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Preface

As someone interested in modern software design, you have heard
of service mesh architectures primarily in the context of microservi‐
ces. Service meshes introduce a new layer into modern infrastruc‐
tures, offering the potential for creating and running robust and
scalable applications while exercising granular control over them. Is
a service mesh right for you? This report will help answer common
questions on service mesh architectures through the lens of a large
enterprise. It also addresses how to evaluate your organization’s
readiness, provides factors to consider when building new applica‐
tions and converting existing applications to best take advantage of a
service mesh, and offers insight on deployment architectures used to
get you there.

What You Will Learn
• What is a service mesh and why do I need one?

— What are the different service meshes, and how do they con‐
trast?

• Where do services meshes layer in with other technologies?
• When and why should I adopt a service mesh?

— What are popular deployment models and why?
— What are practical steps to adopt a service mesh in my enter‐

prise?
— How do I fit a service mesh into my existing infrastructure?
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Who This Report Is For
The intended readers are developers, operators, architects, and
infrastructure (IT) leaders, who are faced with operational chal‐
lenges of distributed systems. Technologists need to understand the
various capabilities of and paths to service meshes so that they can
better face the decision of selecting and investing in an architecture
and deployment model to provide visibility, resiliency, traffic, and
security control of their distributed application services.

Acknowledgements
Many thanks to Dr. Girish Ranganathan (Dr. G) and the occasional
two “t”s Matt Baldwin for their many efforts to ensure the technical
correctness of this report.
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CHAPTER 1

Service Mesh Fundamentals

Why is operating microservices difficult? What is a service mesh, and
why do I need one?

Many emergent technologies build on or reincarnate prior thinking
and approaches to computing and networking paradigms. Why is
this phenomenon necessary? In the case of service meshes, we’ll
blame the microservices and containers movement—the cloud-
native approach to designing scalable, independently delivered serv‐
ices. Microservices have exploded what were once internal
application communications into a mesh of service-to-service
remote procedure calls (RPCs) transported over networks. Bearing
many benefits, microservices provide democratization of language
and technology choice across independent service teams—teams
that create new features quickly as they iteratively and continuously
deliver software (typically as a service).

Operating Many Services
And, sure, the first few microservices are relatively easy to deliver
and operate—at least compared to what difficulties organizations
face the day they arrive at many microservices. Whether that
“many” is 10 or 100, the onset of a major headache is inevitable. Dif‐
ferent medicines are dispensed to alleviate microservices headaches;
use of client libraries is one notable example. Language and
framework-specific client libraries, whether preexisting or created,
are used to address distributed systems challenges in microservices
environments. It’s in these environments that many teams first con‐
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sider their path to a service mesh. The sheer volume of services that
must be managed on an individual, distributed basis (versus cen‐
trally as with monoliths) and the challenges of ensuring reliability,
observability, and security of these services cannot be overcome
with outmoded paradigms; hence, the need to reincarnate prior
thinking and approaches. New tools and techniques must be adop‐
ted.

Given the distributed (and often ephemeral) nature of microservices
—and how central the network is to their functioning—it behooves
us to reflect on the fallacy that networks are reliable, are without
latency, have infinite bandwidth, and that communication is guaran‐
teed. When you consider how critical the ability to control and
secure service communication is to distributed systems that rely on
network calls with each and every transaction, each and every time
an application is invoked, you begin to understand that you are
under tooled and why running more than a few microservices on a
network topology that is in constant flux is so difficult. In the age of
microservices, a new layer of tooling for the caretaking of services is
needed—a service mesh is needed.

What Is a Service Mesh?
Service meshes provide policy-based networking for microservices
describing desired behavior of the network in the face of constantly
changing conditions and network topology. At their core, service
meshes provide a developer-driven, services-first network; a net‐
work that is primarily concerned with alleviating application devel‐
opers from building network concerns (e.g., resiliency) into their
application code; a network that empowers operators with the ability
to declaratively define network behavior, node identity, and traffic
flow through policy.

Value derived from the layer of tooling that service meshes provide
is most evident in the land of microservices. The more services, the
more value derived from the mesh. In subsequent chapters, I show
how service meshes provide value outside of the use of microservi‐
ces and containers and help modernize existing services (running
on virtual or bare metal servers) as well.

2 | Chapter 1: Service Mesh Fundamentals
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Architecture and Components
Although there are a few variants, service mesh architectures com‐
monly comprise two planes: a control plane and data plane. The con‐
cept of these two planes immediately resonate with network
engineers by the analogous way in which physical networks (and
their equipment) are designed and managed. Network engineers
have long been trained on divisions of concern by planes as shown in
Figure 1-1.

The physical networking data plane (also known as the forwarding
plane) contains application traffic generated by hosts, clients,
servers, and applications that use the network as transport. Thus,
data-plane traffic should never have source or destination IP
addresses that belong to any network elements such as routers and
switches; rather, they should be sourced from and destined to end
devices such as PCs and servers. Routers and switches use hardware
chips—application-specific integrated circuits (ASICs)—to opti‐
mally forward data-plane traffic as quickly as possible.

Figure 1-1. Physical networking versus software-defined networking
planes

Let’s contrast physical networking planes and network topologies
with those of service meshes.

What Is a Service Mesh? | 3



Physical network planes
The physical networking control plane operates as the logical entity
associated with router processes and functions used to create and
maintain necessary intelligence about the state of the network (top‐
ology) and a router’s interfaces. The control plane includes network
protocols, such as routing, signaling, and link-state protocols that
are used to build and maintain the operational state of the network
and provide IP connectivity between IP hosts.

The physical networking management plane is the logical entity that
describes the traffic used to access, manage, and monitor all of the
network elements. The management plane supports all required
provisioning, maintenance, and monitoring functions for the net‐
work. Although network traffic in the control plane is handled in-
band with all other data-plane traffic, management-plane traffic is
capable of being carried via a separate out-of-band (OOB) manage‐
ment network to provide separate reachability in the event that the
primary in-band IP path is not available (and create a security
boundary).

Physical networking control and data planes are tightly coupled and
generally vendor provided as a proprietary integration of hardware
and firmware. Software-defined networking (SDN) has done much
to insert standards and decouple. We’ll see that control and data
planes of service meshes are not necessarily tightly coupled.

Physical network topologies
Common physical networking topologies include star, spoke-and-
hub, tree (also called hierarchical), and mesh. As depicted in
Figure 1-2, nodes in mesh networks connect directly and nonhier‐
archically such that each node is connected to an arbitrary number
(usually as many as possible or as needed dynamically) of neighbor
nodes so that there is at least one path from a given node to any
other node to efficiently route data.

When I designed mesh networks as an engineer at Cisco, I did so to
create fully interconnected, wireless networks. Wireless is the can‐
onical use case for mesh networks for which the networking
medium is readily susceptible to line-of-sight, weather-induced, or
other disruption, and, therefore, for which reliability is of para‐
mount concern. Mesh networks generally self-configure, enabling
dynamic distribution of workloads. This ability is particularly key to

4 | Chapter 1: Service Mesh Fundamentals



both mitigate risk of failure (improve resiliency) and to react to con‐
tinuously changing topologies. It’s readily apparent why this net‐
work topology is the design of choice for service mesh architectures.

Figure 1-2. Mesh topology—fully connected network nodes

Service mesh network planes
Again, service mesh architectures typically employ data and control
planes (see Figure 1-3). Service meshes typically consolidate the
analogous physical network control and management planes into
the control plane, leaving some observability aspects of the manage‐
ment plane as integration points to external monitoring tools. As in
physical networking, service mesh data planes handle the actual
inspection, transiting, and routing of network traffic, whereas the
control plane sits out-of-band providing a central point of manage‐
ment and backend/underlying infrastructure integration. Depend‐
ing upon which architecture you use, both planes might or might
not be deployed.

A service mesh data plane (otherwise known as the proxying layer)
intercepts every packet in the request and is responsible for health
checking, routing, load balancing, authentication, authorization, and
generation of observable signals. Service proxies are transparently
inserted, and as applications make service-to-service calls, applica‐
tions are unaware of the data plane’s existence. Data planes are
responsible for intracluster communication as well as inbound
(ingress) and outbound (egress) cluster network traffic. Whether
traffic is entering the mesh (ingressing) or leaving the mesh (egress‐
ing), application service traffic is directed first to the service proxy

What Is a Service Mesh? | 5



for handling. In Istio’s case, traffic is transparently intercepted using
iptables rules and redirected to the service proxy.

Figure 1-3. An example of service mesh architecture. In Conduit’s
architecture, control and data planes divide in-band and out-of-band
responsibility for service traffic

A service mesh control plane is called for when the number of prox‐
ies becomes unwieldy or when a single point of visibility and control
is required. Control planes provide policy and configuration for
services in the mesh, taking a set of isolated, stateless proxies and
turning them into a service mesh. Control planes do not directly
touch any network packets in the mesh. They operate out-of-band.
Control planes typically have a command-line interface (CLI) and
user interface with which to interact, each of which provides access
to a centralized API for holistically controlling proxy behavior. You
can automate changes to the control plane configuration through its
APIs (e.g., by a continuous integration/continuous deployment
pipeline), where, in practice, configuration is most often version
controlled and updated.

6 | Chapter 1: Service Mesh Fundamentals



Proxies are generally considered stateless, but this is a
thought-provoking concept. In the way in which prox‐
ies are generally informed by the control plane of the
presence of services, mesh topology updates, traffic
and authorization policy, and so on, proxies cache the
state of the mesh but aren’t regarded as the source of
truth for the state of the mesh.

Reflecting on Linkerd (pronounced “linker-dee”) and Istio as two
popular open source service meshes, we find examples of how the
data and control planes are packaged and deployed. In terms of
packaging, Linkerd contains both its proxying components (link
erd) and its control plane (namerd) packaged together simply as
“Linkerd,” and Istio brings a collection of control-plane components
(Mixer, Pilot, and Citadel) to pair by default with Envoy (a data
plane) packaged together as “Istio.” Envoy is often labeled a service
mesh, inappropriately so, because it takes packaging with a control
plane (we cover a few projects that have done so) to form a service
mesh. Popular as it is, Envoy is often found deployed more simply
standalone as an API or ingress gateway.

In terms of control-plane deployment, using Kubernetes as the
example infrastructure, control planes are typically deployed in a
separate “system” namespace. In terms of data-plane deployment,
some service meshes, like Conduit, have proxies that are created as
part of the project and are not designed to be configured by hand,
but are instead designed for their behavior to be entirely driven by
the control plane. Although other service meshes, like Istio, choose
not to develop their own proxy; instead, they ingest and use inde‐
pendent proxies (separate projects), which, as a result, facilitates
choice of proxy and its deployment outside of the mesh (stand‐
alone).

Why Do I Need One?
At this point, you might be thinking, “I have a container orchestra‐
tor. Why do I need another infrastructure layer?” With microservi‐
ces and containers mainstreaming, container orchestrators provide
much of what the cluster (nodes and containers) need. Necessarily
so, the core focus of container orchestrators is scheduling, discovery,
and health, focused primarily at an infrastructure level (Layer 4 and
below, if you will). Consequently, microservices are left with unmet,
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service-level needs. A service mesh is a dedicated infrastructure
layer for making service-to-service communication safe, fast, and
reliable, often relying on a container orchestrator or integration with
another service discovery system for operation. Service meshes
often deploy as a separate layer atop container orchestrators but do
not require one in that control and data-plane components may be
deployed independent of containerized infrastructure. As you’ll see
in Chapter 3, a node agent (including service proxy) as the data-
plane component is often deployed in non-container environments.

As noted, in microservices deployments, the network is directly and
critically involved in every transaction, every invocation of business
logic, and every request made to the application. Network reliability
and latency are at the forefront of concerns for modern, cloud-
native applications. A given cloud-native application might be com‐
posed of hundreds of microservices, each of which might have many
instances and each of those ephemeral instances rescheduled as and
when necessary by a container orchestrator.

Understanding the network’s criticality, what would you want out of
a network that connects your microservices? You want your net‐
work to be as intelligent and resilient as possible. You want your net‐
work to route traffic away from failures to increase the aggregate
reliability of your cluster. You want your network to avoid unwanted
overhead like high-latency routes or servers with cold caches. You
want your network to ensure that the traffic flowing between serv‐
ices is secure against trivial attack. You want your network to pro‐
vide insight by highlighting unexpected dependencies and root
causes of service communication failure. You want your network to
let you impose policies at the granularity of service behaviors, not
just at the connection level. And, you don’t want to write all this
logic into your application.

You want Layer 5 management. You want a services-first network.
You want a service mesh.

Value of a Service Mesh
Service meshes provide visibility, resiliency, traffic, and security con‐
trol of distributed application services. Much value is promised here,
particularly to the extent that much is begotten without the need to
change your application code (or much of it).

8 | Chapter 1: Service Mesh Fundamentals



Observability
Many organizations are initially attracted to the uniform observabil‐
ity that service meshes provide. No complex system is ever fully
healthy. Service-level telemetry illuminates where your system is
behaving sickly, illuminating difficult-to-answer questions like why
your requests are slow to respond. Identifying when a specific ser‐
vice is down is relatively easy, but identifying where it’s slow and
why, is another matter.

From the application’s vantage point, service meshes largely provide
black-box monitoring (observing a system from the outside) of
service-to-service communication, leaving white-box monitoring
(observing a system from the inside—reporting measurements from
inside-out) of an application as the responsibility of the microser‐
vice. Proxies that comprise the data plane are well-positioned (trans‐
parently, in-band) to generate metrics, logs, and traces, providing
uniform and thorough observability throughout the mesh as a
whole, as seen in Figure 1-4.

Figure 1-4. Istio’s Mixer is capable of collecting multiple telemetric sig‐
nals and sending those signals to backend monitoring, authentication,
and quota systems via adapters

You are probably accustomed to having individual monitoring solu‐
tions for distributed tracing, logging, security, access control, and so

Why Do I Need One? | 9



on. Service meshes centralize and assist in solving these observabil‐
ity challenges by providing the following:

Logging
Logs are used to baseline visibility for access requests to your
entire fleet of services. Figure 1-5 illustrates how telemetry
transmitted through service mesh logs include source and desti‐
nation, request protocol, endpoint (URL), associated response
code, and response time and size.

Figure 1-5. Request logs generated by Istio and sent to Papertrail™. (©
2018 SolarWinds Worldwide, LLC. All rights reserved.)

Metrics
Metrics are used to remove dependency and reliance on the
development process to instrument code to emit metrics. When
metrics are ubiquitous across your cluster, they unlock new
insights. Consistent metrics enables automation for things like
autoscaling, as an example. Example telemetry emitted by ser‐
vice mesh metrics include global request volume, global success
rate, individual service responses by version, source and time, as
shown in Figure 1-6.

Tracing
Without tracing, slow services (versus services that simply fail)
are most difficult to debug. Imagine manual enumeration of all
of your service dependencies being tracked in a spreadsheet.
Traces are used to visualize dependencies, request volumes, and
failure rates. Imagine manual enumeration of all of your depen‐
dencies being tracked in a spreadsheet. With automatically gen‐
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erated span identifiers, service meshes make integrating tracing
functionality almost effortless. Individual services in the mesh
still need to forward context headers, but that’s it. In contrast,
many application performance management (APM) solutions
require manual instrumentation to get traces out of your serv‐
ices. Later, you’ll see that in the sidecar proxy deployment
model, sidecars are ideally positioned to trace the flow of
requests across services.

Figure 1-6. Request metrics generated by Istio and sent to AppOptics™
(© 2018 SolarWinds Worldwide, LLC. All rights reserved.)

Traffic control
Service meshes provide granular, declarative control over network
traffic to determine where a request is routed to perform canary
release, for example. Resiliency features typically include circuit
breaking, latency-aware load balancing, eventually consistent service
discovery, retries, timeouts, and deadlines.

Timeouts provide cancellation of service requests when a request
doesn’t return to the client within a predefined time. Timeouts limit
the amount of time spent on any individual request, commonly
enforced at a point in time after which a response is considered
invalid or too long for a client (user) to wait. Deadlines are an
advanced service mesh feature in that they facilitate the feature-level
timeouts (a collection of requests) rather than independent service
timeouts, helping to avoid retry storms. Deadlines deduct time left
to handle a request at each step, propagating elapsed time with each
downstream service call as the request travels through the mesh.

Why Do I Need One? | 11



Timeouts and deadlines, illustrated in Figure 1-7, can be considered
as enforcers of your Service-Level Objectives (SLOs).

When a service times-out or is unsuccessfully returned, you might
choose to retry the request. Simple retries bear the risk of making
things worse by retrying the same call to a service that is already
under water (retry three times = 300% more service load). Retry
budgets (aka maximum retries), however, provide the benefit of mul‐
tiple tries but with a limit so as to not overload what is already a
load-challenged service. Some service meshes take the elimination
of client contention further by introducing jitter and an exponential
back-off algorithm in the calculation of timing the next retry
attempt.

Figure 1-7. Deadlines, not ubiquitously supported by different service
meshes, set feature-level timeouts

Instead of retrying and adding more load to the service, you might
elect to fail fast and disconnect the service, disallowing calls to it.
Circuit breaking provides configurable timeouts (failure thresholds)
to ensure safe maximums and facilitate graceful failure commonly
for slow-responding services. Using a service mesh as a separate
layer to implement circuit breaking avoids undue overhead on
applications (services) at a time when they are already oversubscri‐
bed.

Rate limiting (throttling) is used to ensure stability of a service so
that when one client causes a spike in requests, the service continues
to run smoothly for other clients. Rate limits are usually measured
over a period of time, but you can use different algorithms (fixed or
sliding window, sliding log, etc.). Rate limits are typically operation‐
ally focused on ensuring that your services aren’t oversubscribed.
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When a limit is reached, well-implemented services commonly
adhere to IETF RFC 6585, sending 429 Too Many Requests as the
response code, including headers, such as the following, describing
the request limit, number of requests remaining, and amount of
time remaining until the request counter is reset:

X-RateLimit-Limit: 60
X-RateLimit-Remaining: 0
X-RateLimit-Reset: 1372016266

Rate limiting protects your services from overuse by limiting how
often a client (most often mapped to a user access token) can call
your service(s), and provides operational resiliency (e.g., service A
can handle only 500 requests per second).

Subtlety distinguished is quota management (or conditional rate lim‐
iting) that is primarily used for accounting of requests based on
business requirements as opposed to limiting rates based on opera‐
tional concerns. It can be difficult to distinguish between rate limit‐
ing and quota management, given that these two features can be
implemented by the same service mesh capability but presented dif‐
ferently to users.

The canonical example of a quota management is to configure a pol‐
icy setting a threshold for the number of client requests allowed to a
service over the course of time, like user Lee is subscribed to the
Free service plan and allowed only 10 requests per day. Quota policy
enforces consumption limits on services by maintaining a dis‐
tributed counter that tallies incoming requests often using an in-
memory datastore like Redis. Conditional rate limits are a powerful
service mesh capability when implemented based on a user-defined
set of arbitrary attributes.

Conditional Rate Limiting Example: Implementing
Class of Service

In this example, let’s consider a “temperature-check” service that
provides a readout of the current temperature for a given geo‐
graphic area, updated on one-minute intervals. The service pro‐
vides two different experiences to clients when interacting with its
API: an unentitled (free account) experience, and an entitled (pay‐
ing account) experience like so:
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• If the request on the temperature-check service is unauthenti‐
cated, the service limits responses to a given requester (client)
to one request every 600 seconds. Any unauthenticated user is
restricted to receiving an updated result at 10-minute intervals
to spare the temperature-check service’s resources and provide
paying users with a premium experience.

• Authenticated users (perhaps, those providing a valid authenti‐
cation token in the request) are those who have active service
subscriptions (paying customers) and therefore are entitled to
up-to-the-minute updates on the temperate-check service’s
data (authenticated requests to the temperature-check service
are not rate limited).

In this example, through conditional rate limiting, the service mesh
is providing a separate class of service to paying and nonpaying cli‐
ents of the temperature-check service. There are many ways in
which class of service can be provided by the service mesh (e.g.,
authenticated requests are sent to a separate service, “temperature-
check-premium”).

Generally expressed as rules within a collection of policies, traffic
control behavior is defined in the control plane and pushed as con‐
figuration to the data plane. The order of operations for rule evalu‐
ation is specific to each service mesh, but it is often evaluated from
top to bottom.

Security
Most service meshes provide a certificate authority to manage keys
and certificates for securing service-to-service communication. Cer‐
tificates are generated per service and provided unique identity of
that service. When sidecar proxies are used (discussed later in Chap‐
ter 3, they take on the identity of the service and perform life-cycle
management of certificates (generation, distribution, refresh, and
revocation) on behalf of the service. In sidecar proxy deployments,
you’ll typically find that local TCP connections are established
between the service and sidecar proxy, whereas mutual Transport
Layer Security (mTLS) connections are established between proxies,
as demonstrated in Figure 1-8.

Encrypting traffic internal to your application is an important secu‐
rity consideration. No longer are your application’s service calls kept
inside a single monolith via localhost; they are exposed over the net‐
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work. Allowing service calls without TLS on the transport is setting
yourself up for security problems. When two mesh-enabled services
communicate, they have strong cryptographic proof of their peers.
After identities are established, they are used in constructing access
control policies, determining whether a request should be serviced.
Depending on the service mesh used, policy controls configuration
of the key management system (e.g., certificate refresh interval) and
operational access control used to determine whether a request is
accepted. White and blacklists are used to identify approved and
unapproved connection requests as well as more granular access
control factors like time of day.

Figure 1-8. An example of service mesh architecture. Secure communi‐
cation paths in Istio

Delay and fault injection
The notion that your systems will fail must be embraced. Why not
preemptively inject failure and verify behavior? Given that proxies
sit in line to service traffic, they often support protocol-specific fault
injection, allowing configuration of the percentage of requests that
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should be subjected to faults or network delay. For instance, generat‐
ing HTTP 500 errors helps to verify the robustness of your dis‐
tributed application in terms of how it behaves in response.

Injecting latency into requests without a service mesh can be a tedi‐
ous task but is probably a more common issue faced during opera‐
tion of an application. Slow responses that result in an HTTP 503
after a minute of waiting leaves users much more frustrated than a
503 after six seconds. Arguably, the best part of these resilience test‐
ing capabilities is that no application code needs to change in order
to facilitate these tests. Results of the tests, on the other hand, might
well have you changing application code.

Using a service mesh, developers invest much less in writing code to
deal with infrastructure concerns—code that might be on a path to
being commoditized by service meshes. The separation of service
and session-layer concerns from application code manifests in the
form of a phenomenon I refer to as a decoupling at Layer 5.

Decoupling at Layer 5
Service meshes help you to avoid bloated service code, fat on infra‐
structure concerns.

Duplicative work is avoided in making services production-ready by
way of singularly addressing load balancing, autoscaling, rate limit‐
ing, traffic routing, and so on. Teams avoid inconsistency of imple‐
mentation across different services to the extent that the same set of
central control is provided for retries and budgets, failover, dead‐
lines, cancellation, and so forth. Implementations done in silos lead
to fragmented, non-uniform policy application and difficult debug‐
ging.

Service meshes insert a dedicated infrastructure layer between dev
and ops, separating what are common concerns of service commu‐
nication by providing independent control over them. The service
mesh is a networking model that sits at a layer of abstraction above
TCP/IP. Without a service mesh, operators are still tied to develop‐
ers for many concerns as they need new application builds to con‐
trol network traffic, shaping, affecting access control, and which
services talk to downstream services. The decoupling of dev and ops
is key to providing autonomous independent iteration.
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Decoupling is an important trend in the industry. If you have a sig‐
nificant number of services, you nearly certainly have both of these
two roles: developers and operators. Just as microservices is a trend
in the industry for allowing teams to independently iterate, so do
service meshes allow teams to decouple and iterate faster. Technical
reasons for having to coordinate between teams dissolves in many
circumstances, like the following:

• Operators don’t necessarily need to involve Developers to
change how many times a service should retry before timing
out.

• Customer Success teams can handle the revocation of client
access without involving Operators.

• Product Owners can use quota management to enforce price
plan limitations for quantity-based consumption of particular
services.

• Developers can redirect their internal stakeholders to a canary
with beta functionality without involving Operators.

Microservices decouple functional responsibilities within an appli‐
cation from one another, allowing development teams to independ‐
ently iterate and move forward. Figure 1-9 shows that in the same
fashion, service meshes decouple functional responsibilities of
instrumentation and operating services from developers and opera‐
tors, providing an independent point of control and centralization
of responsibility.

Figure 1-9. Decoupling as a way of increasing velocity

Even though service meshes facilitate a separation of concerns, both
developers and operators should understand the details of the mesh.
The more everyone understands, the better. Operators can obtain
uniform metrics and traces from running applications involving
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diverse language frameworks without relying on developers to man‐
ually instrument their applications. Developers tend to consider the
network as a dumb transport layer that really doesn’t help with
service-level concerns. We need a network that operates at the same
level as the services we build and deploy.

Essentially, you can think of a service mesh as surfacing the session
layer of the OSI model as a separately addressable, first-class citizen
in your modern architecture.

Conclusion
The data plane carries the actual application request traffic between
service instances. The control plane configures the data plane, pro‐
vides a point of aggregation for telemetry, and also provides APIs for
modifying the mesh’s behavior.

Decoupling of dev and ops avoids diffusion of the responsibility of
service management, centralizing control over these concerns into a
new infrastructure layer: Layer 5.

Service meshes makes it possible for services to regain a consistent,
secure way to establish identity within a datacenter and, further‐
more, do so based on strong cryptographic primitives rather than
deployment topology.

With each deployment of a service mesh, developers are relieved of
their infrastructure concerns and can refocus on their primary task
(of creating business logic). More seasoned software engineers
might have difficulty in breaking the habit and trusting that the ser‐
vice mesh will provide, or even displacing the psychological depend‐
ency on their handy (but less capable) client library.

Many organizations find themselves in the situation of having incor‐
porated too many infrastructure concerns into application code.
Service meshes are a necessary building block when composing
production-grade microservices. The power of easily deployable ser‐
vice meshes will allow for many smaller organizations to enjoy fea‐
tures previously available only to large enterprises.
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CHAPTER 2

Contrasting Technologies

How do service meshes contrast to one another? How do service
meshes contrast to other related technologies?

You might already have a healthy understanding of API gateways,
ingress controllers, container orchestrators, client libraries, and so
on. How are these technologies related to, overlapping with, or
deployed alongside service meshes? Where do service meshes fit in?

Different Service Meshes (and Gateways)
Let’s begin by characterizing different service meshes. Some service
meshes support a variety of underlying platforms, whereas some
focus solely on layering on top of container orchestrators. All sup‐
port integration with service discovery systems. The subsections
that follow provide a brief survey of offerings within the current
technology landscape.

This list is neither exhaustive nor intended to be a
detailed comparative. See https://layer5.io/landscape for
community-maintained contrasting of service meshes
and related technologies.

Linkerd
Hosted by the Cloud Native Computing Foundation (CNCF) and
built on top of Twitter Finagle. Linkerd (pronounced “linker-dee”)
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includes both a proxying data plane and the Namerd (“namer-dee”)
control plane all in one package.

• Open source. Written primarily in Scala.
• Data plane can be deployed in a node proxy model or in a proxy

sidecar. Proven scale, having served more than one trillion ser‐
vice requests.

• Supports services running within container orchestrators and as
standalone virtual or physical machines.

• Service discovery abstractions to unite multiple systems.

Conduit
Conduit is a Kubernetes-native (only) service mesh announced as a
project in December 2017. In contrast to Istio and in learning from
Linkerd, Conduit’s design principles revolve around a minimalist
architecture and zero configuration philosophy, optimizing for
streamlined setup.

• Open Source. From Buoyant. Written in Rust and Go.
• Data plane implemented in Rust. Purports sub-1-ms p99 traffic

latency.
• Support for gRPC, HTTP/2, and HTTP/1.x requests plus all

TCP traffic.

Conduit is merging with Linkerd. Conduit 0.5.0 will be
the last major release of the project under this name.
Conduit is graduating (merging) into the Linkerd
project to become the basis of Linkerd 2.0.

Istio
Announced as a project in May 2017, Istio is considered to be a “sec‐
ond explosion after Kubernetes” given its architecture and surface
area of functional aspiration.

• Supports services running within container orchestrators and as
standalone virtual or physical machines.
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• Supports automatic injection of sidecars using Kubernetes
Admission controller.

• nginMesh. Launched in September 2017, the nginMesh project
deploys NGINX as a sidecar proxy in Istio.

• AspenMesh. A commercial offering built on top of Istio. Closed
source.

Envoy
A modern proxy hosted by the CNCF. Many projects have sprung
up to use Envoy, including Istio.

• Rotor. A control plane that provides service discovery (EC2,
ECS, Kubernetes, DC/OS, Consul, and JSON/YAML files) and a
log sink.

• Houston. A control plane for Envoy that provides management
for use cases like application routing and releasing. Closed
source. From Turbine Labs.
— Houston provides service discovery integrations with Kuber‐

netes, AWS, ECS, DC/OS, and Consul.
• Ambassador. An API gateway for microservices functioning as

a Kubernetes Ingress Controller. Open Source. From Datawire.
Primarily written in Python.

• Contour. A reverse proxy and load balancer deployed as a
Kubernetes Ingress Controller.
— Open Source. From Heptio. Written in Go.

• Consul Connect. Connect is a major new feature in Consul that
provides secure service-to-service communication with auto‐
matic TLS encryption and identity-based authorization.
— Open source. From HashiCorp. Primarily written in Go.

• Mesher. Layer 7 (L7) proxy that runs as a sidecar deployable on
Huawei Cloud Service Engine.
— Open source. Written primarily in Go. From Huawei.

Following are a couple of early service mesh–like projects, forming
control planes around existing load-balancers:
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SmartStack
Comprising two components: Nerve for health-checking and
Synapse for service discovery. Open source. From AirBnB.
Written in Ruby.

Nelson
Takes advantage of integrations with Envoy, Prometheus, Vault,
and Nomad to provide Git-centric, developer-driven deploy‐
ments with automated build-and-release workflow. Open
source. From Verizon Labs. Written in Scala.

Service Mesh Linguistics
As the lingua franca of the cloud-native ecosystem, Go is certainly
prevalent and you might expect most service mesh projects to be
written in Go. By the nature of their task, data planes must be
highly efficient in the interception, introspection, and rewriting of
network traffic. Although Go certainly provides high performance,
there’s no denying that native code (machine code) is the Holy Grail
of performance. As a data-plane component, Envoy is written in
C++11 because it provides excellent performance (some say it pro‐
vides a great developer experience). As an emerging language (and
something of a C++ competitor), Rust has found its use within ser‐
vice meshes. Because of its properties around efficiency (outper‐
forming Go) and memory safety (when written to be so) without
garbage collection, Rust has been used for Conduit’s data plane
component and for nginMesh’s Mixer module (see “Customizable
Sidecars” on page 45).

Container Orchestrators
Why is my container orchestrator not enough? What if I’m not using
containers?

What do you need to continuously deliver and operate microservi‐
ces? Leaving Continuous Integration (CI) and their deployment
pipelines aside for the moment, you need much of what the con‐
tainer orchestrator provides at an infrastructure level and what it
doesn’t at a services level. Table 2-1 takes a look at these capabilities.
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Table 2-1. Container orchestration capabilities and focus versus service-
level needs

Core capabilities Missing service-level needs

• Cluster management*

— Host discovery

— Host health monitoring

• Scheduling*

• Orchestrator updates and host maintenance

• Service discovery

• Networking and load balancing

• Stateful services

• Multitenant, multiregion

Additional key capabilities

• Simple application health and performance monitoring

• Application deployments

• Application secrets

• Circuit breaking

• L7 granular traffic routing

— HTTP redirects

— CORS handling

• Chaos testing

• Canary deploys

• Timeouts, retries, budgets, deadlines

• Per-request routing

• Backpressure

• Transport security (encryption)

• Identity and access control

• Quota management

• Protocol translation (REST, GRPC)

• Policy

* Must have this to be considered a container orchestrator

Service meshes are a dedicated layer for managing service-to-service
communication, whereas container orchestrators have necessarily
had their start and focus on automating containerized infrastruc‐
ture, overcoming ephemeral infrastructure and distributed systems
problems. Applications are why we run infrastructure, though.
Applications have been and are still the North Star of our focus.
There are enough service and application-level concerns that addi‐
tional platforms/management layers are needed.

Container orchestrators like Kubernetes have different mechanisms
for routing traffic into the cluster. Ingress Controllers in Kubernetes
expose the services to networks external to the cluster. Ingresses can
terminate Secure Sockets Layer (SSL) connections, execute rewrite
rules, and support WebSockets and sometimes TCP/UDP, but they
don’t address the rest of service-level needs.

API gateways address some of these needs and are commonly
deployed on a container orchestrator as an edge proxy. Edge proxies
provide services with Layer 4 (L4) to L7 management, while using
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the container orchestrator for reliability, availability, and scalability
of container infrastructure. Let’s consider API gateways in greater
detail.

API Gateways
How do API gateways interplay with service meshes?

This is a very common question, the nuanced answer to which puz‐
zles many, particularly given that within the category of API gate‐
ways lies a sub-spectrum. API gateways come in a few forms:

• Traditional (e.g., Kong)
• Cloud-hosted (e.g., Azure Load Balancer)
• L7 proxy used as an API gateway and microservices API gate‐

ways (e.g., Traefik, NGINX, HAProxy, or Envoy)

L7 proxies used as API gateways generally can be represented by a
collection of microservices-oriented, open source projects, which
have taken the approach of wrapping existing L7 proxies with addi‐
tional features needed for an API gateway.

NGINX
As a stable, efficient, ubiquitous L7 proxy, NGINX is commonly
found at the core of API gateways. It may be used on its own or
wrapped with additional features to facilitate container orchestrator
native integration or additional self-service functionality for devel‐
opers. Examples of this include:

• Ambassador uses Envoy
• APIUmbrella uses NGINX
• Kong uses NGINX
• OpenResty uses NGINX

Additional differences between traditional API gateways and micro‐
services API gateways revolve around which team is using the gate‐
way: operators or developers (service owners). Operators tend to
focus on measuring API calls per consumer to meter and disallow
API calls when a consumer exceeds its quota. On the other hand,
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developers tend to measure L7 latency, throughput, and resilience,
limiting API calls when service is not responding.

With respect to service meshes, one of the more notable lines of
delineation is that API gateways, in general, are designed for accept‐
ing traffic from outside of your organization/network and distribut‐
ing it internally. API gateways expose your services as managed
APIs, focused on transiting north/south traffic (in and out of the
service mesh). They aren’t as well suited for traffic management
within the service mesh (east/west) necessarily, because they require
traffic to travel through a central proxy and add a network hop. Ser‐
vice meshes are designed foremost to manage east/west traffic inter‐
nal to the service mesh.

Given their complementary nature, API gateways and service
meshes are often found deployed in combination. API gateways
marry-up against other components of the API management ecosys‐
tem, such as API marketplace and API publishing portal.

API Management
API management solutions handle this as well as analytics, business
data, adjunct provider services, and implementation of versioning
control. Many of the API management vendors have moved API
management systems to a single point of architecture, designing
their API gateways to be implemented at the edge.

At the API management level, you can either use built-in interser‐
vice communication capabilities of the API gateway or an API gate‐
way can call downstream services via service mesh by offloading
application network functions to the service mesh.

API management capabilities distinct from that of a service mesh
are oriented toward developer engagement in the following ways:

• Developers use a portal to self-serve:
— Discover what APIs are available
— API documentation and discovery
— Developer notification (when the version of the API

changes)
— API testing/exercise code
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• API analytics:
— API/KPI
— Generating reports; capturing and sharing metrics
— Usage trends/adoption trending

• API life-cycle management:
— Secure (allocate API keys to it)
— Promote or demote API

• Monetization:
— Tracking payment plans
— Enforcing quotas

Today, there’s overlap and underlap between service mesh capabili‐
ties and API gateways and API management systems. As service
meshes gain new capabilities, use cases overlap more and more.

Client Libraries
Client libraries (sometimes referred to as microservices frame‐
works) became very popular as microservices took foothold in
modern application design as means to avoid rewriting the same
logic in every service. Example frameworks include the following:

Twitter Finagle
An open source remote procedure call (RPC) library built on
Netty for engineers that want a strongly-typed language and be
on the Java Virtual Machine (JVM). Finagle is written in Scala.

Netflix Hystrix
An open source latency and fault tolerance library designed to
isolate points of access to remote systems, services, and third-
party libraries; stop cascading failure; and enable resilience.
Hystrix is written in Java.

Netflix Ribbon
An open source Inter-Process Communication (RPCs) library
with built-in software load balancers. Ribbon is written in Java.

The problem with microservices frameworks is that there’s too
much infrastructure code in services, duplication of code, and
inconsistency in what frameworks provide and how they behave.
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Getting teams to update their frameworks can be an arduous pro‐
cess. When these distributed systems concerns are embedded into
your service code, you need to chase your engineers to update and
correct their libraries, of which there might be a few, used to varying
degrees. Getting a consistent and recent version deployed can take
some time. Enforcing consistency is challenging. These frameworks
couple your services with the infrastructure, as seen in Figure 2-1.

When infrastructure code is written into the application, different
services teams must get together to negotiate things like timeouts
and retries. A service mesh control plane removes this. Service
meshes are deployed as infrastructure that reside outside of your
applications.

Figure 2-1. Services architecture using client libraries coupled with
application logic

Conclusion
Container orchestrators have so many distributed systems chal‐
lenges to address within lower-layer infrastructure that they’ve yet to
holistically address services and application-level needs.
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API gateways are the technology having the most overlap in func‐
tionality, but they are deployed at the edge (often once), not on
every node or within every pod. It’s primarily in their deployment
model that API gateways and service meshes are visually viewed as
complementary.

Microservices frameworks come with their set of challenges. Service
meshes move these concerns into the service proxy and decouple
them from the application code.
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CHAPTER 3

Adoption and Evolutionary
Architectures

What are practical steps to adopt a service mesh in my enterprise?

As organizations adopt service mesh architectures, they often do so
in a piecemeal fashion, starting at the intersection of the most valua‐
ble (to them) feature and the lowest risk deployment.

Piecemeal Adoption
Desperate to gain an understanding of what’s going on in their dis‐
tributed infrastructure, many organizations seek to benefit from
auto-instrumented observability first, taking baby steps in their path
to a full service mesh after initial success and operational comfort
have been achieved. Financial organizations might seek improved
security with strong identity (per service certificates) and strong
encryption (mTLS) between each service. Others begin with an
ingress proxy as their entry to a service mesh deployment.

Consider an organization that has a thousand existing services run‐
ning on virtual machines (VMs) external to the service mesh that
have little to no service-to-service traffic. Nearly all of the traffic
flows from the client to the service and back to the client. This orga‐
nization can deploy a service mesh ingress (e.g., Istio Gateway) and
begin gaining granular traffic control (e.g., path rewrites) and
detailed service monitoring without immediately deploying a thou‐
sand sidecars.
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Figure 3-1. Simple service mesh deployment primarily using ingress
traffic control.

Not everyone needs a full service mesh or needs to start with one.

Practical Steps to Adoption
Here are two common paths:

• Wholesale adoption of a service mesh, commonly while design‐
ing a new application (a greenfield project).

• Piecemeal adoption of some components and capabilities of a
service mesh, but not others, commonly while working with an
existing application (a brownfield project).

Let’s walk through the various forms in which the second path takes
shape, because it’s the path that most will face (that is, those who
have existing services) and is the approach most organizations take.
Incremental steps are taken. When teams are comfortable with their
understanding of the deployment, operational expertise gained, and
value derived, often another step is taken toward a full mesh. Not all
teams choose to take another step given that not all aspects of a full
service mesh are valuable to teams based on their focus or current
pain points.
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Engineering maturity and skill set factors into the decision of which
applications should be built from the ground up or converted with a
new service mesh architecture. A palatable suggestion is that you
don’t have to use all of the features, just those that you need. Per‐
haps, the best approach is to mitigate risk, baby-step it, and show
incremental victories and consider that some service meshes pro‐
vide a path to partial adoption. Other service meshes are easily
deployed and digestible in one motion. Although, even when this is
the case, you might find that you enable only a portion of its capa‐
bilities.

Observability is why most organizations deploy a service mesh. Out‐
side of metrics, logs, and traces, typically you get a service depend‐
ency graph. These graphs visually identify how much traffic is
coming from one service and going to the next. Without a visual
topology or service graph, you’re likely to feel as if you’re running
blind.

Alternatively, it could be your current load balancer that is running
blind. If you’re running gRPC services, for example, and a load bal‐
ancer that is ignorant of gRPC, treating this traffic the same as any
other TCP traffic, you’ll find most service mesh proxies very helpful.
Modern service proxies will support HTTP/2 and, as such, might
provide a gRPC bridge from HTTP/1.1 to HTTP/2.

Security
Generally, people get to security last. When you finally do, you
might not want strong authentication and encryption. Although
best practice is to secure everything with strongly authenticated and
authorized services, most organizations don’t implement this, which
means that most microservices deployments have a soft center.
Many of us are content to secure the edge of our network but would
still like the observability and control from our service mesh.

Why don’t we want to take advantage of service mesh’s managed cer‐
tificate authority? It’s another thing to operate. Encryption takes
resources (CPU cycles) and injects a couple of microseconds of
latency. To this end, and to help with adoption, some service meshes
prominently present two installation scripts: one with a certificate
authority (CA) embedded and one without. Maybe you consider the
gooey center of your mesh to be secure because there is little to no
ingress/egress cluster traffic and access is provided only via VPN
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into the cluster. Depending on workload, wallet, and sensitivity to
latency, you might find that you don’t want the overhead of running
encryption between all of your services.

Maybe you are deploying monoliths, not microservices (don’t need
canary deploys), and are simply looking for authorization checks
only. You already have API management and don’t need any more
monitoring integrations. Maybe you use IP addresses (subnets) for
security—for network security zones. A service mesh can help you
get rid of network partitions and firewalling on Layer 3 (L3) bound‐
aries, using identities and encryption provided by the service mesh
combined with authorization checks enforced by policy you define.
Through policy enforcing authorizations checks across your mono‐
liths, you can flatten your internal network, making services broadly
reachable, granularly controlling which requests are authorized.

Retrofitting a Deployment
Recognize that although some greenfield projects have the luxury of
incorporating a service mesh from the start, most organizations will
have existing services (monoliths or otherwise) that they’ll need to
onboard to the mesh. Rather than a container, these services could
be running in VMs or bare-metal hosts. Service meshes help with
modernization, allowing organizations to renovate their services
inventory via the following:

• Not having to rewrite their applications
• Adapting microservices and existing services using the same

mesh architecture
• Facilitating adoption of new languages
• Facilitating moving to the cloud

Service meshes ease the insertion of facade services as a way of
breaking down monoliths for those organizations that adopt a stran‐
gler pattern of building services around the legacy monolith to
expose a more developer-friendly set of APIs.

Organizations are able to get observability (e.g., metrics, logs, and
traces) support as well as dependency or service graphs for every
one of their services (micro or not) as they adopt a service mesh.
With respect to tracing, the only change required within the service
is to forward certain HTTP headers. Service meshes are useful for
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retrofitting uniform and ubiquitous observability tracing into exist‐
ing infrastructures with the least amount of code change.

Evolutionary Architectures
Different phases of adoption provide multiple paths to service mesh
architectures.

Client Libraries
Some consider libraries to be the first service meshes. Figure 3-2
demonstrates how the use of a library requires that your architec‐
ture has application code either extending or using primitives of the
chosen library(ies). Additionally, your architecture must consider
for use language-specific frameworks and/or application servers to
run them.

Figure 3-2. Services architecture using client libraries coupled with
application logic.

Advantages:

• Resources are locally accounted for each and every service
• Self-service adoption for developers
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Disadvantages:

• Strong coupling is a significant drawback
• Non-uniform; upgrades are challenging in large environments

Figure 3-3 illustrates how service meshes further the promise that
organizations implementing microservices might finally realize the
dream of using the best frameworks and language for their individ‐
ual jobs without worrying about the availability of libraries and pat‐
terns for every single platform.

Figure 3-3. Services architecture using sidecar proxies decoupled from
application logic.
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While testing various service mesh deployments,
installing and uninstalling the mesh, do not uninstall
by deleting the control plane first. Using Istio as an
example, if you were to delete the istio-system name‐
space without applying manifests to uninstall the
mesh, this could cause you a huge amount of grief
because you might be left with a nonfunctional Kuber‐
netes cluster where kubectl times-out when commu‐
nicating with the Kubernetes API server. When Istio
isn’t cleaned up properly, especially when automatic
sidecar injection is enabled in your Kubernetes cluster,
proxies are left residual in the cluster and in an
unmanaged state.

Ingress or Edge Proxy
Start with load-balancers (or gateways) and get scalability and avail‐
ability. Strangle your monolith with a facade until you’ve slowly suf‐
focated it entirely by incrementally routing all service traffic over to
microservices that displace the monolith’s functionality.

By starting with reverse proxying at the edge (see Figure 3-4), appli‐
cations avoid the operational overhead of exposing each service via
an independent endpoint and the tight coupling of internal business
service interfaces. Starting an implementation of modern proxying
technology at the edge provides business value in the form of
improved observability, load-balancing, and dynamic routing. After
an engineering team has gained operational expertise with operating
a proxy technology at ingress, the benefits can be rolled inward
toward ultimately creating an internal service mesh.

Figure 3-4. NGINX proxy as an ingress controller in Kubernetes.
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Service meshes are also used to enforce policy about what egress
traffic is leaving your cluster. Typically, this is accomplished in one
of a couple ways:

• Registering the external services with your service mesh (so that
they can traffic-match traffic against the external destination)
and configure traffic control rules to both allow and govern
external service calls (provide timeouts on external services, for
example).

• Call external services directly without registering them with
your service mesh, but configure your mesh to allow traffic des‐
tined for external services (maybe for a specific IP range) to
bypass the service proxies.

Advantages:

• Works with existing services that can be broken down over
time.

Disadvantages:

• Is missing the benefits of service-to-service visibility and con‐
trol.

Router Mesh
Depicted in Figure 3-5, a router mesh performs service discovery
and provides load balancing for service-to-service communication.
All service-to-service communication flows through the router
mesh, which provides circuit breaking through active health checks
(measuring the response time for a service and when latency/time‐
out threshold is crossed, the circuit is broken) and retries.

Advantages:

• Good starting point for building a brand-new microservices
architecture or for migrating from a monolith.

Disadvantages:

• When the number of services increase, it becomes difficult to
manage.
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Figure 3-5. NGINX as an example router proxy deployed in Kuber‐
netes.

Proxy per Node
Replacing the router mesh with per-host service proxies brings
greater granularity of control to your services’ deployment. Using
Linkerd (1.x) as an example (Figure 3-6), in the per-host deploy‐
ment model, one Linkerd instance is deployed per host (whether
physical or virtual), and all application service instances on that host
route traffic through this instance. It’s not particularly well suited to
be deployed as a sidecar given its memory resource needs.

Figure 3-6. Proxy per node deployed using Linkerd (1.x).

Advantages:

• Less overhead (especially memory) for things that could be
shared across a node.

• Easier to scale distribution of configuration information than it
is with sidecar proxies (if you’re not using a control plane).
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• This model is useful for deployments that are primarily physical
or virtual server based. Good for large monolithic applications.

Disadvantages:

• Coarse support for encryption of service-to-service communi‐
cation, instead host-to-host encryption and authentication poli‐
cies.

• Blast radius of a proxy failure includes all applications on the
node, which is essentially equivalent to losing the node itself.

• Not a transparent entity, services must be aware of its existence.

Sidecar Proxies/Fabric Model
Although this is not a common deployment model, some organiza‐
tions arrive here and quickly move onto deploying a control plane—
a service mesh. This model, shown in Figure 3-7, is worth highlight‐
ing in so much as sidecarring is a useful pattern in general.

Figure 3-7. Proxy sidecars (fabric model) deployed in Docker Swarm.

The pattern and usefulness of sidecarring isn’t constrained to service
proxies; it is a generally applicable model of deploying components
of an application into a separate container to provide isolation and
encapsulation—to separate concerns. For example, you might
deploy a logging sidecar alongside the application container to
locally collect application logs and forward them to a centralized
syslog receiver.

Nearly all proxies support (and microservice frameworks, for that
matter) hot reloading of their configuration and hot upgrade of the

38 | Chapter 3: Adoption and Evolutionary Architectures



proxy themselves (their executable/processes). For some proxies,
however, their configuration is not able to be updated on-the-fly
without dropping active connections; instead, they need their pro‐
cess to be restarted in order to load new configurations. Given how
frequently containers might be rescheduled, this behavior is subopti‐
mal. Container orchestrators offer assistance for proxies that don’t
support hot reloading. These reloading and upgrading of these
proxies can be facilitated through traffic shifting techniques rolling
updates provide as traffic is drained and shifted from old containers
to new containers.

NGINX supports dynamic reloads and hot reloads.
Upstreams (a group of servers or services that can lis‐
ten on different ports) are dynamically reloaded
without loss of traffic. Hence, new server instances that
are attached or detached from a route can be handled
dynamically. This is the most common case in Kuber‐
netes deployments. Adding or removing new route
locations requires a hot reload that keeps the existing
workers around for as long as there is traffic passing
through them. Frequent reloads of such configurations
can exhaust the system memory in some extreme
cases. Although there is an option that can accelerate
the aging of workers, doing so will affect traffic.

As your number of sidecar proxies grow, so does the work of man‐
aging each independently. The next deployment model, sidecar, is a
natural next step that brings a great deal more functionality and
operational control to bear.

Advantages:

• Granular encryption of service-to-service communication.
• Can be gradually added to an existing cluster without central

coordination.

Disadvantages:

• Lack of central coordination. Difficult to scale operationally.
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Sidecar Proxies/Control Plane
Most service mesh projects and their deployment efforts promote
and support this deployment model foremost. In this model, you
provision a control plane (and service mesh) and get the logs and
traces out of the service proxies. A powerful aspect of a full service
mesh is that it moves away from thinking of proxies as isolated com‐
ponents and acknowledges the network they form as something val‐
uable unto itself. In essence, the control plane is what takes service
proxies and forms them into a service mesh. When you’re using the
control plane, you have a service mesh, as illustrated in Figure 3-8.

Figure 3-8. Service mesh

Service mesh implementations have evolved allowing deployment
models to evolve in concert. For example, Linkerd, created by for‐
mer Twitter engineers, built on top of Finagle and Netty to create
Linkerd.

A number of service meshes that employ the sidecar pattern (shown
in Figure 3-7) facilitate the automatic injection of sidecar proxies
not only alongside their application container at runtime, but into
existing container/deployment manifests, saving time on reworking
manifests and facilitating retrofitting of existing containerized ser‐
vice deployments.
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A convenient model for containerized service deployments, sidecars
are commonly auto-injected or done so via command-line interface
(CLI) utility. Using Kubernetes as an example, you can automatically
add sidecars to appropriate Kubernetes pods using a mutating Web‐
Hook admission controller (in this case, code that intercepts and
modifies requests to deploy a service, inserting the service proxy
prior to deployment).

Example: Injecting a Conduit Service Proxy as a Sidecar
To onboard a service to the Conduit service mesh, the pods for that
service must be redeployed to include a data-plane proxy in each
pod. The conduit inject command accomplishes this as well as
the configuration work necessary to transparently funnel traffic
from each instance through the proxy.

Conduit:

$ conduit inject deployment.yml | kubectl apply -f -

Istio:

$ kubectl apply -f <(istioctl kube-inject -f
samples/sleep/sleep.yaml)

The istioctl kube-inject operation is not idempotent and
should not be repeated on the output from a previous kube-inject.
For upgrade purposes, if you’re using manual injection, I recom‐
mend that you keep the original non-injected .yaml file so that the
data-plane sidecars can be updated.

Advantages:

• App-to-sidecar communication is easier to secure than app-to-
node proxy

• Resources consumed for a service is attributed to that service
• Blast radius of a proxy failure is limited to the sidecarred app

Disadvantages:

• Sidecar footprint—per service overhead of running a service
proxy sidecar
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Multicluster Deployments
Istio is an example of a service mesh that supports (currently with
caveats) deployment of its service mesh across Kubernetes clusters.
Multicluster deployments facilitate connection from proxies run‐
ning in multiple clusters to one Istio control plane. Proxies (Envoys)
can then communicate with the single Istio control plane and form a
mesh network across multiple Kubernetes clusters.

Expanding the Mesh
Some service meshes support onboarding external services. External
services running on infrastructure unmanaged by the mesh, like
those running on separate VMs or bare-metal servers—onto the
mesh. Most service meshes are able to talk to multiple service dis‐
covery backends, facilitating the intermingling of meshed and exter‐
nal services.

Example: Using istioctl register to Create a Service
Entry

Service entries enable adding additional entries into Istio’s internal
service registry so that autodiscovered services in the mesh can
access/route to these manually specified services. A service entry
describes the properties of a service (DNS name, VIPs, ports, proto‐
cols, endpoints). These services could be external to the mesh (e.g.,
web APIs) or mesh-internal services that are not part of the plat‐
form’s service registry (e.g., a set of VMs talking to services in
Kubernetes).

Service entries are dynamically updatable; teams can change their
endpoints at-will. Mesh-external entries represent services external
to the mesh. Rules to redirect and forward traffic, to define retry,
timeout, and fault injection policies are all supported for external
destinations.

Some caveats apply:

• Weighted (version-based) routing is not possible, however,
because there is no notion of multiple versions of an external
service.
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• mTLS authentication is disabled and policy enforcement is per‐
formed on the client-side, instead of on the usual server-side of
an internal service request.

Conclusion
In many respects, deployment of a control plane is what defines a
service mesh.

Service meshes support onboarding existing (noncontainerized)
services onto the mesh. They support mesh deployment across mul‐
tiple clusters. Both of these are areas of improvement for the service
mesh projects and products that are available today.

As technology evolves capabilities are commoditized and pushed
down the stack. Data-plane components will become mostly com‐
moditized. Standards like TCP/IP incorporated solutions to flow
control and many other problems into the network stack itself. This
means that that piece of code still exists, but it has been extracted
from your application to the underlying networking layer provided
by your operating system.

It’s commonplace to find deployments with north/south load bal‐
ancers deployed external to the cluster in addition to the ingress/
egress proxies within the service mesh.
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CHAPTER 4

Customization and Integration

How do I fit a service mesh into my existing infrastructure, operational
practices and observability tooling?

Some service meshes such as Conduit (soon to be Linkerd) are not
designed to be customized; rather, they aim to focus on out-of-the-
box functionality and ease of deployment. Istio is an example of a
service mesh designed with customizability in mind. Its extensibility
comes in two primary forms: swappable sidecar proxies and
telemetry/authorization adapters. Consul’s Connect is intended to
be displaced as needed, as well.

Customizable Sidecars
Within Istio, though Envoy is the default service proxy sidecar, you
can choose another service proxy for your sidecar. Although there
are multiple service proxies in the ecosystem, outside of Envoy, only
two have currently demonstrated integration with Istio: Linkerd and
NGINX. Conduit is not currently designed as a general-purpose
proxy; instead, it is focused on being lightweight, placing extensibil‐
ity as a secondary concern by offering extension via gRPC plug-in.
Consul uses Connect as the default proxy embedded into the same
binary. Operating at Layer 4, Connect isn’t meant to compete on fea‐
tures or performance with dedicated proxy solutions, but enables
third-party proxies to integrate to provide the data plane with Con‐
sul operating as the control plane. As a control plane, Consul inte‐
grates with many data-plane solutions including Envoy, HAProxy,
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NGINX, and exposes an API for integration with hardware load bal‐
ancers like those from F5.

Why use another service proxy?

Linkerd
Use this if you’re already running Linkerd and want to begin
adopting Istio control APIs like CheckRequest, which is used to
get a thumbs-up/thumbs-down before performing an action.

NGINX
Based on your operational expertise and need for battle-tested
proxy, you might select NGINX. You might be looking for cach‐
ing, web application firewall (WAF) or other functionality avail‐
able in NGINX Plus, as well.

Connect
You might choose to deploy Connect based on ease of deploy‐
ment and simplicity of needs.

I hear talk of Huawei’s CSE Mesher considering inte‐
grating with Istio as an alternative to Envoy, but I con‐
sider its likelihood low.

The arrival of choice in service proxies for Istio has generated a lot
of excitement. Linkerd’s integration was created early in Istio’s 0.1.6
release. Similarly, the ability to use NGINX as a service proxy
through the nginMesh project (see Figure 4-1) was provided early in
Istio release cycle.

You might find this article on how to customize an
Istio service mesh and its adjoining webcast helpful in
further understanding Istio’s extensibility with respect
to swappable service proxies.

Without configuration, proxies are without instructions to perform
their tasks. Pilot is the head of the ship in an Istio mesh, so to speak,
keeping synchronized with the underlying platform by tracking and
representing its services to istio-proxy. istio-proxy contains the
proxy of choice (e.g. Envoy). Typically, the same istio-proxy
Docker image is used by Istio sidecar and Istio ingress gateway,
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which contains not only the service proxy but also the Istio Pilot
agent. The Istio Pilot agent pulls configuration down from Pilot to
the service proxy at frequent intervals so that each proxy knows
where to route traffic. In this case, nginMesh’s translator agent per‐
forms the task of configuring NGINX as the istio-proxy. Pilot is
responsible for the life cycle of istio-proxy.

Figure 4-1. Example of swapping proxies—Istio + nginMesh.

Extensible Adapters
Istio’s Mixer control plane component is responsible for enforcing
access control and usage policies across the service mesh and col‐
lecting telemetry data from the sidecar proxy. Mixer categorizes
adapters based on the type of data they consume.

Future extensibility might come in the form of secure key stores for
Hardware Security Modules (HSMs), HashiCorp Vault integration,
and better support for swapping out distributed tracing infrastruc‐
ture backends.
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Figure 4-2. Istio Mixer is an example of an extension point in a service
mesh. Mixer acts as an attribute processing engine, collecting, trans‐
forming, and transmitting telemetry.

Conclusion
The nginMesh project has drawn much interest in the use of
NGINX as Istio’s service proxy, as many organizations have broad
and deep operational expertise built around this battle-tested proxy.

Ideally, your security posture evolves to that of a zero-trust environ‐
ment.
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CHAPTER 5

Conclusion

First container runtimes had their go, then container orchestrators
had theirs. The next layer of infrastructure (Layer 5) will have its
time. Whether you think of them as the Proxy Wars or not, 2018 is
the year of the service mesh. There’s much promise in the value ser‐
vice meshes will provide.

Although orchestrators don’t bring all that you need, unfortunately,
neither do service meshes. They do get you closer, however. Service
meshes are missing or have nascent support for the following:

• Distributed debugging
• Provide nascent topology and dependency graphs, although

projects like Kiali are out to improve this area.
• Participate in application life cycle management, but would bene‐

fit from shifting left to incorporate:
— Deeper automated canary support with integration into

Continuous Integration systems, which would improve the
pipeline of many software projects

— Automatic API documentation, perhaps, integrating with
toolkits like swagger or readme.io

— API function/interface discovery
• White-box monitoring to move beyond distributed tracing and

into application performance monitoring.
• Multitenancy (multiple control planes running on the same plat‐

form).
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• Multicluster such that each certificate authority shares the same
root certificate and workloads can authenticate each other
across clusters within the same mesh.

• Improve on the integration of load testing tools like
slow_cooker, fortio, lago or others to identify ideal mesh resil‐
iency configurations by facilitating load testing of your services’
response times so that you can tune queue sizes, timeouts, retry
budgets, and so on, accordingly. Meshes provide fault and delay
injection. What are appropriate deadlines for your services
under different load?

• Advanced circuit breaking with fallback paths, identifying alter‐
nate services to respond as opposed to 503 Service Unavailable
errors.

• Pluggable certificate authorities component so that external CAs
can be integrated.

To Deploy or Not to Deploy?
There are many paths to service mesh as well as a variety of deploy‐
ment models. Which is right for you and your organization depends
on where you are in your maturity curve (cloud-native skill set),
number of services, underlying infrastructure, and how centric tech‐
nology is to your business. So, should you deploy a service mesh? It
depends. Table 5-1 has factors to consider:

Table 5-1. Factors to consider when opting for or against a service mesh

Consideration
factor

Lightly consider a service mesh
(external client focus)

Strongly consider a service mesh
(internal/external client focus)

Service
Communication

Low inter-service communication. High inter-service communication.

Observability Edge focus—metrics and usage are for
response time to clients and request
failure rates.

Edge plus internal focus—
observability is key for
understanding service behavior.

Client Focus Strong separation of external and
internal users. Focused on external API
experience.

Equal and undifferentiated
experience for internal and external
users.

World-view of APIs Primary client-facing interaction is
through APIs are for clients only
(separation of client-facing or service-
to-service communication)

APIs are treated as a product; APIs
are how your application exposes its
capabilities.
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Consideration
factor

Lightly consider a service mesh
(external client focus)

Strongly consider a service mesh
(internal/external client focus)

Security Model • Security at perimeter

• Subnet zoning (firewalling)

• Trusted internal networks (gooey
center)

• Zero-trust mindset

• authN and authZ between all
services

• Encryption between all services

I recommend starting small. As you roll out your service mesh,
understand that failures in the environment can misplace blame on
the service mesh. Understand what service meshes do and what they
don’t. Prepare for failures by removing a culture of blame. Learn
from failures and outages. Familiarize yourself well with service
mesh troubleshooting tools and built-in diagnostics of your service
mesh; for example:

• Use $ istioctl proxy-config to inspect the current configu‐
ration of a given service proxy.

• Inspect Linkerd l5d-error headers, which annotate when
requests fail helping you identify whether the failure is in your
service or the service mesh.

Show immediate value. Observability signals are a great way of
doing so and conduit makes this simple:

$ conduit stat deploy --from web
NAMESPACE  NAME   MESHED  SUCCESS RPS    LATENCY_P50 _P95 _P99
emojivoto  emoji     1/1  100.00% 2.0rps 1ms         2ms  2ms
emojivoto  voting    1/1   72.88% 1.0rps 1ms         1ms  1ms

When choosing a path, I recommend embracing an open platform
that is adaptable to existing infrastructure investments and technol‐
ogy expertise you already have. Choose a project that embraces open
standards and is API-driven to allow for automated configuration.
Given that not all open source software is created equally, consider
its community, including project governance, number and diversity
of maintainers, and velocity. Recognize your comfort in having or
not having a support contract. Understand where OSS functionality
stops and “Enterprise” begins. Embrace diversity in your technology
stack so that you’re open to selecting best-fit technology and can
experiment when needed. Realize the democratization of technology
selection afforded by microservices and the high degree of control
afforded by a service mesh. Account for whether your organization
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has different skill sets with potentially differing subcultures. Under‐
stand that technology evolves and will change. Ensure you have the
ability to change as all architectures are in a state of evolution.
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