O'REILLY®

NEHA

Cookbook

Derek DeJonghe

Protect your applications

Il
==

'

'

'

(]
* Layer 7 attack protection * Data leakage protection
* DDoS mitigation » Audit logging
* Real-time blacklists * PCI-DSS 6.6 compliance

‘Availability and scalability are incredibly important,
but security is most important for us. With the ability to
meet our security requirements and stay ahead of the
curve, NGINX Plus is our vehicle for moving forward.”

—Sean McElroy, Corporate Information Security Officer at Alkami Technology

Learn more at nginx.com/waf

https://www.nginx.com/

NGINX Cookbook

Advanced Recipes for Security

Derek DeJonghe

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

NGINX Cookbook
by Derek DeJonghe

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Virginia Wilson Interior Designer: David Futato
Acquisitions Editor: Brian Anderson Cover Designer: Karen Montgomery
Production Editor: Shiny Kalapurakkel lllustrator: Rebecca Demarest

Copyeditor: Amanda Kersey

Revision History for the First Edition

2016-09-19: Part 1
2017-01-23: Part2

The O'Reilly logo is a registered trademark of O’'Reilly Media, Inc. NGINX Cook-
book, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi-
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi-
bility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-96893-2
[LSI]

http://safaribooksonline.com

Foreword
Introduction

1.

Table of Contents

Controlling Access.ovveererierinieenneennennnns

1.0 Introduction
1.1 Access Based on IP Address
1.2 Allowing Cross-Origin Resource Sharing

LimitingUse.......cooviiiiiiiiiiiiiiiiiiiiininnn

2.0 Introduction

2.1 Limiting Connections
2.2 Limiting Rate

2.3 Limiting Bandwidth

Encrypting.oovviiiiiiiii

3.0 Introduction
3.1 Client-Side Encryption
3.2 Upstream Encryption

HTTP Basic Authentication...........ccovvvevvvnennn..

4.0 Introduction
4.1 Creating a User File
4.2 Using Basic Authentication

HTTP Authentication Subrequests.....................

5.0 Introduction

(9,] N = =

o N U

10.

5.1 Authentication Subrequests

s SeEUrE LINKS. vttt e et e

6.0 Introduction

6.1 Securing a Location

6.2 Generating a Secure Link with a Secret
6.3 Securing a Location with an Expire Date
6.4 Generating an Expiring Link

. APl Authentication Using JWT..........coovviiiiiiiniinnnen.

7.0 Introduction
7.1 Validating JWTs
7.2 Creating JSON Web Keys

. Openld Connect Single SignOn.ccovviriienninnnnn

8.0 Introduction

8.1 Authenticate Users via Existing Openld Connect Single
Sign-On (SSO)

8.2 Obtaining JSON Web Key from Google

. ModSecurity Web Application Firewall........................

9.0 Introduction

9.1 Installing ModSecurity for NGINX Plus

9.2 Configuring ModSecurity in NGINX Plus

9.3 Installing ModSecurity from Source for a Web
Application Firewall

Practical Security Tips. .. .oovvevinnriniieniiiiiiriineennnens

10.0 Introduction

10.1 HTTPS Redirects

10.2 Redirecting to HTTPS Where SSL/TLS Is Terminated
Before NGINX

10.3 Satisfying Any Number of Security Methods

19

21
21
21
22
24
25

27
27
27
28

3
31

31
33

35
35
35
36

37
41
41
41

42
43

iv

| Table of Contents

Foreword

Almost every day, you read headlines about another company being
hit with a distributed denial-of-service (DDoS) attack, or yet
another data breach or site hack. The unfortunate truth is that
everyone is a target.

One common thread amongst recent attacks is that the attackers are
using the same bag of tricks they have been exploiting for years: SQL
injection, password guessing, phishing, malware attached to emails,
and so on. As such, there are some common sense measures you can
take to protect yourself. By now, these best practices should be old
hat and ingrained into everything we do, but the path is not always
clear, and the tools we have available to us as application owners and
administrators don't always make adhering to these best practices
easy.

To address this, the NGINX Cookbook Part 2 shows how to protect
your apps using the open source NGINX software and our
enterprise-grade product: NGINX Plus. This set of easy-to-follow
recipes shows you how to mitigate DDoS attacks with request/
connection limits, restrict access using JWT tokens, and protect
application logic using the ModSecurity web application firewall
(WAF).

We hope you enjoy this second part of the NGINX Cookbook, and
that it helps you keep your apps and data safe from attack.

— Faisal Memon
Product Marketer, NGINX, Inc.

Introduction

This is the second of three installments of NGINX Cookbook. This
book is about NGINX the web server, reverse proxy, load balancer,
and HTTP cache. This installment will focus on security aspects and
features of NGINX and NGINX Plus, the licensed version of the
NGINX server. Throughout this installment you will learn the basics
of controlling access and limiting abuse and misuse of your web
assets and applications. Security concepts such as encryption of your
web traffic and basic HTTP authentication will be explained as
applicable to the NGINX server. More advanced topics are covered
as well, such as setting up NGINX to verify authentication via third-
party systems as well as through JSON Web Token Signature valida-
tion and integrating with single sign-on providers. This installment
covers some amazing features of NGINX and NGINX Plus, such as
securing links for time-limited access and security, as well as ena-
bling web application firewall capabilities of NGINX Plus with the
ModSecurity module. Some of the plug-and-play modules in this
installment are only available through the paid NGINX Plus sub-
scription. However, this does not mean that the core open source
NGINX server is not capable of these securities.

vii

CHAPTER 1
Controlling Access

1.0 Introduction

Controlling access to your web applications or subsets of your web
applications is important business. Access control takes many forms
in NGINX, such as denying it at the network level, allowing it based
on authentication mechanisms, or HTTP instructing browsers how
to act. In this chapter we will discuss access control based on net-
work attributes, authentication, and how to specify Cross-Origin
Resource Sharing (CORS) rules.

1.1 Access Based on IP Address

Problem

You need to control access based on the IP address of the client.

Solution

Use the HTTP access module to control access to protected resour-
ces:

location / {
deny 10.0.0.1;
allow 10.0.0.0/20;
allow 2001:0db8::/32;
deny all;

Within the HTTP, server, and location contexts, allow and deny
directives provide the ability to allow or block access from a given
client, IP, CIDR range, Unix socket, or all keyword. Rules are
checked in sequence until a match is found for the remote address.

Discussion

Protecting valuable resources and services on the internet must be
done in layers. NGINX provides the ability to be one of those layers.
The deny directive blocks access to a given context, while the allow
directive can be used to limit the access. You can use IP addresses,
IPv4 or IPv6, CIDR block ranges, the keyword all, and a Unix
socket. Typically when protecting a resource, one might allow a
block of internal IP addresses and deny access from all.

1.2 Allowing Cross-Origin Resource Sharing

Problem

You're serving resources from another domain and need to allow
CORS to enable browsers to utilize these resources.

Solution
Alter headers based on request method to enable CORS:

map S$request_method Scors_method {
OPTIONS 11;
GET 1;
POST 1;
default 0;
}

server {

location / {
if (Scors_method ~ '1') {
add_header 'Access-Control-Allow-Methods'
'GET,POST,OPTIONS';
add_header 'Access-Control-Allow-Origin'
'* example.com';
add_header 'Access-Control-Allow-Headers'
'DNT,
Keep-Alive,
User-Agent,
X-Requested-With,
If-Modified-Since,

2 | Chapter 1:Controlling Access

Cache-Control,
Content-Type';
}
if (Scors_method = '11') {
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;

}
}
}

There’s a lot going on in this example, which has been condensed by
using a map to group the GET and POST methods together. The
OPTIONS request method returns information called a preflight
request to the client about this server’s CORS rules. As well as
OPTIONS, GET, and POST methods are allowed under CORS. Setting
the Access-Control-Allow-0rigin header allows for content being
served from this server to also be used on pages of origins that
match this header. The preflight request can be cached on the client
for 1,728,000 seconds, or 20 days.

Discussion

Resources such as JavaScript make cross-origin resource requests
when the resource theyre requesting is of a domain other than its
own origin. When a request is considered cross origin, the browser
is required to obey cross-origin resource sharing rules. The browser
will not use the resource if it does not have headers that specifically
allow its use. To allow our resources to be used by other subdo-
mains, we have to set the CORS headers, which can be done with the
add_header directive. If the request is a GET, HEAD, or POST with
standard content type, and the request does not have special head-
ers, the browser will make the request and only check for origin.
Other request methods will cause the browser to make the preflight
request to check the terms of the server to which it will obey for that
resource. If you do not set these headers appropriately, the browser
will give an error when trying to utilize that resource.

1.2 Allowing Cross-Origin Resource Sharing | 3

CHAPTER 2
Limiting Use

2.0 Introduction

Limiting use or abuse of your system can be important for throttling
heavy users or stopping attacks. NGINX has multiple modules built
in to help control the use of your applications. This chapter focuses
on limiting use and abuse, the number of connections, the rate at
which requests are served, and the amount of bandwidth used. It’s
important to differentiate between connections and requests: con-
nections (TCP connection) are the networking layer on which
requests are made and therefore are not the same thing. A browser
may open multiple connections to a server to make multiple
requests. However, in HTTP/1 and HTTP/1.1, requests can only be
made one at a time on a single connection; where in HTTP/2, multi-
ple requests can be made over a single TCP connection. This chap-
ter will help you restrict usage of your service and mitigate abuse.

2.1 Limiting Connections

Problem

You need to limit the number of connections based on a predefined
key, such as the client’s IP address.

Solution

Construct a shared memory zone to hold connection metrics, and
use the 1imit_conn directive to limit open connections:

http {
limit_conn_zone $binary_remote_addr zone=limitbyaddr:10m;
limit_conn_status 429;

server {

limit_conn limitbyaddr 40;

}

This configuration creates a shared memory zone named limit
byaddr. The predefined key used is the clients IP address in binary
form. The size of the shared memory zone is set to 10 mega-
bytes. The 1limit_conn directive takes two parameters: a
limit_conn_zone name, and the number of connections allowed.
The limit_conn_status sets the response when the connections are
limited to a status of 429, indicating too many requests.

Discussion

Limiting the number of connections based on a key can be used to
defend against abuse and share your resources fairly across all your
clients. It is important to be cautious of your predefined key. Using
an IP address, as we are in the previous example, could be danger-
ous if many users are on the same network that originates from the
same IP, such as when behind a Network Address Translation (NAT).
The entire group of clients will be limited. The limit_conn_zone
directive is only valid in the HTTP context. You can utilize any
number of variables available to NGINX within the HTTP context
in order to build a string on which to limit by. Utilizing a variable
that can identify the user at the application level, such as a session
cookie, may be a cleaner solution depending on the use case. The
limit_conn and limit_conn_status directives are valid in the
HTTP, server, and location context. The 1limit_conn_status
defaults to 503, service unavailable. You may find it preferable to use
a 429, as the service is available, and 500 level responses indicate
error.

6 | Chapter2:Limiting Use

2.2 Limiting Rate

Problem

You need to limit the rate of requests by predefined key, such as the
client’s IP address.

Solution

Utilize the rate-limiting module to limit the rate of requests:

http {
limit_req_zone $binary_remote_addr
zone=limitbyaddr:10m rate=1r/s;
limit_req_status 429;

server {
limit_req zone=1limitbyaddr burst=10 nodelay;

}
}

This example configuration creates a shared memory zone named
limitbyaddr. The predefined key used is the client’s IP address in
binary form. The size of the shared memory zone is set to 10 mega-
bytes. The zone sets the rate with a keyword argument. The
limit_req directive takes two keyword arguments: zone and burst.
zone is required to instruct the directive on which shared memory
request limit zone to use. When the request rate for a given zone is
exceeded, requests are delayed until their maximum burst size is
reached, denoted by the burst keyword argument. The burst key-
word argument defaults to zero. limit_req also optionally takes a
third parameter, nodelay. This parameter enables the client to use
its burst without delay before being limited. 1imit_req_status sets
the status returned to the client to a particular HTTP status code;
the default is 503. 1imit_req_status and limit_req are valid in the
context of HTTP, server, and location. limit_req_zone is only valid
in the HTTP context.

Discussion

The rate-limiting module is very powerful in protecting against abu-
sive rapid requests while still providing a quality service to every-
one. There are many reasons to limit rate of request, one being

2.2LlimitingRate | 7

security. You can deny a brute force attack by putting a very strict
limit on your login page. You can disable the plans of malicious
users that might try to deny service to your application or to waste
resources by setting a sane limit on all requests. The configuration
of the rate-limit module is much like the preceding connection-
limiting module described in Recipe 2.1, and much of the same con-
cerns apply. The rate at which requests are limited can be done in
requests per second or requests per minute. When the rate limit is
hit, the incident is logged. There’s a directive not in the example:
limit_req_log_level, which defaults to error, but can be set to
info, notice, or warn.

2.3 Limiting Bandwidth

Problem

You need to limit download bandwidths per client for your assets.

Solution

Utilize NGINX’s limit_rate and limit_rate_after directives to
limit the rate of response to a client:

location /download/ {
limit_rate_after 10m;
limit_rate 1m;
}
The configuration of this location block specifies that for URIs with
the prefix download, the rate at which the response will be served to
the client will be limited after 10 megabytes to a rate of 1 megabyte
per second. The bandwidth limit is per connection, so you may want
to institute a connection limit as well as a bandwidth limit where
applicable.

Discussion

Limiting the bandwidth for particular connections enables NGINX
to share its upload bandwidth with all of the clients in a fair manner.
These two directives do it all: 1imit_rate_after and limit_rate.
The limit_rate_after directive can be set in almost any context:
http, server, location, and if when the if is within a location. The
limit_rate directive is applicable in the same contexts as

8 | Chapter2:Limiting Use

limit_rate_after, however, it can alternatively be set by setting a
variable named $limit_rate. The limit_rate_after directive
specifies that the connection should not be rate limited until after a
specified amount of data has been transferred. The limit_rate
directive specifies the rate limit for a given context in bytes per sec-
ond by default. However, you can specify m for megabytes or g for
gigabytes. Both directives default to a value of 0. The value 0 means
not to limit download rates at all.

2.3 Limiting Bandwidth | 9

CHAPTER 3
Encrypting

3.0 Introduction

The internet can be a scary place, but it doesn’t have to be. Encryp-
tion for information in transit has become easier and more attaina-
ble in that signed certificates have become less costly with the advent
of Let’s Encrypt and Amazon Web Services. Both offer free certifi-
cates with limited usage. With free signed certificates, there’s little
standing in the way of protecting sensitive information. While not
all certificates are created equal, any protection is better than none.
In this chapter, we discuss how to secure information between
NGINX and the client, as well as NGINX and upstream services.

3.1 Client-Side Encryption

Problem

You need to encrypt traffic between your NGINX server and the cli-
ent.

Solution

Utilize one of the SSL modules, such as the ngx_http_ss1_module
or ngx_stream_ss1_module to encrypt traffic:

n

http { # ALl directives used below are also valid in stream

server {
listen 8083 ssl;
ssl_protocols TLSv1.2;
ssl_ciphers AES128-SHA:AES256-SHA;
ssl_certificate Jusr/local/nginx/conf/cert.pem;

ssl_certificate_key /usr/local/nginx/conf/cert.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

}

This configuration sets up a server to listen on a port encrypted with
SSL, 8083. The server accepts the SSL protocol version TLSv1.2. AES
encryption cipers are allowed and the SSL certificate and key loca-
tions are disclosed to the server for use. The SSL session cache and
timeout allow for workers to cache and store session parameters for
a given amount of time. There are many other session cache options
that can help with performance or security of all types of use cases.
Session cache options can be used in conjunction. However, specify-
ing one without the default will turn off that default, built-in session
cache.

Discussion

Secure transport layers are the most common way of encrypting
information in transit. At the time of writing, the Transport Layer
Security protocol (TLS) is the default over the Secure Socket Layer
(SSL) protocol. That’s because versions 1 through 3 of SSL are now
considered insecure. While the protocol name may be different, TLS
still establishes a secure socket layer. NGINX enables your service to
protect information between you and your clients, which in turn
protects the client and your business. When using a signed certifi-
cate, you need to concatenate the certificate with the certificate
authority chain. When you concatenate your certificate and the
chain, your certificate should be above the chain in the file. If your
certificate authority has provided many files in the chain, it is also
able to provide the order in which they are layered. The SSL session
cache enhances performance by not having to negotiate for SSL/TLS
versions and ciphers.

12 | Chapter3:Encrypting

3.2 Upstream Encryption

Problem

You need to encrypt traffic between NGINX and the upstream ser-
vice and set specific negotiation rules for compliance regulations or
if the upstream is outside of your secured network.

Solution

Use the SSL directives of the HTTP proxy module to specify SSL
rules:

location / {
proxy_pass https://upstream.example.com;
proxy_ssl_verify on;
proxy_ssl_verify_depth 2;
proxy_ssl_protocols TLSv1.2;

}

These proxy directives set specific SSL rules for NGINX to obey. The
configured directives ensure that NGINX verifies that the certificate
and chain on the upstream service is valid up to two certificates
deep. The proxy_ssl_protocols directive specifies that NGINX will
only use TLS version 1.2. By default NGINX does not verify
upstream certificates and accepts all TLS versions.

Discussion

The configuration directives for the HT'TP proxy module are vast,
and if you need to encrypt upstream traffic, you should at least turn
on verification. You can proxy over HTTPS simply by changing the
protocol on the value passed to the proxy_pass directive. However,
this does not validate the upstream certificate. Other directives
available, such as proxy_ss1_certificate and proxy_ssl_certifi
cate_key, allow you to lock down upstream encryption for
enhanced security. You can also specify proxy_ssl_crl or a certifi-
cate revocation list, which lists certificates that are no longer consid-
ered valid. These SSL proxy directives help harden your system’s
communication channels within your own network or across the
public internet.

3.2 Upstream Encryption | 13

CHAPTER 4
HTTP Basic Authentication

4.0 Introduction

Basic authentication is a simple way to protect private content. This
method of authentication can be used to easily hide development
sites or keep privileged content hidden. Basic authentication is
pretty unsophisticated, not extremely secure, and, therefore, should
be used with other layers to prevent abuse. It's recommended to set
up a rate limit on locations or servers that require basic authentica-
tion to hinder the rate of brute force attacks. It's also recommended
to utilize HTTPS, as described in Chapter 3 whenever possible, as
the username and password are passed as a base64 encoded string to
the server in a header on every authenticated request. The implica-
tions of basic authentication over an unsecured protocol such as
HTTP means that the username and password can be captured by
any machine the request passes through.

4.1 Creating a User File

Problem

You need an HT'TP basic authentication user file to store usernames
and passwords.

Solution

Generate a file in the following format, where the password is
encrypted or hashed with one of the allowed formats:

15

comment

namel:passwordi

name2:password2:comment

name3:password3
The username is the first field, the password the second field, and
the delimiter is a colon. An optional third field can be used for com-
ment on each user. NGINX can understand a few different formats
for passwords, one of which is if the password is encrypted with the
C function crypt(). This function is exposed to the command line
by the openssl passwd command. With openss1 installed, you can
create encrypted password strings with the following command:

$ openssl passwd MyPassword1234

The output will be a string NGINX can use in your password file.

Discussion

Basic authentication passwords can be generated a few ways and in a
few different formats to varying degrees of security. The htpasswd
command from Apache can also generate passwords. Both the
openssl and htpasswd commands can generate passwords with the
apr1 algorithm, which NGINX can also understand. The password
can also be in the salted sha-1 format that LDAP and Dovecot use.
NGINX supports more formats and hashing algorithms, however,
many of them are considered insecure because they can be easily
cracked.

4.2 Using Basic Authentication

Problem

You need basic authentication to protect an NGINX location or
server.

Solution

Use the auth_basic and auth_basic_user_file directives to enable
basic authentication:

location / {
auth_basic "Private site";
auth_basic_user_file conf.d/passwd;

16 | Chapter4: HTTP Basic Authentication

The auth_basic directives can be used in the HTTP, server, or loca-
tion contexts. The auth_basic directive takes a string parameter
which is displayed on the basic authentication pop-up window when
an unauthenticated user arrives. The auth_basic_user_file speci-
fies a path to the user file, which was just described in Recipe 4.1.

Discussion

Basic authentication can be used to protect the context of the entire
NGINX host, specific virtual servers, or even just specific location
blocks. Basic authentication won’t replace user authentication for
web applications, but it can help keep private information secure.
Under the hood, basic authentication is done by the server returning
a 401 unauthorized HTTP code with a response header WWW-
Authenticate. This header will have a value of Basic realm="your
string." This response will cause the browser to prompt for a user-
name and password. The username and password are concatenated
and delimited with a colon, then base64 encoded, and sent in a
request header named Authorization. The Authorization request
header will specify Basic and user:password encoded string. The
server decodes the header and verifies against the
auth_basic_user_file provided. Because the username password
string is merely base64 encoded, it's recommended to use HTTPS
with basic authentication.

4.2 Using Basic Authentication | 17

CHAPTER 5
HTTP Authentication Subrequests

5.0 Introduction

With many different approaches to authentication, NGINX makes it
easy to validate against a wide range of authentication systems by
enabling a subrequest mid-flight to validate identity. The HTTP
authentication request module is meant to enable authentication
systems like LDAP or custom authentication microservices. The
authentication mechanism proxies the request to the authentication
service before the request is fulfilled. During this proxy you have the
power of NGINX to manipulate the request as the authentication
service requires. Therefore, it is extremely flexible.

5.1 Authentication Subrequests

Problem

You have a third-party authentication system to which you would
like requests authenticated to.

Solution

Use the http_auth_request_module to make a request to the
authentication service to verify identity before serving the request:

19

location /private/ {
auth_request /auth;
auth_request_set $auth_status Supstream_status;

}

location = /auth {
internal;
proxy_pass http://auth-server;
proxy_pass_request_body off;
proxy_set_header Content-Length "";
proxy_set_header X-0riginal-URI Srequest_uri;

}

The auth_request directive takes a URI parameter that must be a
local internal location. The auth_request_set directive allows you
to set variables from the authentication subrequest.

Discussion

The http_auth_request_module enables authentication on every
request handled by the NGINX server. The module makes a subre-
quest before serving the original to determine if the request has
access to the resource it's requesting. The entire original request is
proxied to this subrequest location. The authentication location acts
as a typical proxy to the subrequest and sends the original request,
including the original request body and headers. The HTTP status
code of the subrequest is what determines access or not. If the sub-
request returns with an HT'TP 200 status code, the authentication is
successful and the request is fulfilled. If the subrequest returns
HTTP 401 or 403, the same will be returned for the original request.

If your authentication service does not request the request body, you
can drop the request body with the proxy_pass_reqeust_body
directive, as demonstrated. This practice will reduce the request size
and time. Because the response body is discarded, the Content-
Length header can be set to an empty string. If your authentication
service needs to know the URI being accessed by the request, you’ll
want to put that value in a custom header that your authentication
services checks and verifies. If there are things you do want to keep
from the subrequest to the authentication service, like response
headers or other information, you can use the auth_request_set
directive to make new variables out of response data.

20 | Chapter 5: HTTP Authentication Subrequests

CHAPTER 6
Secure Links

6.0 Introduction

Secure links are a way to keep static assets secure with the md5 hash-
ing algorithm. With this module, you can also put a limit on the
length of time to which the link is accepted. Using secure links ena-
bles your NGINX application server to serve static content securely
while taking this responsibility off of the application server. This
module is included in the free and open source NGINX. However, it
is not built into the standard NGINX package but instead the
nginx-extras package. Alternatively, it can be enabled with the --
with-http_secure_link_module configuration parameter when
building NGINX from source.

6.1 Securing a Location

Problem

You need to secure a location block using a secret.

Solution

Use the secure link module and the secure_link_secret directive
to restrict access to resources to users who have a secure link:

21

location /resources {
secure_link_secret mySecret;
if ($secure_link = "") { return 403; }

rewrite A /secured/S$Ssecure_link;

}

location /secured {
internal;
root /var/www;
}
This configuration creates an internal and public-facing location
block. The public-facing location block /resources will return a 403
Forbidden unless the request URI includes an md5 hash string that
can be verified with the secret provided to the secure_link_secret
directive. The $secure_link variable is an empty string unless the
hash in the URI is verified.

Discussion

Securing resources with a secret is a great way to ensure your files
are protected. The secret is used in concatenation with the URL This
string is then md5 hashed, and the hex digest of that md5 hash is used
in the URL The hash is placed into the link and evaluated by
NGINX. NGINX knows the path to the file being requested as it’s in
the URI after the hash. NGINX also knows your secret as it’s pro-
vided via the secure_link_secret directive. NGINX is able to
quickly validate the md5 hash and store the URI in the $secure_link
variable. If the hash cannot be validated, the variable is set to an
empty string. It's important to note that the argument passed to the
secure_link_secret must be a static string; it cannot be a variable.

6.2 Generating a Secure Link with a Secret

Problem

You need to generate a secure link from your application using a
secret.

22 | Chapter6: Secure Links

Solution

The secure link module in NGINX accepts the hex digest of an md5
hashed string, where the string is a concatenation of the URI path
and the secret. Building on the last section, Recipe 6.1, we will create
the secured link that will work with the previous configuration
example given there’s a file present at /var/www/secured/index.html.
To generate the hex digest of the md5 hash, we can use the Unix
openssl command:

$ echo -n 'index.htmlmySecret' | openssl md5 -hex

(stdin)= a53bee08a4bfObbead78ddf736363a12
Here we show the URI that we're protecting, index.html, concaten-
ated with our secret, mySecret. This string is passed to the openssl
command to output an md5 hex digest.

The following is an example of the same hash digest being construc-
ted in Python 2.7 using the md5 library that is included in the Python
Standard Library:

import md5

md5.new('index.htmlmySecret').hexdigest()

'a53bee08a4bfObbead78ddf736363a12"
Now that we have this hash digest, we can use it in a URL. Our
example will be for www.example.com making a request for the
file /var/www/secured/index.html through our /resources location.
Our full URL will be the following:

www .example.com/resources/a53bee08a4bfObbead978ddf736363a12/\
index.html

Discussion

Generating the digest can be done in many ways, in many languages.
Things to remember: the URI path goes before the secret, there are
no carriage returns in the string, and use the hex digest of the md5
hash.

6.2 Generating a Secure Link with a Secret | 23

6.3 Securing a Location with an Expire Date

Problem

You need to generate a link that expires at some future time.

Solution

Utilize the other directives included in the secure link module to set
an expire time and use variables in your secure link:

location /resources {
root /var/www;
secure_link $arg_md5,$arg_expires;
secure_link_md5 "$secure_link_expires$uri$Sremote_addr
mySecret";
if ($secure_link = "") { return 403; }
if ($secure_link = "0") { return 410; }
}

The secure_link directive takes two parameters separated with a
comma. The first parameter is the variable that holds the md5 hash.
This example uses an HTTP argument of md5. The second parame-
ter is a variable that holds the time in which the link expires in Unix
epoch time format. The secure_link_md5 directive takes a single
parameter that declares the format of the string that is used to con-
struct the md5 hash. Like the other configuration, if the hash does
not validate, the $secure_link variable is set to an empty string.
However, with this usage, if the hash matches but the time has
expired, the $secure_link variable will be set to ©.

Discussion

This usage of securing a link is more flexible and looks cleaner than
the secure_link_secret shown in Recipe 6.1. With these directives,
you can use any number of variables that are available to NGINX in
the hashed string. Using user-specific variables in the hash string
will strengthen your security as users won't be able to trade links to
secured resources. Its recommended to use a variable like
Sremote_addr or $http_x_forwarded_for, or a session cookie
header generated by the application. The arguments to secure_link
can come from any variable you prefer, and they can be named
whatever best fits. The conditions around what the $secure_link

24 | Chapter 6: Secure Links

variable is set to returns known HTTP codes for Forbidden and
Gone. The HTTP 410, Gone, works great for expired links as the
condition is to be considered permanent.

6.4 Generating an Expiring Link

Problem

You need to generate a link that expires.

Solution

Generate a timestamp for the expire time in the Unix epoch format.
On a Unix system, you can test by using the date as demonstrated in
the following:

$ date -d "2020-12-31 00:00" +%s

1609390800
Next you'll need to concatenate your hash string to match the string
configured with the secure_link_md5 directive. In this case, our
string to be used will be 1293771600/resources/
index.htm1127.0.0.1 mySecret. The md5 hash is a bit different
than just a hex digest. It's an md5 hash in binary format, base64 enco-
ded, with plus signs (+) translated to hyphens (-), slashes (/) trans-
lated to underscores (_), and equal (=) signs removed. The following
is a example on a Unix system:

$ echo -n '1609390800/resources/index.html127.0.0.1 mySecret' \
| openssl md5 -binary \
| openssl base64 \
| tr+/ -_\
| tr -d =
81CYyxXFADhLHaQD36_BK

Now that we have our hash, we can use it as an argument along with
the expire date:

/resources/index.htm1?md5=81CYyxXFADhLHaQD36_BK&expires=1609390
800"’

The following is a full example in Python 2.7 using the Python Stan-
dard Library:

6.4 Generating an Expiring Link | 25

from datetime import datetime
from base64 import bé64encode
import md5

resource = '/resources/index.html'

remote_addr = '127.0.0.1'

host = 'www.example.com'

expire = datetime(2020,12,31,0,0).strftime('%s"')
uncoded = expire + resource + remote_addr + ' mySecret'
md5hashed = md5.new(uncoded).digest()

b64 = b64encode(md5hashed)

hash = b64.replace('+', '-').replace('/"', '_").replace('=",

linkformat = "{}{}?md5={}?expires{}"
securelink = linkformat.format(host,resource,hash,expire)

Discussion

With this pattern we're able to generate a secure link in a special for-
mat that is able to be used in URLs. The secret provides security of a
variable that is never sent to the client. Youre able to use as many
other variables as you need to in order to secure the location. md5
hashing and base64 encoding are common, lightweight, and avail-
able in nearly every language.

)

26

| Chapter 6: Secure Links

CHAPTER7
APl Authentication Using JWT

7.0 Introduction

JSON Web Tokens (JWTs) are quickly becoming a widely used and
preferred authentication method. These authentication tokens have
the ability to store some information about the user as well as infor-
mation about the user’s authorization into the token itself. These
tokens can also be validated asynchronously, which means load bal-
ancers and proxies are able to validate the token with a public key
and do not need the private key that the token was signed with, thus
enhancing security and flexibility. An advantage of offloading
authentication verification to your NGINX Plus layer is that you're
saving cycles on your authentication service, as well as speeding up
your transactions. The JWT authentication module described in this
chapter is available only with an NGINX Plus subscription.

7.1Validating JWTs

Problem
You need to validate a JWT before the request is handled.

Solution

Use NGINX Plus’s HTTP JWT authentication module to validate the
token signature and embed JWT Claims and headers as NGINX
variables:

27

location /api/ {
auth_jwt "api";
auth_jwt_key_file conf/keys.json;
}
This configuration enables validation of JWTs for this location. The
auth_jwt directive is passed a string, which is used as the authenti-
cation realm. The auth_jwt takes an optional token parameter of a
variable that holds the JWT. By default, the Authentication header
is used per the JWT standard. The auth_jwt directive can also be
used to cancel effects of required JWT authentication from inherited
configurations. To turn of f authentication, pass the keyword to the
auth_jwt directive with nothing else. To cancel inherited authenti-
cation requirements, pass the of f keyword to the auth_jwt directive
with nothing else. The auth_jwt_key_file takes a single parameter.
This parameter is the path to the key file in standard JSON Web Key
format.

Discussion

NGINX Plus is able to validate the JSON web signature types of
tokens opposed to the JSON web encryption type where the entire
token is encrypted. NGINX Plus is able to validate signatures that
are signed with the HS256, RS256, and ES256 algorithms. Having
NGINX Plus validate the token can save time and resources of mak-
ing a subrequest to an authentication service. NGINX Plus deci-
phers the JWT header and payload, and captures the standard
headers and claims into embedded variables for your use.

Also See

RFC standard documentation of JSON Web Signature
RFC standard documentation of JSON Web Algorithms
RFC standard documentation of JSON Web Token
NGINX embedded variables

Detailed NGINX blog

7.2 Creating JSON Web Keys

Problem
You need a JSON Web Key for NGINX Plus to use.

28 | Chapter7: APl Authentication Using JWT

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7519
http://bit.ly/2fucAac
http://bit.ly/2f0Mjj0

Solution

NGINX Plus utilizes the the JSON Web Key (JWK) format as speci-
fied in the RFC standard. The standard allows for an array of key
objects within the JWK file.

The following is an example of what the key file may look like:

{"keys":
[

{
"kty":"oct",
"kid":"0001",
"k":"OctetSequenceKeyValue"

1,

{
"kty":"EC",
"kid":"0002"
"crv":"P-256",
"x": "XCoordinateValue",
"y": "YCoordinateValue",
"d": "PrivateExponent",
"use": "sig"

1.

{
"kty":"RSA",
"kid":"0003"
"n": "Modulus",
"e": "Exponent",
"d": "PrivateExponent"

}

1
}

The JWK file shown demonstrates the three initial types of keys
noted in the RFC standard. The format of these keys is also part of
the RFC standard. The kty attribute is the key type. This file shows
three key types: the Octet Sequence (oct), the EllipticCurve (EC),
and the RSA type. The kid attribute is the key ID. Other attributes to
these keys are specified to the standard for that type of key. Look to
the RFC documentation of these standards for more information.

Discussion

There are numerous libraries available in many different languages
to generate the JSON Web Key. It's recommended to create a key ser-
vice that is the central JWK authority to create and rotate your
JWKs at a regular interval. For enhanced security, it’s recommended

7.2 Creating JSON Web Keys | 29

to make your JWKs as secure as your SSL/TLS certifications. Keep-
ing them in memory on your host is best practice. You can do so by
creating an in-memory file system like ramfs.

Also See
RFC standardization documentation of JSON Web Key

30 | Chapter7: APl Authentication Using JWT

https://tools.ietf.org/html/rfc7517

CHAPTER 8
Openld Connect Single Sign On

8.0 Introduction

Single sign-on (SSO) authentication providers are a great way to
reduce authentication requests to your application and provide your
users with seamless integration into an application they already log
into on a regular basis. As more authentication providers bring
themselves to market, your application can be ready to integrate by
using NGINX Plus to validate the signature of their JSON Web
Tokens. In this chapter we'll explore using the NGINX Plus JWT
authentication module for HTTP in conjunction with an existing
Openld Connect OAuth 2.0 provider from Google. As in Chapter 7,
this chapter describes the JWT authentication module, which is only
available with a NGINX Plus subscription.

8.1 Authenticate Users via Existing Openld
Connect Single Sign-On (SS0)

Problem

You want to offload Openld Connect authentication validation to
NGINX Plus.

31

Solution

Use NGINX Plus’s JWT module to secure a location or server and
tell the auth_jwt directive to use $Scookie_auth_token as the token
to be validated:

location /private/ {
auth_jwt "Google Oauth" token=$cookie_auth_token;
auth_jwt_key_file /etc/nginx/google_certs. jwk;
}
This configuration tells NGINX Plus to secure the /private/ URI
path with JWT validation. Google Oauth 2.0 Openld Connect uses
the cookie auth_token rather than the default Bearer Token. Thus,
we must tell NGINX to look for the token in this cookie rather than
the NGINX Plus Default location. The auth_jwt_key_file location
is set to an arbitrary path, a step which we will cover in Recipe 8.2.

Discussion

This configuration demonstrates how you can validate a Google
Oauth 2.0 Openld Connect JSON Web Token with NGINX Plus.
The NGINX Plus JWT authentication module for HTTP is able to
validate any JSON Web Token that adheres to the RFC for JSON
Web Signature specification, instantly enabling any single sign-on
authority that utilizes JSON Web Tokens to be validated at the
NGINX Plus layer. The Openld 1.0 protocol is a layer on top of the
OAuth 2.0 authentication protocol that adds identity, enabling the
use of JSON Web Tokens to prove the identity of the user sending
the request. With the signature of the token, NGINX Plus can vali-
date that the token has not been modified since it was signed. In this
way, Google is using an asynchronous signing method and makes it
possible to distribute public JWKs while keeping its private JWK
secret.

Also See

Detailed NGINX Blog on Openld Connect
Openld Connect

32 | Chapter8:Openld Connect Single Sign On

http://bit.ly/2fB704l
http://openid.net/connect/

8.2 Obtaining JSON Web Key from Google

Problem

You need to obtain the JSON Web Key from Google to use when
validating OpenlId Connect tokens with NGINX Plus.

Solution

Utilize Cron to request a fresh set of keys every hour to ensure your
keys are always up to date:

0 * * * * root wget https://www.googleapis.com/oauth2/v3/ \
certs-0 /etc/nginx/google_certs. jwk
This code snippet is a line from a crontab file. Unix-like systems
have many options to where crontab files can live. Every user will
have a user specific crontab, and there’s also a number of files and
directories in the /etc/ directory.

Discussion

Cron is a common way to run a scheduled task on a Unix-like sys-
tem. JSON Web Keys should be rotated on a regular interval to
ensure the security of the key, and in turn, the security of your sys-
tem. To ensure that you always have the most up-to-date key from
Google, you'll want to check for new JWKs at a regular interval. This
cron solution is one way of doing so.

Also See

Cron

8.2 Obtaining JSON Web Key from Google | 33

https://linux.die.net/man/8/cron

CHAPTER 9

ModSecurity Web Application
Firewall

9.0 Introduction

ModSecurity is an open source web application firewall (WAF) that
was first built for Apache web servers. It was made available to
NGINX as a module in 2012 and added as an optional feature to
NGINX Plus in 2016. This chapter will detail installing ModSecurity
3.0 with NGINX Plus through dynamic modules. It will also cover
compiling and installing the ModSecurity 2.9 module and NGINX
from source. ModSecurity 3.0 with NGINX Plus is far superior to
ModSecurity 2.x in terms of security and performance. When run-
ning ModSecurity 2.9 configured from open-source, it’s still wrap-
ped in Apache and, therefore, requires much more overhead than
3.0, which was designed for NGINX natively. The plug-and-play
ModSecurity 3.0 module for NGINX is only available with a NGINX
Plus subscription.

9.1 Installing ModSecurity for NGINX Plus

Problem
You need to install the ModSecurity module for NGINX Plus.

35

Solution

Install the module from the NGINX Plus repository. The package
name is nginx-plus-module-modsecurity. On an Ubuntu-based
system, you can install NGINX Plus and the ModSecurity module
through the advanced packaging tool, also known as apt-get:

$ apt-get update

$ apt-get install nginx-plus
$ apt-get install nginx-plus-module-modsecurity

Discussion

Installing NGINX Plus and the ModSecurity module is as easy as
pulling it from the NGINX Plus repository. Your package manage-
ment tool, such as apt-get or yum, will install NGINX Plus as well as
the module and place the module in the modules directory within
the default NGINX Plus configuration directory /etc/nginx/.

9.2 Configuring ModSecurity in NGINX Plus

Problem
You need to configure NGINX Plus to use the ModSecurity module.

Solution

Enable the dynamic module in your NGINX Plus configuration, and
use the modsecurity_rules_file to point to a ModSecurity rule
file:

load_module modules/ngx_http_modsecurity.so;

The load_module directive is applicable in the main context, which
means that this directive is to be used before opening the HTTP or
Stream blocks.

Turn on ModSecurity and use a particular rule set:

modsecurity on;

location / {
proxy_pass http://backend;
modsecurity_rules_file rule-set-file;

}

36 | Chapter9: ModSecurity Web Application Firewall

The modsecurity directive turns on the module for the given con-
text when passed the on parameter. The modsecurity_rules_file
instructs NGINX Plus to use a particular ModSecurity rule set.

Discussion

The rules for ModSecurity can prevent common exploits of web
servers and applications. ModSecurity is known to be able to pre-
vent application-layer attacks such as HT'TP violations, SQL injec-
tion, cross-site scripting, application-layer, distributed-denial-of-
service, and remote and local file-inclusion attacks. With
ModSecurity, you're able to subscribe to real-time blacklists of mali-
cious user IPs to help block issues before your services are affected.
The ModSecurity module also enables detailed logging to help iden-
tify new patterns and anomalies.

Also See

OWASP ModSecurity Core Rule Set
TrustWave ModSecurity Paid Rule Set

9.3 Installing ModSecurity from Source for a
Web Application Firewall

Problem

You need to run a web application firewall with NGINX using Mod-
Security and a set of ModSecurity rules on a CentOS or RHEL-based
system.

Solution

Compile ModSecurity and NGINX from source and configure
NGINX to use the ModSecurity module.

First update security and install prerequisites:

$ yum --security update -y && \
yum -y install automake \
autoconf \
curl \
curl-devel \
gcc \
gcc-c++ |\

9.3 Installing ModSecurity from Source for a Web Application Firewall | 37

http://bit.ly/2fdZ7Dd
http://bit.ly/2eJYuAx

httpd-devel \
libxml2 \
libxml2-devel \
make \

openssl \
openssl-devel \
perl \

wget

Next, download and install PERL 5 regular expression pattern
matching:

$ cd Jopt && \
wget http://ftp.exim.org/pub/pcre/pcre-8.39.tar.gz && \
tar -zxf pcre-8.39.tar.gz && \
cd pcre-8.39 && \
./configure && \
make && \
make install

Download and install zlib from source:

$ cd Jopt && \
wget http://zlib.net/z1lib-1.2.8.tar.gz && \
tar -zxf zlib-1.2.8.tar.gz && \
cd z1lib-1.2.8 && \
./configure && \
make && \
make install

Download and install ModSecurity from source:

$ cd Jopt && \

wget \

https://www.modsecurity.org/tarball/2.9.1/modsecurity-2.9.1.\
tar.gz&& \

tar -zxf modsecurity-2.9.1.tar.gz && \

cd modsecurity-2.9.1 && \

./configure --enable-standalone-module && \

make

Download and install NGINX from source and include any modules
you may need with the configure script. Our focus here is the Mod-
Security module:

$ cd Jopt && \

wget http://nginx.org/download/nginx-1.11.4.tar.gz 8&& \

tar zxf nginx-1.11.4.tar.gz && \

cd nginx-1.11.4 && \

./configure \
--sbin-path=/usr/local/nginx/nginx \
--conf-path=/etc/nginx/nginx.conf \
--pid-path=/usr/local/nginx/nginx.pid \

38 | Chapter9: ModSecurity Web Application Firewall

--with-pcre=../pcre-8.39 \
--with-zlib=../z1ib-1.2.8 \
--with-http_ssl_module \
--with-stream \
--with-http_ssl_module \
--with-http_secure_link_module \
--add-module=../modsecurity-2.9.1/nginx/modsecurity \

&& \

make && \

make install && \

1n -s /usr/local/nginx/nginx /usr/bin/nginx

This will yield NGINX compiled from source with the ModSecurity
version 2.9.1 module installed. From here we are able to use the Mod

SecurityEnabled and ModSecurityConfig directives in our config-
urations:

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;
location / {
ModSecurityEnabled on;
ModSecurityConfig modsecurity.conf;

}
}
This configuration for an NGINX server turns on ModSecurity for

the location / and uses a ModSecurity configuration file located at
the base of the NGINX configuration.

Discussion

This section compiles NGINX from source with the ModSecurity
for NGINX. It's advised when compiling NGINX from source to
always check that youre using the latest stable packages available.
With the preceding example, you can use the open source version of
NGINX along with ModSecurity to build your own open source web
application firewall.

Also See

ModSecurity Source
Updated and maintained ModSecurity Rules from SpiderLabs

9.3 Installing ModSecurity from Source for a Web Application Firewall | 39

https://github.com/SpiderLabs/ModSecurity
http://bit.ly/2eJYuAx

CHAPTER 10
Practical Security Tips

10.0 Introduction

Security is done in layers, and much like an onion, there must be
multiple layers to your security model for it to be truly hardened. In
this installment, we've gone through many different ways to secure
your web applications with NGINX and NGINX Plus. Many of these
security methods can be used in conjunction to help harden secu-
rity. The following are a few more practical security tips to ensure
your users are using HTTPS and to tell NGINX to satisfy one or
more security methods.

10.1 HTTPS Redirects

Problem
You need to redirect unencrypted requests to HTTPS.

Solution
Use a rewrite to send all HTTP traffic to HTTPS:

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;
return 301 https://$host$request_uri;

M

This configuration listens on port 80 as the default server for both
IPv4 and IPv6 and for any host name. The return statement returns
a 301 permanent redirect to the HT'TPS server at the same host and
request URIL.

Discussion

It's important to always redirect to HT'TPS where appropriate. You
may find that you do not need to redirect all requests but only those
with sensitive information being passed between client and server.
In that case, you may want to put the return statement in particular
locations only, such as /login.

10.2 Redirecting to HTTPS Where SSL/TLS Is
Terminated Before NGINX

Problem

You need to redirect to HTTPS, however, you've terminated
SSL/TLS at a layer before NGINX.

Solution

Use the standard HTTP_X_Forwarded_Proto header to determine if
you need to redirect:

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;
if (Shttp_x_forwarded_proto = 'http') {

return 301 https://Shost$request_urti;

}

}

This configuration is very much like HTTPS redirects. However, in
this configuration were only redirecting if the header X_Forwar
ded_Proto is equal to HTTP.

Discussion

It's a common use case that you may terminate SSL/TLS in a layer in
front of NGINX. One reason you may do something like this is to
save cost on compute costs. However, you need to make sure that

42 | Chapter10: Practical Security Tips

every request is HT'TPS, but the layer terminating SSL/TLS does not
have the ability to redirect. It can, however, set proxy headers. This
configuration works with layers such as the Amazon Web Services
Elastic Load Balancer, which will offload SSL/TLS at no additional
costs. This is a handy trick to make sure that your HTTP traffic is
secured.

10.3 Satisfying Any Number of Security
Methods

Problem

You need to provide multiple ways to pass security to a closed site.

Solution

Use the satisfy directive to instruct NGINX that you want to sat-
isfy any or all of the security methods used:

location / {
satisfy any;

allow 192.168.1.0/24;
deny all;

auth_basic "closed site";
auth_basic_user_file conf/htpasswd;
}

This configuration tells NGINX that the user requesting the loca
tion / needs to satisfy one of the security methods: either the
request needs to originate from the 192.168.1.0/24 CIDR block or be
able to supply a username and password that can be found in the
conf/htpasswd file. The satisfy directive takes one of two options:
any or all.

Discussion

The satisfy directive is a great way to offer multiple ways to
authenticate to your web application. By specifying any to the sat
isfy directive, the user must meet one of the security challenges. By
specifying all to the satisfy directive, the user must meet all of the
security challenges. This directive can be used in conjunction with
the http_access_module detailed in Chapter 1, the

10.3 Satisfying Any Number of Security Methods | 43

http_auth_basic_module detailed in Chapter 4, the
http_auth_request_module detailed in Chapter 5, and the
http_auth_jwt_module detailed in Chapter 7. Security is only truly
secure if it's done in multiple layers. The satisfy directive will help
you achieve this for locations and servers that require deep security
rules.

44 | Chapter 10: Practical Security Tips

About the Author

Derek DeJonghe has had a lifelong passion for technology. His
background and experience in web development, system adminis-
tration, and networking give him a well-rounded understanding of
modern web architecture. Derek leads a team of site reliability engi-
neers and produces self-healing, auto-scaling infrastructure for
numerous applications. He specializes in Linux cloud environments.
While designing, building, and maintaining highly available applica-
tions for clients, he consults for larger organizations as they embark
on their journey to the cloud. Derek and his team are on the fore-
front of a technology tidal wave and are engineering cloud best
practices every day. With a proven track record for resilient cloud
architecture, Derek helps RightBrain Networks be one of the stron-
gest cloud consulting agencies and managed service providers in
partnership with AWS today.

	Cover
	NGINX
	Copyright
	Table of Contents
	Foreword
	Introduction
	Chapter 1. Controlling Access
	1.0 Introduction
	1.1 Access Based on IP Address
	Problem
	Solution
	Discussion

	1.2 Allowing Cross-Origin Resource Sharing
	Problem
	Solution
	Discussion

	Chapter 2. Limiting Use
	2.0 Introduction
	2.1 Limiting Connections
	Problem
	Solution
	Discussion

	2.2 Limiting Rate
	Problem
	Solution
	Discussion

	2.3 Limiting Bandwidth
	Problem
	Solution
	Discussion

	Chapter 3. Encrypting
	3.0 Introduction
	3.1 Client-Side Encryption
	Problem
	Solution
	Discussion

	3.2 Upstream Encryption
	Problem
	Solution
	Discussion

	Chapter 4. HTTP Basic Authentication
	4.0 Introduction
	4.1 Creating a User File
	Problem
	Solution
	Discussion

	4.2 Using Basic Authentication
	Problem
	Solution
	Discussion

	Chapter 5. HTTP Authentication Subrequests
	5.0 Introduction
	5.1 Authentication Subrequests
	Problem
	Solution
	Discussion

	Chapter 6. Secure Links
	6.0 Introduction
	6.1 Securing a Location
	Problem
	Solution
	Discussion

	6.2 Generating a Secure Link with a Secret
	Problem
	Solution
	Discussion

	6.3 Securing a Location with an Expire Date
	Problem
	Solution
	Discussion

	6.4 Generating an Expiring Link
	Problem
	Solution
	Discussion

	Chapter 7. API Authentication Using JWT
	7.0 Introduction
	7.1 Validating JWTs
	Problem
	Solution
	Discussion
	Also See

	7.2 Creating JSON Web Keys
	Problem
	Solution
	Discussion
	Also See

	Chapter 8. OpenId Connect Single Sign On
	8.0 Introduction
	8.1 Authenticate Users via Existing OpenId Connect Single Sign-On (SSO)
	Problem
	Solution
	Discussion
	Also See

	8.2 Obtaining JSON Web Key from Google
	Problem
	Solution
	Discussion
	Also See

	Chapter 9. ModSecurity Web Application Firewall
	9.0 Introduction
	9.1 Installing ModSecurity for NGINX Plus
	Problem
	Solution
	Discussion

	9.2 Configuring ModSecurity in NGINX Plus
	Problem
	Solution
	Discussion
	Also See

	9.3 Installing ModSecurity from Source for a Web Application Firewall
	Problem
	Solution
	Discussion
	Also See

	Chapter 10. Practical Security Tips
	10.0 Introduction
	10.1 HTTPS Redirects
	Problem
	Solution
	Discussion

	10.2 Redirecting to HTTPS Where SSL/TLS Is Terminated Before NGINX
	Problem
	Solution
	Discussion

	10.3 Satisfying Any Number of Security Methods
	Problem
	Solution
	Discussion

	About the Author

