSTANCE

VM

Container

SERVICE
INSTANCE

Figure 6-3. Services can each live in their own container.

http://microservices.io/patterns/deployment/service-per-container.html
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://www.docker.com/
https://en.wikipedia.org/wiki/Solaris_Containers

61Microservices – From Design to Deployment Ch. 6 – Choosing a Microservices Deployment Strategy

To use this pattern, you package your service as a container image. A container image is
a filesystem image consisting of the applications and libraries required to run the service.
Some container images consist of a complete Linux root filesystem. Others are more
lightweight. To deploy a Java service, for example, you build a container image containing
the Java runtime, perhaps an Apache Tomcat server, and your compiled Java application.

Once you have packaged your service as a container image, you then launch one or
more containers. You usually run multiple containers on each physical or virtual host.
You might use a cluster manager such as Kubernetes or Marathon to manage your
containers. A cluster manager treats the hosts as a pool of resources. It decides
where to place each container based on the resources required by the container and
resources available on each host.

The Service Instance per Container pattern has both benefits and drawbacks. The benefits
of containers are similar to those of VMs. They isolate your service instances from each
other. You can easily monitor the resources consumed by each container. Also, like VMs,
containers encapsulate the technology used to implement your services. The container
management API also serves as the API for managing your services.

However, unlike VMs, containers are a lightweight technology. Container images are
typically very fast to build. For example, on my laptop it takes as little as 5 seconds to
package a Spring Boot application as a Docker container. Containers also start very quickly,
since there is no lengthy OS boot mechanism. When a container starts, what runs is
the service.

There are some drawbacks to using containers. While container infrastructure is rapidly
maturing, it is not as mature as the infrastructure for VMs. Also, containers are not as
secure as VMs, since the containers share the kernel of the host OS with one another.

Another drawback of containers is that you are responsible for the undifferentiated
heavy lifting of administering the container images. Also, unless you are using a hosted
container solution such as Google Container Engine or Amazon EC2 Container Service
(ECS), then you must administer the container infrastructure and possibly the VM
infrastructure that it runs on.

Also, containers are often deployed on an infrastructure that has per-VM pricing.
Consequently, as described earlier, you will likely incur the extra cost of overprovisioning
VMs in order to handle spikes in load.

Interestingly, the distinction between containers and VMs is likely to blur. As mentioned
earlier, Boxfuse VMs are fast to build and start. The Clear Containers project aims to create
lightweight VMs. There is also growing interest in unikernels. Docker, Inc acquired Unikernel
Systems in early 2016.

There is also the newer and increasingly popular concept of server-less deployment,
which is an approach that sidesteps the issue of having to choose between deploying
services in containers or VMs. Let’s look at that next.

http://kubernetes.io/
https://github.com/mesosphere/marathon
http://projects.spring.io/spring-boot/
https://cloud.google.com/container-engine/
https://aws.amazon.com/ecs/
https://clearlinux.org/features/clear-containers
https://en.wikipedia.org/wiki/Unikernel

62Microservices – From Design to Deployment Ch. 6 – Choosing a Microservices Deployment Strategy

Serverless Deployment

AWS Lambda is an example of serverless deployment technology. It supports Java,
Node.js, and Python services. To deploy a microservice, you package it as a ZIP file and
upload it to AWS Lambda. You also supply metadata, which among other things specifies
the name of the function that is invoked to handle a request (a.k.a. an event). AWS Lambda
automatically runs enough instances of your microservice to handle requests. You are
simply billed for each request based on the time taken and the memory consumed.
Of course, the devil is in the details, and you will see shortly that AWS Lambda has limitations.
But the notion that neither you as a developer, nor anyone in your organization, need worry
about any aspect of servers, virtual machines, or containers is incredibly appealing.

A Lambda function is a stateless service. It typically handles requests by invoking AWS
services. For example, a Lambda function that is invoked when an image is uploaded to
an S3 bucket could insert an item into a DynamoDB images table and publish a message
to a Kinesis stream to trigger image processing. A Lambda function can also invoke
third-party web services.

There are four ways to invoke a Lambda function:

•	� Directly, using a web service request
•	� Automatically, in response to an event generated by an AWS service such as S3,

DynamoDB, Kinesis, or Simple Email Service
•	� Automatically, via an AWS API Gateway to handle HTTP requests from clients of

the application
•	� Periodically, according to a cron-like schedule

As you can see, AWS Lambda is a convenient way to deploy microservices. The request-
based pricing means that you only pay for the work that your services actually perform.
Also, because you are not responsible for the IT infrastructure, you can focus on
developing your application.

There are, however, some significant limitations. Lambda functions are not intended to
be used to deploy long-running services, such as a service that consumes messages
from a third-party message broker. Requests must complete within 300 seconds.
Services must be stateless, since in theory AWS Lambda might run a separate instance
for each request. They must be written in one of the supported languages. Services must
also start quickly; otherwise, they might be timed out and terminated.

https://aws.amazon.com/lambda/

63Microservices – From Design to Deployment Ch. 6 – Choosing a Microservices Deployment Strategy

Summary

Deploying a microservices application is challenging. You may have tens or even hundreds
of services written in a variety of languages and frameworks. Each one is a mini-application
with its own specific deployment, resource, scaling, and monitoring requirements. There are
several microservice deployment patterns, including Service Instance per Virtual Machine
and Service Instance per Container. Another intriguing option for deploying microservices
is AWS Lambda, a serverless approach. In the next and final chapter of this ebook, we will
look at how to migrate a monolithic application to a microservices architecture.

Microservices in Action: Deploying Microservices Across
Varying Hosts with NGINX
by Floyd Smith

NGINX has a lot of advantages for various types of deployment – whether for monolithic applica-
tions, microservices apps, or hybrid apps (as described in the next chapter). With NGINX, you can
abstract intelligence out of different deployment environments and into NGINX. There are many
app capabilities that work differently if you use tools that are specific to different deployment
environments, but that work the same way across all environments if you use NGINX.

This characteristic also opens up a second specific advantage for NGINX and NGINX Plus: the
ability to scale an app by running it in multiple deployment environments at the same time. Let’s
say you have on-premise servers that you own and manage, but your app usage is growing and
you anticipate spikes beyond what those servers can handle. Instead of buying, provisioning, and
keeping additional servers warm “just in case”, if you’ve “gone NGINX”, you have a powerful alter-
native: scale into the cloud – for instance, scale onto AWS. That is, handle traffic on your on-premise
servers until capacity is reached, then spin up additional microservice instances in the cloud
as needed.

This is just one example of the flexibility that a move to NGINX makes possible. Maintaining separate
testing and deployment environments, switching the infrastructure of your environments, and
managing a portfolio of apps across all kinds of environments all become much more realistic
and achievable.

The NGINX Microservices Reference Architecture is explicitly designed to support this kind of
flexible deployment, with use of containers during development and deployment as an assumption.
Consider a move to containers, if you’re not there already, and to NGINX or NGINX Plus to ease
your move to microservices and to future-proof your apps, development and deployment flexibility,
and personnel.

https://www.nginx.com/products/nginx-plus-aws/
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/

64Microservices – From Design to Deployment Ch. 7 – Refactoring a Monolith into Microservices

Refactoring a
Monolith into
Microservices

7
This is the seventh and final chapter in this ebook about building applications with
microservices. Chapter 1 introduces the Microservice Architecture pattern and discusses
the benefits and drawbacks of using microservices. The subsequent chapters discuss
different aspects of the microservices architecture: using an API Gateway, inter-process
communication, service discovery, event-driven data management, and deploying
microservices. In this chapter, we look at strategies for migrating a monolithic application
to microservices.

I hope that this ebook has given you a good understanding of the microservices architecture,
its benefits and drawbacks, and when to use it. Perhaps the microservices architecture
is a good fit for your organization.

However, there is fairly good chance you are working on a large, complex monolithic
application. Your daily experience of developing and deploying your application is slow
and painful. Microservices seem like a distant nirvana. Fortunately, there are strategies
that you can use to escape from the monolithic hell. In this article, I describe how to
incrementally refactor a monolithic application into a set of microservices.

http://microservices.io/patterns/microservices.html

65Microservices – From Design to Deployment Ch. 7 – Refactoring a Monolith into Microservices

Overview of Refactoring to Microservices

The process of transforming a monolithic application into microservices is a form of
application modernization. That is something that developers have been doing for
decades. As a result, there are some ideas that we can reuse when refactoring an
application into microservices.

One strategy not to use is the “Big Bang” rewrite. That is when you focus all of your
development efforts on building a new microservices-based application from scratch.
Although it sounds appealing, it is extremely risky and will likely end in failure. As Martin
Fowler reportedly said, “the only thing a Big Bang rewrite guarantees is a Big Bang!”

Instead of a Big Bang rewrite, you should incrementally refactor your monolithic application.
You gradually add new functionality, and create extensions of existing functionality, in the
form of microservices – modifying your monolithic application in a complementary fashion,
and running the microservices and the modified monolith in tandem. Over time, the amount
of functionality implemented by the monolithic application shrinks, until either it disappears
entirely or it becomes just another microservice. This strategy is akin to servicing your car
while driving down the highway at 70 mph – challenging, but far less risky than attempting
a Big Bang rewrite.

Martin Fowler refers to this application
modernization strategy as the Strangler
Application. The name comes from the
strangler vine (a.k.a. strangler fig) that
is found in rainforests. A strangler vine
grows around a tree in order to reach
the sunlight above the forest canopy.
Sometimes, the tree dies, leaving a tree-
shaped vine. Application modernization
follows the same pattern. We will
build a new application consisting
of microservices around the legacy
application, which will shrink and
perhaps, eventually, die.

Let’s look at different strategies
for doing this.

https://en.wikipedia.org/wiki/Software_modernization
http://www.randyshoup.com/evolutionary-architecture
http://www.martinfowler.com/bliki/StranglerApplication.html
http://www.martinfowler.com/bliki/StranglerApplication.html

66Microservices – From Design to Deployment Ch. 7 – Refactoring a Monolith into Microservices

Strategy #1 – Stop Digging

The Law of Holes says that whenever you are in a hole you should stop digging. This is
great advice to follow when your monolithic application has become unmanageable. In
other words, you should stop making the monolith bigger. This means that when you are
implementing new functionality you should not add more code to the monolith. Instead,
the big idea with this strategy is to put that new code in a standalone microservice.

Figure 7-1 shows the system architecture after applying this approach.

SERVICEMONOLITH

HTTP REQUEST

WEB
API

WEB
APIGLUE

CODE
GLUE
CODE

Old HTTP
requests

New HTTP
requests

REQUEST
ROUTER

Figure 7-1. Implementing new functionality as a separate service instead of adding a module to the monolith.

https://en.wikipedia.org/wiki/Law_of_holes

67Microservices – From Design to Deployment Ch. 7 – Refactoring a Monolith into Microservices

As well as the new service and the legacy monolith, there are two other components.
The first is a request router, which handles incoming (HTTP) requests. It is similar to the
API gateway described in Chapter 2. The router sends requests corresponding to new
functionality to the new service. It routes legacy requests to the monolith.

The other component is the glue code, which integrates the service with the monolith.
A service rarely exists in isolation and often needs to access data owned by the monolith.
The glue code, which resides in either the monolith, the service, or both, is responsible
for the data integration. The service uses the glue code to read and write data owned by
the monolith.

There are three strategies that a service can use to access the monolith’s data:

•	� Invoke a remote API provided by the monolith
•	� Access the monolith’s database directly
•	� Maintain its own copy of the data, which is synchronized with the monolith’s database

The glue code is sometimes called an anti-corruption layer. That is because the glue code
prevents the service, which has its own pristine domain model, from being polluted by
concepts from the legacy monolith’s domain model. The glue code translates between
the two different models. The term anti-corruption layer first appeared in the must-read
book Domain Driven Design by Eric Evans and was then refined in a white paper. Developing
an anti-corruption layer can be a non-trivial undertaking. But it is essential to create one
if you want to grow your way out of monolithic hell.

Implementing new functionality as a lightweight service has a couple of benefits. It prevents
the monolith from becoming even more unmanageable. The service can be developed,
deployed, and scaled independently of the monolith. You experience the benefits of the
microservice architecture for each new service that you create.

However, this approach does nothing to address the problems with the monolith. To fix
those problems you need to break up the monolith. Let’s look at strategies for doing that.

Strategy #2 – Split Frontend and Backend

A strategy that shrinks the monolithic application is to split the presentation layer from
the business logic and data access layers. A typical enterprise application consists of
at least three different types of components:

•	� Presentation layer – Components that handle HTTP requests and implement either a
(REST) API or an HTML-based web UI. In an application that has a sophisticated user
interface, the presentation tier is often a substantial body of code.

•	� Business logic layer – Components that are the core of the application and implement
the business rules.

•	� Data-access layer – Components that access infrastructure components, such as
databases and message brokers.

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=sr_1_1?ie=UTF8&s=books&qid=1238687848&sr=8-1
http://docs.scala-lang.org/overviews/core/futures.html

68Microservices – From Design to Deployment Ch. 7 – Refactoring a Monolith into Microservices

There is usually a clean separation between the presentation logic on one side and the
business and data-access logic on the other. The business tier has a coarse-grained
API consisting of one or more facades, which encapsulate business-logic components.
This API is a natural seam along which you can split the monolith into two smaller
applications. One application contains the presentation layer. The other application
contains the business and data-access logic. After the split, the presentation logic
application makes remote calls to the business logic application.

Figure 7-2 shows the architecture before and after the refactoring.

DATABASE
ADAPTER

BROWSER

BUSINESS LOGIC

WEB
APPLICATION

BROWSER

MYSQL

DATABASE
ADAPTER

BUSINESS LOGIC

MYSQL

WEB
APPLICATION

REST
API

REST
API

Figure 7-2. Refactoring an existing app.

Splitting a monolith in this way has two main benefits. It enables you to develop, deploy,
and scale the two applications independently of one another. In particular, it allows the
presentation-layer developers to iterate rapidly on the user interface and easily perform
A|B testing, for example. Another benefit of this approach is that it exposes a remote API
that can be called by the microservices that you develop.

This strategy, however, is only a partial solution. It is very likely that one or both of the
two applications will be an unmanageable monolith. You need to use the third strategy
to eliminate the remaining monolith or monoliths.

69Microservices – From Design to Deployment Ch. 7 – Refactoring a Monolith into Microservices

Strategy #3 – Extract Services

The third refactoring strategy is to turn existing modules within the monolith into standalone
microservices. Each time you extract a module and turn it into a service, the monolith shrinks.
Once you have converted enough modules, the monolith will cease to be a problem.
Either it disappears entirely or it becomes small enough that it is just another service.

Prioritizing Which Modules to Convert into Services

A large, complex monolithic application consists of tens or hundreds of modules, all of
which are candidates for extraction. Figuring out which modules to convert first is often
challenging. A good approach is to start with a few modules that are easy to extract. This will
give you experience with microservices in general and the extraction process in particular.
After that, you should extract those modules that will give you the greatest benefit.

Converting a module into a service is typically time consuming. You want to rank modules
by the benefit you will receive. It is usually beneficial to extract modules that change
frequently. Once you have converted a module into a service, you can develop and deploy
it independently of the monolith, which will accelerate development.

It is also beneficial to extract modules that have resource requirements significantly
different from those of the rest of the monolith. It is useful, for example, to turn a module
that has an in-memory database into a service, which can then be deployed on hosts,
whether bare metal servers, VMs, or cloud instances, with large amounts of memory.
Similarly, it can be worthwhile to extract modules that implement computationally
expensive algorithms, since the service can then be deployed on hosts with lots of CPUs.
By turning modules with particular resource requirements into services, you can make
your application much easier and less expensive to scale.

When figuring out which modules to extract, it is useful to look for existing coarse-grained
boundaries (a.k.a seams). They make it easier and cheaper to turn modules into services.
An example of such a boundary is a module that only communicates with the rest of the
application via asynchronous messages. It can be relatively cheap and easy to turn that
module into a microservice.

How to Extract a Module

The first step of extracting a module is to define a coarse-grained interface between the
module and the monolith. It is mostly likely a bidirectional API, since the monolith will need
data owned by the service and vice versa. It is often challenging to implement such an
API because of the tangled dependencies and fine-grained interaction patterns between
the module and the rest of the application. Business logic implemented using the Domain
Model pattern is especially challenging to refactor because of numerous associations
between domain model classes. You will often need to make significant code changes
to break these dependencies. Figure 7-3 shows the refactoring.

http://martinfowler.com/eaaCatalog/domainModel.html
http://martinfowler.com/eaaCatalog/domainModel.html

70Microservices – From Design to Deployment Ch. 7 – Refactoring a Monolith into Microservices

DATABASE
ADAPTER

BUSINESS LOGIC

REST
API

MYSQL

MODULE
X

MODULE
Y

MODULE
Z

DATABASE
ADAPTER

BUSINESS LOGIC

REST
API

MYSQL

MODULE
X

MODULE
Y

MODULE
Z

Step 1

DATABASE
ADAPTER

BUSINESS LOGIC

REST
API

MYSQL

MODULE
X

MODULE
Y

DATABASE
ADAPTER

BUSINESS LOGIC

MYSQL

Step 2

REST
CLIENT

REST
API

REST
API

REST
CLIENT

REST
API

MODULE
Z

Figure 7-3. A module from a monolith can become a microservice.

71Microservices – From Design to Deployment Ch. 7 – Refactoring a Monolith into Microservices

Once you implement the coarse-grained interface, you then turn the module into a free-
standing service. To do that, you must write code to enable the monolith and the service to
communicate through an API that uses an inter-process communication (IPC) mechanism.
Figure 7-3 shows the architecture before, during, and after the refactoring.

In this example, Module Z is the candidate module to extract. Its components are used
by Module X and it uses Module Y. The first refactoring step is to define a pair of coarse-
grained APIs. The first interface is an inbound interface that is used by Module X to invoke
Module Z. The second is an outbound interface used by Module Z to invoke Module Y.

The second refactoring step turns the module into a standalone service. The inbound and
outbound interfaces are implemented by code that uses an IPC mechanism. You will most
likely need to build the service by combining Module Z with a Microservice Chassis
framework that handles cross-cutting concerns such as service discovery.

Once you have extracted a module, you have yet another service that can be developed,
deployed, and scaled independently of the monolith and any other services. You can even
rewrite the service from scratch; in this case, the API code that integrates the service
with the monolith becomes an anti-corruption layer that translates between the two
domain models. Each time you extract a service, you take another step in the direction
of microservices. Over time, the monolith will shrink and you will have an increasing number
of microservices.

Summary

The process of migrating an existing application into microservices is a form of application
modernization. You should not move to microservices by rewriting your application
from scratch. Instead, you should incrementally refactor your application into a set of
microservices. There are three strategies you can use: implementing new functionality
as microservices; splitting the presentation components from the business and data
access components; and converting existing modules in the monolith into services.
Over time the number of microservices will grow, and the agility and velocity of your
development team will increase.

http://microservices.io/patterns/microservice-chassis.html
http://microservices.io/patterns/microservice-chassis.html

72Microservices – From Design to Deployment Ch. 7 – Refactoring a Monolith into Microservices

Microservices in Action: Taming a Monolith with NGINX
by Floyd Smith

As this chapter describes, converting a monolith to microservices is likely to be a slow and chal-
lenging process, yet one with many benefits. With NGINX, you can begin to get some of the benefits
of microservices before you actually begin the conversion process.

You can buy a lot of time for the move to microservices by “dropping NGINX in front of” your existing

monolithic application. Here’s a brief description of the benefits as they relate to microservices:

•	� Better support for microservices – As mentioned in the sidebar for Chapter 5, NGINX, and
NGINX Plus in particular, have capabilities that help enable the development of microservices-
based apps. As you begin to re-design your monolithic application, your microservices will

perform better and be easier to manage due to the capabilities in NGINX.
•	� Functional abstraction across environments – Moving capabilities onto NGINX as a reverse

proxy server reduces the number of things that will vary when you deploy across new environ-
ments, from servers you manage to various flavors of public, private, and hybrid clouds. This

complements and extends the flexibility inherent to microservices.
•	� Availability of the NGINX Microservices Reference Architecture – As you move to NGINX,

you can borrow from the NGINX Microservices Reference Architecture, both to define the ultimate
structure of your app after the move to microservices, and to use parts of the MRA as needed
for each new microservice you create.

To sum up, implementing NGINX as a first step in your transition takes the pressure off your
monolithic application, makes it much easier to attain all of the benefits of microservices, and
gives you models for use in making the transition. You can learn more about the MRA and get a
free trial of NGINX Plus today.

https://www.nginx.com/products/
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/
https://www.nginx.com/products/#free-trial

73Microservices – From Design to Deployment Resources for Microservices and NGINX

Resources for Microservices and NGINX
by Floyd Smith

The NGINX website is already a valued resource for people seeking to learn about
microservices and implement them in their organizations. From introductory descriptions,
such as the first chapter of this ebook, to advanced resources such as the Fabric Model
of the NGINX Microsoft Reference Architecture, there’s a graduate seminar-level course
in microservices available at https://www.nginx.com.

Here are a few tips and tricks, and a few key resources, for getting started on your
journey with NGINX and microservices:

•	� Site search and web search. The best way to search the NGINX website for
microservices material is to use site-specific search in Google:

º	 site:nginx.com topic to search the NGINX website.

º	� site:nginx.com/blog topic to search the NGINX blog. All blog posts are tagged,
so once you find a topic you want to follow up on, just click the tag to see all
relevant posts. Authors are linked to all their articles as well.

º	� Search for topic nginx to find content relevant to both NGINX and your topic of
choice on the Web as a whole – there’s a lot of great stuff out there. DigitalOcean
may be the best external place to start.

•	� General NGINX resources. Here are links to different types of content on the NGINX site:

º	� Blog posts. Once you find a post on microservices, click the microservices tag to see all
such posts.

º	� Webinars. Click the Microservices filter to see microservices-relevant webinars.

º	� White papers, reports, and ebooks. Use site search on this part of the site,
as described above, to find resources relating specifically to microservices and
other topics of your choice.

º	� NGINX YouTube channel. NGINX has dozens of videos, including all the presentations
from several years of our annual conference. Many of these videos have been
converted into blog posts if you prefer reading to watching; search for the name of
the speaker in the NGINX blog.

https://www.nginx.com
https://www.digitalocean.com/community/tutorials/?q=nginx
https://www.nginx.com/blog
https://www.nginx.com/blog/tag/microservices/
https://www.nginx.com/webinars
https://www.nginx.com/resources/webinars/#filter/microservices
https://www.nginx.com/resources/library/
https://www.youtube.com/user/NginxInc

74Microservices – From Design to Deployment Resources for Microservices and NGINX

•	� Specific resources. Microservices is the single most popular, and best-covered, topic
on the NGINX website. Here are a few “best of the best” resources to get you started.

º	� This ebook as a blog post series. Look in the NGINX blog to find the Chris Richardson
blog posts that were (lightly) adapted to form the seven chapters of this ebook.

º	� Building Microservices ebook. A free download of an O’Reilly animal book on
microservices. Need we say more?

º	� Microservices at Netflix. Netflix is a leader in implementing microservices, moving
to the cloud, and making their efforts available as open source – all based on NGINX,
of course.

º	� Why NGINX for Containers and Microservices? The inimitable Owen Garrett on a
topic dear to our hearts.

º	� Implementing Microservices. A fresh take on the topic of this ebook, emphasizing
the four-tier architecture.

º	� Introducing the NGINX Microservices Reference Architecture. Professional services
maven Chris Stetson introduces the MRA.

https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/resources/library/oreilly-building-microservices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/12-reasons-why-nginx-is-the-standard-for-containerized-applications-and-deploying-microservices/
https://www.nginx.com/blog/adopting-microservices-getting-started-with-implementation/
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture/

