
Adrian Mouat

 Using
Docker
DEVELOPING AND DEPLOYING SOFTWARE WITH CONTAINERS

Compliments of

FREE CHAPTERS

FREE CHAPTER

On-the-fly reconfiguration for
scalable service discovery

Advanced load balancing and
automated routing

Content caching for better
availability and performance

Application-aware health checks
and container monitoring

Access controls and rate limiting
to secure your applications

Flawless application delivery with NGINX Plus

Containers
without chaos

Learn more at:
nginx.com/microservices

https://www.nginx.com/solutions/microservices/

This Excerpt contains Chapters 8 and 9 of the book Using
Docker. The full book is available at oreilly.com and through

other retailers.

Adrian Mouat

Using Docker

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-91576-9

[LSI]

Using Docker
by Adrian Mouat

Copyright © 2016 Adrian Mouat. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Melanie Yarbrough
Copyeditor: Christina Edwards
Proofreader: Amanda Kersey

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

December 2015: First Edition

Revision History for the First Edition
2015-12-07: First Release
2016-04-08: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491915769 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Using Docker, the cover image of a
bowhead whale, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491915769

Table of Contents

Foreword. vii

1. Continuous Integration and Testing with Docker. 9
Adding Unit Tests to Identidock 10
Creating a Jenkins Container 15

Triggering Builds 22
Pushing the Image 23

Responsible Tagging 23
Staging and Production 25
Image Sprawl 25
Using Docker to Provision Jenkins Slaves 26

Backing Up Jenkins 26
Hosted CI Solutions 27
Testing and Microservices 27

Testing in Production 29
Conclusion 29

2. Deploying Containers. 31
Provisioning Resources with Docker Machine 32
Using a Proxy 35
Execution Options 41

Shell Scripts 42
Using a Process Manager (or systemd to Rule Them All) 44
Using a Configuration Management Tool 47

Host Configuration 51
Choosing an OS 51
Choosing a Storage Driver 51

Specialist Hosting Options 54

v

Triton 54
Google Container Engine 56
Amazon EC2 Container Service 56
Giant Swarm 59

Persistent Data and Production Containers 61
Sharing Secrets 61

Saving Secrets in the Image 61
Passing Secrets in Environment Variables 62
Passing Secrets in Volumes 63
Using a Key-Value Store 63

Networking 64
Production Registry 64
Continuous Deployment/Delivery 65
Conclusion 65

vi | Table of Contents

Foreword

Docker has enjoyed a meteoric rise in the world of IT. In just a few years, it has gone
from being a small, open source project to being top-of-mind for CIOs at the world’s
largest enterprises. We recently surveyed the broad community of NGINX users, who
run more than 165 million sites around the world, and found that a full two-thirds of
them are investigating or already using containers in some way.

Of course, adopting a new technology like Docker is easier said than done. Using
Docker provides a wealth of practical guidance on incorporating Docker into your
full software development lifecycle. The final stages of the lifecycle—integrating
Docker into your CI/CD workflows and ultimately deploying into production—can
be particularly challenging. The chapters provided in this free ebook excerpt lead you
through these complex and critical stages.

Once your containerized application is running in production, you face a whole host
of new challenges—not the least of which is providing a stable entrypoint for your
clients to connect to. Clients can’t directly connect to dynamic endpoints like contain‐
ers. This is where NGINX and NGINX Plus come into play.

If you are looking to deploy Docker-based applications, you need reverse proxies that
are stable, easy to use, and reliable, like NGINX and NGINX Plus. Whether you want
to perform essential services such as load balancing, caching, and rate limiting, or
simply reduce complexity with DNS-based service discovery, NGINX and NGINX
Plus help eliminate the need for manual work and provide application owners one
less thing to worry about.

We’re proud that NGINX is one of the most frequently downloaded applications on
Docker Hub, with over 10 million pulls to date. We hope you enjoy this ebook
excerpt, and that it helps you succeed as you deploy containers into production.

— Faisal Memon, Product Marketer,
NGINX, Inc.

vii

https://www.nginx.com/resources/library/app-dev-survey/

CHAPTER 1

Continuous Integration and
Testing with Docker

In this chapter, we’re going to look into how Docker and Jenkins can be used to create
a continuous integration (CI) workflow for building and testing our application. We’ll
also take a look at other aspects of testing with Docker and a brief look at how to test
a microservices architecture.

Testing containers and microservices brings a few different challenges to testing.
Microservices make for easy unit tests but difficult system and integration tests due to
the increased number of services and network links. Mocking of network services
becomes more relevant than the traditional mocking of classes in a monolithic Java or
C# codebase. Keeping test code in images maintains the portability and consistency
benefits of containers, but increases their size.

The code for this chapter is available from this book’s GitHub. The
tag v0 is the identidock code as it was at the end of the last chapter,
with later tags representing the progression of the code through
this chapter. To get this version of the code:

$ git clone -b v0 \
https://github.com/using-docker/ci-testing/
...

Alternatively, you can download the code for any tag from the
Releases page on the GitHub project.

9

https://github.com/using-docker/ci-testing
https://github.com/using-docker/ci-testing/releases

1 Many developers advocate a test-driven development (TDD) approach, where tests are written before the
code that makes them pass. This book hasn’t followed this approach, mainly for the sake of narrative.

Adding Unit Tests to Identidock
The first thing we should do is add some unit tests to our identidock codebase. These
will test some basic functionality of our identidock code, with no reliance on external
services.1

Start by creating the file identidock/app/tests.py with the following contents:

import unittest
import identidock

class TestCase(unittest.TestCase):

 def setUp(self):
 identidock.app.config["TESTING"] = True
 self.app = identidock.app.test_client()

 def test_get_mainpage(self):
 page = self.app.post("/", data=dict(name="Moby Dock"))
 assert page.status_code == 200
 assert 'Hello' in str(page.data)
 assert 'Moby Dock' in str(page.data)

 def test_html_escaping(self):
 page = self.app.post("/", data=dict(name='">TEST<!--'))
 assert '' not in str(page.data)

if __name__ == '__main__':
 unittest.main()

This is just a very simple test file with three methods:

setUp
Initializes a test version of our Flask web application.

test_get_mainpage
Test method that calls the URL / with the input “Moby Dock” for the name field.
The test then checks that the method returns a 200 status code and the data con‐
tains the strings “Hello” and “Moby Dock.”

test_html_escaping
Tests that HTML entities are properly escaped in input.

Let’s run these tests:

10 | Chapter 1: Continuous Integration and Testing with Docker

$ docker build -t identidock .
...
$ docker run identidock python tests.py
.F
==
FAIL: test_html_escaping (__main__.TestCase)
--
Traceback (most recent call last):
 File "tests.py", line 19, in test_html_escaping
 assert '' not in str(page.data)
AssertionError

--
Ran 2 tests in 0.010s

FAILED (failures=1)

Hmm, that’s not good. The first test passed, but the second one has failed, because
we’re not escaping user input properly. This is a serious security issue that in a larger
application can lead to data leaks and cross-site scripting attacks (XSS). To see the
effect on the application, launch identidock and try inputing a name such as
">pwned!<!--", including the quotes. An attacker could potentially inject
malicious JavaScript into our application and trick users into running it.

Thankfully, the fix is easy. We just need to update our Python application to sanitize
the user input by replacing HTML entities and quotes with escape codes. Update
identidock.py so that it looks like:

from flask import Flask, Response, request
import requests
import hashlib
import redis
import html

app = Flask(__name__)
cache = redis.StrictRedis(host='redis', port=6379, db=0)
salt = "UNIQUE_SALT"
default_name = 'Joe Bloggs'

@app.route('/', methods=['GET', 'POST'])
def mainpage():

 name = default_name
 if request.method == 'POST':
 name = html.escape(request.form['name'], quote=True)

 salted_name = salt + name
 name_hash = hashlib.sha256(salted_name.encode()).hexdigest()
 header = '<html><head><title>Identidock</title></head><body>'
 body = '''<form method="POST">

Adding Unit Tests to Identidock | 11

2 Embarrassingly, I never noticed this problem until the review stages of the book. I again learned the lesson
that it is important to test even trivial-looking code and that it’s best to use preexisting, proven code and tools
where possible.

 Hello <input type="text" name="name" value="{0}">
 <input type="submit" value="submit">
 </form>
 <p>You look like a:

 '''.format(name, name_hash)
 footer = '</body></html>'

 return header + body + footer

@app.route('/monster/<name>')
def get_identicon(name):

 name = html.escape(name, quote=True)
 image = cache.get(name)
 if image is None:
 print ("Cache miss", flush=True)
 r = requests.get('http://dnmonster:8080/monster/' + name + '?size=80')
 image = r.content
 cache.set(name, image)

 return Response(image, mimetype='image/png')

if __name__ == '__main__':
 app.run(debug=True, host='0.0.0.0')

Use the html.escape method to sanitize the user input.

Now if we build and test our application again:

$ docker build -t identidock .
...
$ docker run identidock python tests.py
..
--
Ran 2 tests in 0.009s

OK

Great—problem solved. You can verify this by restarting identidock with the new
containers (remember to run docker-compose build to ensure Compose uses the
new code) and trying to enter malicious input.2 If we had used a real templating
engine rather than simple string concatenation, the escaping would have been han‐
dled for us, avoiding this issue.

12 | Chapter 1: Continuous Integration and Testing with Docker

Now that we have some tests, we should extend our cmd.sh file to support automati‐
cally executing them. Replace cmd.sh with the following:

#!/bin/bash
set -e

if ["$ENV" = 'DEV']; then
 echo "Running Development Server"
 exec python "identidock.py"
elif ["$ENV" = 'UNIT']; then
 echo "Running Unit Tests"
 exec python "tests.py"
else
 echo "Running Production Server"
 exec uwsgi --http 0.0.0.0:9090 --wsgi-file /app/identidock.py \
 --callable app --stats 0.0.0.0:9191
fi

Now we can rebuild and run the tests by just changing the environment variable:

$ docker build -t identidock .
...
$ docker run -e ENV=UNIT identidock
Running Unit Tests
..
--
Ran 2 tests in 0.010s

OK

There are more unit tests we could write. In particular, there are no tests for the
get_identicon method. To test this method in a unit test, we would need to either
bring up test versions of the dnmonster and Redis services, or use a test double. A test
double stands in for the real service, and is commonly either a stub, which simply
returns a canned answer (e.g., the stub for a stock price service might always return
“42”) or a mock that can be programmed with expectations for how it expects to be
called (such as being called exactly once for a given transaction). For more informa‐
tion on test doubles, see the Python mock module as well as specialist HTTP tools
such as Pact, Mountebank, and Mirage.

Adding Unit Tests to Identidock | 13

https://docs.python.org/3/library/unittest.mock.html
https://github.com/realestate-com-au/pact
http://www.mbtest.org/
https://mirage.readthedocs.org

3 Tests like these are likely to be system or integration tests rather than unit tests, or they could be unit tests in a
nonmockist test configuration. Many unit test experts will advise that components such as databases should
be replaced with mocks, but in situations where the component is stable and reliable, it is often easiest and
sensible to use the component directly.

Including Tests in Images

In this chapter, we bundle the tests for identidock into the identi‐
dock image, which is in line with the Docker philosophy of using a
single image through development, testing, and production. This
also means we can easily check the tests on images running in dif‐
ferent environments, which can be useful to rule out issues when
debugging.
The disadvantage is that it creates a larger image—you have to
include the test code plus any dependencies such as testing libra‐
ries. In turn, this also means there is a greater attack surface; it’s
possible, if unlikely, that an attacker could use test utilities or code
to break the system in production.
In most cases, the advantages of the simplicity and reliability of
using a single image will outweigh the disadvantages of the slightly
increased size and theoretical security risk.

The next step is to get our tests automatically run in a CI server so we can see how
our code could be automatically tested when code is checked in to source control and
before moving to staging or production.

Using Containers for Fast Testing
All tests, and in particular unit tests, need to run quickly in order to encourage devel‐
opers to run them often without getting stuck waiting on results. Containers repre‐
sent a fast way to boot a clean and isolated environment, which can be useful when
dealing with tests that mutate their environment. For example, imagine you have a
suite of tests that make use of a service3 that has been prepopulated with some test
data. Each test that uses the service is likely to mutate the data in some way, either
adding, removing, or modifying data. One way to write the tests is to have each test
attempt to clean up the data after running, but this is problematic; if a test (or the
cleanup) fails, it will pollute the test data for all following tests, making the source of
the failure difficult to diagnose and requiring knowledge of the service being tested (it
is no longer a black box). An alternative is to destroy the service after each test and
start with a fresh one for each test. Using VMs for this purpose would be far too slow,
but it is achievable with containers.

Another area of testing where containers shine is running services in different envi‐
ronments/configurations. If your software has to run across a range of Linux distribu‐

14 | Chapter 1: Continuous Integration and Testing with Docker

4 The Docker socket is the endpoint used for communicating between the client and the daemon. By default,
this is an IPC socket accessed via the file /var/run/docker.sock, but Docker also supports TCP sockets exposed
via a network address and systemd-style sockets. This chapter assumes you are using the default socket
at /var/run/docker.sock. As the socket is accessed via a file descriptor, we can simply mount this endpoint as a
volume in the container.

tions with different databases installed, set up an image for each configuration and
you can fly through your tests. The caveat of this approach is that it won’t take into
account kernel differences between distributions.

Creating a Jenkins Container
Jenkins is a popular open source CI server. There are other options for CI servers and
hosted solutions, but we’ll use Jenkins for our web app, simply because of its popular‐
ity. We want to set up Jenkins so that whenever we push changes to our identidock
project, Jenkins will automatically check out the changes, build the new images, and
run some tests against them—both our unit tests and some system tests. It will then
create a report on the results of the tests.

We’ll base our solution on an image from the official Jenkins repository. I’ve used ver‐
sion 1.609.3, but new Jenkins releases are constantly appearing—feel free to try using
a newer version, but I can’t guarantee it will work without modification.

In order to allow our Jenkins container to build images, we’re going to mount the
Docker socket4 from the host into the container, effectively allowing Jenkins to create
“sibling” containers. An alternative to this is to use Docker-in-Docker (DinD), where
the Docker container can create its own “child” containers. The two approaches are
contrasted in Figure 1-1.

Creating a Jenkins Container | 15

Figure 1-1. Docker-In-Docker versus socket mounting

Docker-in-Docker
Docker-in-Docker (or DinD) is simply running Docker itself inside a Docker con‐
tainer. There is some special configuration necessary to get this to work, primarily
running the container in privileged mode and dealing with some filesystem issues.
Rather than work this out yourself, it’s easiest to use Jérôme Petazzoni’s DinD project,
which is available at https://github.com/jpetazzo/dind and describes all the required
steps. You can quickly get started by using Jérôme’s DinD image from the Docker
Hub:

$ docker run --rm --privileged -t -i -e LOG=file jpetazzo/dind
ln: failed to create symbolic link '/sys/fs/cgroup/systemd/name=systemd':
Operation not permitted
root@02306db64f6a:/# docker run busybox echo "Hello New World!"
Unable to find image 'busybox:latest' locally
Pulling repository busybox
d7057cb02084: Download complete
cfa753dfea5e: Download complete
Status: Downloaded newer image for busybox:latest
Hello New World!

The major difference between DinD and the socket-mounting approach is that the
containers created by DinD are isolated from the host containers; running docker ps
in the DinD container will only show the containers created by the DinD Docker dae‐
mon. In contrast, running docker ps under the socket-mounting approach will show
all the containers, regardless of where the command is run from.

In general, I prefer the simplicity of the socket-mounting approach, but in certain cir‐
cumstances, you may want the extra isolation of DinD. If you do choose to run DinD,
be aware of the following:

16 | Chapter 1: Continuous Integration and Testing with Docker

https://github.com/jpetazzo/dind

• You will have your own cache, so builds will be slower at first, and you will have
to pull all your images again. This can be mitigated by using a local registry or
mirror. Don’t try mounting the build cache from the host; the Docker engine
assumes exclusive access to this, so bad things can happen when shared between
two instances.

• The container has to run in privileged mode, so it’s not any more secure than the
socket-mounting technique (if an attacker gains access, she can mount any
device, including drives). This should get better in the future as Docker adds sup‐
port for finer-grained privileges, which will allow users to choose the devices
DinD has access to.

• DinD uses a volume for the /var/lib/docker directory, which will quickly eat up
your disk space if you forget to delete the volume when removing the container.

For more information on why you should be careful with DinD, see jpetazzo’s GitHub
article.

In order to mount the socket from the host, we need to make sure that the Jenkins
user inside the container has sufficient access privileges. In a new directory called
identijenk, create a Dockerfile with the following contents:

FROM jenkins:1.609.3

USER root
RUN echo "deb http://apt.dockerproject.org/repo debian-jessie main" \
 > /etc/apt/sources.list.d/docker.list \
 && apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 \
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D \
 && apt-get update \
 && apt-get install -y apt-transport-https \
 && apt-get install -y sudo \
 && apt-get install -y docker-engine \
 && rm -rf /var/lib/apt/lists/*
RUN echo "jenkins ALL=NOPASSWD: ALL" >> /etc/sudoers

USER jenkins

This Dockerfile takes the Jenkins base image, installs the Docker binary, and adds
password-less sudo rights to the jenkins user. We intentionally haven’t added
jenkins to the docker group, so we will have to prefix all our Docker commands with
sudo.

Creating a Jenkins Container | 17

http://bit.ly/1WtECmm
http://bit.ly/1WtECmm

Don’t Use the Docker Group

Instead of using sudo, we could have added the jenkins user to the
host’s docker group. The problem is that this requires us to find
and use the GID of the docker group on the CI host and hardcode
it into the Dockerfile. This makes our Dockerfile nonportable, as
different hosts will have different GIDs for the docker group. To
avoid the confusion and pain this can cause, it is preferable to use
sudo.

Build the image:

$ docker build -t identijenk .
...
Successfully built d0c716682562

Test it:

$ docker run -v /var/run/docker.sock:/var/run/docker.sock \
 identijenk sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ...
a36b75062e06 identijenk "/bin/tini -- /usr/lo" 1 seconds ago Up Less tha...

In the docker run command, we have mounted the Docker socket in order to con‐
nect to the host’s Docker daemon. In older versions of Docker, it was common to also
mount the Docker binary, rather than install Docker inside the container. This had
the advantage of keeping the version of Docker on the host and in the container in
sync. However, from version 1.7.1, Docker began using dynamic libraries, which
means any dependencies also need to be mounted in the container. Rather than deal
with the problems of finding and updating the correct libraries to mount, it is easier
to simply install Docker in the image.

Now that we’ve got Docker working inside the container, we can install some other
stuff we need to get our Jenkins’ build working. Update the Dockerfile like so:

FROM jenkins:1.609.3

USER root
RUN echo "deb http://apt.dockerproject.org/repo debian-jessie main" \
 > /etc/apt/sources.list.d/docker.list \
 && apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 \
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D \
 && apt-get update \
 && apt-get install -y apt-transport-https \
 && apt-get install -y sudo \
 && apt-get install -y docker-engine \
 && rm -rf /var/lib/apt/lists/*
RUN echo "jenkins ALL=NOPASSWD: ALL" >> /etc/sudoers

RUN curl -L https://github.com/docker/compose/releases/download/1.4.1/\
docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose; \

18 | Chapter 1: Continuous Integration and Testing with Docker

 chmod +x /usr/local/bin/docker-compose

USER jenkins
COPY plugins.txt /usr/share/jenkins/plugins.txt
RUN /usr/local/bin/plugins.sh /usr/share/jenkins/plugins.txt

Install Docker Compose, which we will use to build and run our images.

Copy in and process a plugins.txt file, which defines a list of plugins to install in
Jenkins.

Create the file plugins.txt in the same directory as the Dockerfile with the following
contents:

scm-api:0.2
git-client:1.16.1
git:2.3.5
greenballs:1.14

The first three plugins set up an interface we can use to set up access to the Identi‐
dock project in Git. The “greenballs” plugin replaces the default Jenkins blue balls for
successful builds with green ones.

We’re now just about ready to launch our Jenkins container and start configuring our
build, but first we should create a data container to persist our configuration:

$ docker build -t identijenk .
...
$ docker run --name jenkins-data identijenk echo "Jenkins Data Container"
Jenkins Data Container

We’ve used the Jenkins image for data container so we can be sure the permissions are
set correctly. The container exits once the echo command completes, but as long as
it’s not deleted, it can be used in --volumes-from arguments. For more details on data
containers, see ???.

Now we’re ready to launch the Jenkins container:

$ docker run -d --name jenkins -p 8080:8080 \
 --volumes-from jenkins-data \
 -v /var/run/docker.sock:/var/run/docker.sock \
 identijenk
75c4b300ade6a62394a328153b918c1dd58c5f6b9ac0288d46e02d5c593929dc

If you open a browser at http://localhost:8080, you should see Jenkins initializing. In a
moment, we’ll set it up with a build and test for our identidock project. But first we
need to make a minor change to the identidock project itself. Currently, the docker-
compose.yml file for our project initializes a development version of identidock, but
we are about to develop some system tests we want to run on something much closer
to production. For this reason, we need to create a new file jenkins.yml that we will
use to start the production version of identidock inside Jenkins:

Creating a Jenkins Container | 19

http://localhost:8080

identidock:
 build: .
 expose:
 - "9090"
 environment:
 ENV: PROD
 links:
 - dnmonster
 - redis

dnmonster:
 image: amouat/dnmonster:1.0

redis:
 image: redis:3.0

As Jenkins lives in a sibling container, we don’t need to publish ports on the host
in order to connect to it. I’ve included the expose command mainly as documen‐
tation; you will still be able to access the identidock container from Jenkins
without it, assuming you haven’t played with the default networking settings.

Set the environment to production.

This file needs to be added to the identidock repository that Jenkins will retrieve the
source code from. You can either add it to your own repository if you configured one
earlier or use the existing repository.

We’re now ready to start configuring our Jenkins build. Open the Jenkins web inter‐
face running at http://localhost:8080 and follow these instructions:

1. Click the Create new jobs link.
2. Enter identidock for the Item name, select Freestyle project, and click OK.
3. Configure the Source Code Management settings. If you used a public GitHub

repository, you just need to select Git and enter the repository URL. If you used a
private repository, you will need to set up credentials of some sort (several repo‐
sitories, including BitBucket, have deployment keys that can be used to set up
read-only access for this purpose). Alternatively, you can use the version available
on GitHub.

4. Click “Add build step” and select “Execute shell.” In the Command box, enter the
following:

#Default compose args
COMPOSE_ARGS=" -f jenkins.yml -p jenkins "

#Make sure old containers are gone
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

20 | Chapter 1: Continuous Integration and Testing with Docker

https://github.com/using-docker/identidock
http://localhost:8080
https://github.com/using-docker/identidock

#build the system
sudo docker-compose $COMPOSE_ARGS build --no-cache
sudo docker-compose $COMPOSE_ARGS up -d

#Run unit tests
sudo docker-compose $COMPOSE_ARGS run --no-deps --rm -e ENV=UNIT identidock
ERR=$?

#Run system test if unit tests passed
if [$ERR -eq 0]; then
 IP=$(sudo docker inspect -f {{.NetworkSettings.IPAddress}} \
 jenkins_identidock_1)
 CODE=$(curl -sL -w "%{http_code}" $IP:9090/monster/bla -o /dev/null) || true
 if [$CODE -ne 200]; then
 echo "Site returned " $CODE
 ERR=1
 fi
fi

#Pull down the system
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

return $ERR

Note that sudo is used to call Docker Compose, again because the Jenkins user
isn’t in the docker group.

We use docker inspect to discover the IP address of the identidock container.

We use curl to access the identidock service and check that it returns an HTTP
200 code indicating it is functioning correctly. Note that we are using the
path /monster/bla to ensure that identidock can connect to the dnmonster ser‐
vice.

You can also get this code from GitHub. Normally, scripts like this would be checked
into source control with other code, but for our example, simply pasting into Jenkins
is enough.

Now, you should be able to test this out by clicking Save followed by Build Now. You
can view the details of the build by clicking on the build ID and selecting Console
Output. You should see something similar to Figure 1-2.

Creating a Jenkins Container | 21

https://github.com/using-docker/ci-testing

Figure 1-2. Successful Jenkins build

This is pretty good in as far as it goes; we’ve successfully got Docker running and
managed to execute our unit tests, plus a simple “smoke test” on our application.
However, if this was a real application, we would be looking to have a full suite of
tests that ensure the application is functioning correctly and can handle a range of
inputs, but this is all we need for our simple demo.

Triggering Builds
At the moment, builds are triggered manually by clicking Build Now. A major
improvement to this is to have builds happen automatically on check-in to the Git‐
Hub project. To do this, enable the Poll SCM method in the identidock configuration
and enter H/5 * * * * into the text box. This will cause Jenkins to check the reposi‐
tory every five minutes for any changes and schedule a build if any changes have
occurred.

This is a simple solution and it works well enough, but it is somewhat wasteful and
means builds are constantly lagging by up to five minutes. A better solution is to con‐
figure the repository to notify Jenkins of updates. This can be done using Web Hooks
from either BitBucket or GitHub but requires that the Jenkins server is accessible on
the public Internet.

22 | Chapter 1: Continuous Integration and Testing with Docker

5 Note that this doesn’t guarantee you will be able to re-create an identical container, as dependencies may have
changed. See ??? for details on how to mitigate this.

Using the Docker Hub Image

At this point, some of you may be asking, “Why are we building an
image at all?” If you followed the previous section, you should have
an automated build set up on the Docker Hub that is firing on
check-ins to the source repository. It is possible to take advantage
of this by using the Webhooks feature on Docker Hub to automati‐
cally kick off a Jenkins build after a successful build on the Docker
Hub repository. We can then pull, rather than build, the image in
our script. This also requires the Jenkins server to be accessible on
the public Internet.
This solution may be useful for small projects that are creating
standalone Docker images, but larger projects will probably want
the extra speed and security of controlling their own build.

Pushing the Image
Now that we’ve tested our identidock image, we need to push it through the rest of
our pipeline somehow. The first step in this is to tag it and push it to a registry. From
here it can be picked up by the next stage in the pipeline and pushed to staging or
production.

Responsible Tagging
Tagging images correctly is essential for maintaining control and provenance over a
container-based pipeline. Get it wrong and you will have images running in produc‐
tion that are difficult—if not impossible—to relate back to builds, making debugging
and maintenance unnecessarily tricky. For any given image, we should be able to
point to the exact Dockerfile and build context that was used to create it.5

Tags can be overwritten and changed at any time. Because of this, it is up to you to
create and enforce a reliable process for tagging and versioning images.

For our example application, we will add two tags to the image: the Git hash of the
repository and newest. This way the newest tag will always refer to the newest build
that has passed our tests, and we can use the Git hash to recover the build files for any
image. I’ve intentionally avoided using the latest tag due to the issues discussed
in ???. Update the build script in Jenkins to:

#Default compose args
COMPOSE_ARGS=" -f jenkins.yml -p jenkins "

Pushing the Image | 23

#Make sure old containers are gone
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

#build the system
sudo docker-compose $COMPOSE_ARGS build --no-cache
sudo docker-compose $COMPOSE_ARGS up -d

#Run unit tests
sudo docker-compose $COMPOSE_ARGS run --no-deps --rm -e ENV=UNIT identidock
ERR=$?

#Run system test if unit tests passed
if [$ERR -eq 0]; then
 IP=$(sudo docker inspect -f {{.NetworkSettings.IPAddress}} \
 jenkins_identidock_1)
 CODE=$(curl -sL -w "%{http_code}" $IP:9090/monster/bla -o /dev/null) || true
 if [$CODE -eq 200]; then
 echo "Test passed - Tagging"
 HASH=$(git rev-parse --short HEAD)
 sudo docker tag -f jenkins_identidock amouat/identidock:$HASH
 sudo docker tag -f jenkins_identidock amouat/identidock:newest
 echo "Pushing"
 sudo docker login -e joe@bloggs.com -u jbloggs -p jbloggs123
 sudo docker push amouat/identidock:$HASH
 sudo docker push amouat/identidock:newest
 else
 echo "Site returned " $CODE
 ERR=1
 fi
fi

#Pull down the system
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

return $ERR

Get the short version of the Git hash.

Add the tags.

Log in to the registry.

Push the images to the registry.

Note that you will need to rename the tag appropriately for the repository you wish to
push to. For example, if your repository is running at myhost:5000, you will need to
use myhost:5000/identidock:newest. Similarly, you will need to change the docker
login credentials to match.

24 | Chapter 1: Continuous Integration and Testing with Docker

If you start a new build, you should find that the script now tags and pushes the
images to the registry, ready for the next stage in the pipeline. This is great for our
example application and is probably a good start for most projects. But as things get
more complex, you are likely to want to use more tags and more descriptive names.
The git describe command can be put to good use in generating more meaningful
names based on tags.

Finding All Tags for an Image

Each tag for an image is stored separately. This means that in order
to discover all the tags for an image, you need to filter the full
image list based on the image ID. For example, to find all tags for
the image with tag amouat/identidock:newest:

$ docker images --no-trunc | grep \
 $(docker inspect -f {{.Id}} amouat/identidock:newest)
amouat/identidock 51f6152 96c7b4c094c8f76ca82b6206f...
amouat/identidock newest 96c7b4c094c8f76ca82b6206f...
jenkins_identidock latest 96c7b4c094c8f76ca82b6206f...

And we can see that the same image is also tagged 51f6152.
Remember that you will only see a tag if it exists in your image
cache. For example, if I pull debian:latest, I don’t get the debian:
7 tag even though (at the time of writing) it has the image ID. Simi‐
larly, if I have both the debian:latest and debian:7 images, and I
pull a new version of debian:latest, the debian:7 tagged image
will not be affected and will remain linked to the previous image
ID.

Staging and Production
Once an image has been tested, tagged, and pushed to a registry, it needs to be passed
on to the next stage in the pipeline, probably staging or production. This can be trig‐
gered in several ways, including by using Registry webhook notifications, or by using
Jenkins to call the next step.

Image Sprawl
In a production system, you will need to address the problem of image sprawl. The
Jenkins server should be periodically purged of images, and you will also need to con‐
trol the number of images in the Registry, or it will rapidly fill with old and obsolete
images. One solution is to remove all images older than a given date, possibly saving

Pushing the Image | 25

https://docs.docker.com/registry/notifications/

6 At the time of writing, this is easier said than done with locally hosted Docker registries, as the remove func‐
tion hasn’t been implemented. There are several issues to be overcome, which are described in detail on the
distribution roadmap.

them to a backup store if space allows.6 Alternatively, you may want to look at more
advanced tooling such as the CoreOS Enterprise Registry or Docker Trusted Registry,
both of which include advanced features for managing repositories.

Test the Right Thing

It is important to make sure you test the same container image that
is run in production. Don’t build the image from a Dockerfile in
testing and build again for production—you want to be certain that
you are running the same thing you tested and no differences have
crept in. For this reason, it is essential to run some form of registry
or store for your images that can be shared between testing, stag‐
ing, and production.

Using Docker to Provision Jenkins Slaves
As your build requirements grow, you will require more and more resources to run
your tests. Jenkins uses the concept of “build slaves,” which essentially form a task
farm Jenkins can use to outsource builds.

If you would like to use Docker to dynamically provision these slaves, take a look at
the Docker plugin for Jenkins.

Backing Up Jenkins
Because we used a data container for our Jenkins service, backing up Jenkins should
be as simple as:

$ docker run --volumes-from jenkins-data -v $PWD:/backup \
 debian tar -zcvf /backup/jenkins-data.tar.gz /var/jenkins_home

This should result in the file jenkins-data.tar.gz appearing in your $PWD/backup
directory. You may want to stop or pause the Jenkins container prior to running this
command. You can then run something like the following command to create a new
data container and extract the backup into it:

$ docker run --name jenkins-data2 identijenk echo "New Jenkins Data Container"
$ docker run --volumes-from jenkins-data2 -v $PWD:/backup \
 debian tar -xzvf /backup/backup.tar

Unfortunately, this approach does require you to be aware of the mount points of
your container. This can be automated by inspecting the container, so you can also

26 | Chapter 1: Continuous Integration and Testing with Docker

https://github.com/docker/distribution/blob/master/ROADMAP.md
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

7 Normally, there will be one container per service, or multiple containers per service if more resources are
needed.

use tools like docker-backup to do this for you, and I expect to see more support for
workflows like this in future versions of Docker.

Hosted CI Solutions
There are also numerous hosted solutions for CI, from companies that will maintain
a Jenkins installation in the cloud for you, to more specialized solutions such as
Travis, Wercker, CircleCI, and Drone. Most of these solutions seem to be targeted at
running unit tests for predefined language stacks rather than running tests against
systems of containers. There does seem to be some movement in this area, and I
expect to see offerings aimed at testing Docker containers soon.

Testing and Microservices
If you’re using Docker, there’s a good chance you’ve also adopted a microservice
architecture. When testing a microservice architecture, you will find that there are
more levels of testing that are possible, and it is up to you to decide how and what to
test. A basic framework might consist of:

Unit tests
Each service7 should have a comprehensive set of unit tests associated with it.
Unit tests should only test small, isolated pieces of functionality. You may use test
doubles to replace dependencies on other services. Due to the number of tests, it
is important that they run as quickly as possible to encourage frequent testing
and avoid developers waiting on results. Unit tests should make up the largest
proportion of tests in your system.

Component tests
These can be on the level of testing the external interface of individual services,
or on the level of subsystem testing of groups of services. In both cases, you are
likely to find you have dependencies on other services, which you may need to
replace with test doubles as described earlier. You may also find it useful to
expose metrics and logging via your service’s API when testing, but make sure
this is kept in a separate namespace (e.g., use a different URL prefix) to your
functional API.

End-to-end tests
Tests that ensure the entire system is working. Because these are quite expensive
to run (in terms of both resources and time), there should only be a few of these
—you really don’t want a situation where it takes hours to run the tests, seriously

Hosted CI Solutions | 27

https://github.com/discordianfish/docker-backup
https://travis-ci.org
http://wercker.com/
https://circleci.com
https://drone.io

delaying deployments and fixes (consider scheduled runs, which we describe
shortly). Some parts of the system may be impossible or prohibitively expensive
to run in testing and may still need to be replaced with test doubles (launching
nuclear missiles in testing is probably a bad idea). Our identidock test falls under
end-to-end testing; the test runs the full system from end to end with no use of
test doubles.

In addition, you may want to consider:

Consumer contract tests
These tests, which are also called consumer-driven contracts, are written by the
consumer of a service and primarily define the expected input and output data.
They can also cover side effects (changing state) and performance expectations.
There should be a separate contract for each consumer of the service. The pri‐
mary benefit of such tests is that it allows the developers of a service to know
when they risk breaking compatibility with consumers; if a contract test fails,
they know they need to either change their service, or work with the developers
of the consumer to change the contract.

Integration tests
These are tests to check that the communication channels between each compo‐
nent are working correctly. This sort of testing becomes important in a microser‐
vice architecture where the amount of plumbing and coordination between
components is an order of magnitude greater than monolithic architectures.
However, you are likely to find that most of your communication channels are
covered by your component and end-to-end testing.

Scheduled runs
Because it’s important to keep the CI build fast, there often isn’t enough time to
run extensive tests, such as testing against unusual configurations or different
platforms. Instead, these tests can be scheduled to run overnight when there is
spare capacity.

Many of these tests can be classified as preregistry and postregistry, depending on
whether they occur prior to adding the image to the registry. For example, unit test‐
ing is preregistry: no image should be pushed to the registry if it fails a unit test. The
same goes for some consumer contract tests and some component tests. On the other
hand, an image will have already been pushed to a registry before it can be end-to-
end tested. If a postregistry test fails, there is a question about what to do next. While
any new images should not be pushed to production (or should be rolled back if they
have already been deployed), the fault may actually be due to other, older images or
the interaction between new images. These sort of failures may require a greater level
of investigation and thought to handle correctly.

28 | Chapter 1: Continuous Integration and Testing with Docker

Testing in Production
Finally, you may want to think about testing in production. Don’t worry, this isn’t as
crazy as it sounds. In particular, it can make a lot of sense when dealing with a large
number of users with widely different environments and configurations that are hard
to test for.

One common approach is sometimes called blue/green deployment. Say we want to
update an existing production service (let’s call it the “blue” version) to new a version
(let’s call it the “green” version). Rather than just replace the blue version with the
green version, we can run them in tandem for a given time period. Once the green
version is up and running, we flip the switch to start routing traffic to it. We then
monitor the system for any unexpected changes in behavior, such as increased error
rates or latency. If we’re not happy with the new version, all we have to do is flip the
switch back to return the blue version to production. Once we’re satisfied things are
working correctly, we can turn off the blue version.

Other methods follow a similar principle—both the old and new versions should run
in tandem. In A/B, or multivariate testing, two (or more) versions of a service are run
together for a test period, with users randomly split between two. Certain statistics
are monitored, and based on the results at the end of testing, one of the versions is
kept. In ramped deployment, the new version of a service is only made available to a
small subset of users. If these users find no problems, the new version will be progres‐
sively made available to more and more users. In shadowing, both versions of the ser‐
vice are run for all requests, but only the results from the old, stable version are used.
By comparing the results from the old version and the proposed new version, it is
possible to ensure the new version has identical behavior to the old version (or differs
in an expected and positive way). Shadowing is particularly useful when testing new
versions that do not have functional changes such as performance improvements.

Conclusion
The key idea to take away is that containers fit naturally into a continuous integra‐
tion/delivery workflow. There are a few things to bear in mind—primarily that you
must push the same image through the pipeline rather than rebuilding at separate
stages—but you should be able to adapt existing CI tooling to containers without too
many problems, and the future is likely to bring further specialized tooling in this
area.

If you’re embracing a large microservice architecture, it’s worth taking more time to
think about how you are going to do testing and researching some of the techniques
outlined in this chapter.

Conclusion | 29

CHAPTER 2

Deploying Containers

Now it’s time to start getting to the business end of things and thinking about how to
actually run Docker in production. At the time of writing, everybody is talking about
Docker, and many are experimenting with Docker, but comparatively few run Docker
in production. While detractors sometimes point to this as a failing of Docker, they
seem to miss a couple of key points. Given the relative youth of Docker, it is very
encouraging that so many people are using it in production (including Spotify, Yelp,
and Baidu) and that those who only use it in development and testing are still gaining
many advantages.

That being said, it is perfectly possible and reasonable to use containers in production
today. Larger projects and organizations may want to start small and build up over
time, but it is already a feasible and straightforward solution for the majority of
projects.

As things currently stand, the most common way of deploying containers is by first
provisioning VMs and then starting containers on the VMs. This isn’t an ideal solu‐
tion—it creates a lot of overhead, slows down scaling, and forces users to provision
on a multicontainer granularity. The main reason for running containers inside VMs
is simply security. It’s essential that customers cannot access other customers’ data or
network traffic, and containers by themselves only provide weak guarantees of isola‐
tion at the moment. Further, if one container monopolizes kernel resources, or causes
a panic, it will affect all containers running on the same host. Even most of the spe‐
cialist solutions—Google Container Engine (GKE) and the Amazon EC2 Container
Service (ECS)—still use VMs internally. There are currently two exceptions to this
rule, Giant Swarm and Triton from Joyent, both of which are discussed later.

Throughout this chapter, we will show how our simple web application can be
deployed on a range of clouds, as well as specialized Docker hosting services. We will

31

also look at some of the issues and techniques for running containers in production,
both in the cloud and using on-premise resources.

The code for this chapter is available at this book’s GitHub. We
won’t build on the previous Python code anymore but will continue
to use the images we have created. You can choose to use your own
version of the identidock image or simply use the amouat/identi
dock repository.
You can check out the code for the start of the chapter using the v0
tag:

$ git clone -b v0 \
 https://github.com/using-docker/deploying-containers/
...

Later tags represent the progression of the code throughout the
chapter.
Alternatively, you can download the code for any tag from the
Releases page on the GitHub project.

Provisioning Resources with Docker Machine
The fastest and simplest way to provision new resources and run containers on them
is via Docker Machine, which can create servers, install Docker on them, and config‐
ure the local Docker client to access them. Docker Machine comes with drivers for
most of the major cloud providers (including AWS, Google Compute Engine, Micro‐
soft Azure, and Digital Ocean) as well as VMWare and VirtualBox.

Beta Software Alert!

At the time of writing, Docker Machine is in beta (I tested Docker
Machine version 0.4.1). This means you are likely to encounter
bugs and missing functionality, but it should still be usable and rea‐
sonably stable. Unfortunately, it also means the commands and
syntax are likely to change slightly from what you see here. For this
reason, I don’t recommend using Machine in production yet,
although it is very useful for testing and experimentation.
(And yes, this warning is true for nearly everything in this book—it
just felt like a good time to point that out again.)

Let’s have a look at how to use Machine to get identidock up and running in the
cloud. To begin with, you’ll need to install Machine on your local computer. If you
installed Docker via Docker Toolbox, it should already be available. If not, you can
download a binary from GitHub, which can then be placed on your path (e.g., /usr/

32 | Chapter 2: Deploying Containers

https://github.com/using-docker/deploying-containers
https://github.com/using-docker/deploying-containers/releases
https://github.com/docker/machine/releases

local/bin/docker-machine). Once you’ve done this, you should be able to start running
commands:

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM
default virtualbox Running tcp://192.168.99.100:2376

You may or may not get any output here, depending on what hosts Machine has
detected. In my case, it picked up my local boot2docker VM. What we want to do
next is add a host somewhere in the cloud. I’ll walk through this using Digital Ocean,
but AWS and the other cloud providers should be very similar. In order to follow
along, you’ll need to have registered online and generated a personal access token; to
do this, open the “Applications & API” page. You will be charged for resource usage,
so make sure to remove the machine when you’re finished with it:

$ docker-machine create --driver digitalocean \
 --digitalocean-access-token 4820... \
 identihost-do
Creating SSH key...
Creating Digital Ocean droplet...
To see how to connect Docker to this machine, run: docker-machine env identi...

We’ve now created a Docker host on Digital Ocean. The next thing to do is to point
our local client at it, using the command given in the output:

$ docker-machine env identihost-do
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://104.236.32.178:2376"
export DOCKER_CERT_PATH="/Users/amouat/.docker/machine/machines/identihost-do"
export DOCKER_MACHINE_NAME="identihost-do"
Run this command to configure your shell:
eval "$(docker-machine env identihost-do)"
$ eval "$(docker-machine env identihost-do)"
$ docker info
Containers: 0
Images: 0
Storage Driver: aufs
 Root Dir: /var/lib/docker/aufs
 Backing Filesystem: extfs
 Dirs: 0
 Dirperm1 Supported: false
Execution Driver: native-0.2
Logging Driver: json-file
Kernel Version: 3.13.0-57-generic
Operating System: Ubuntu 14.04.3 LTS
CPUs: 1
Total Memory: 490 MiB
Name: identihost-do
ID: PLDY:REFM:PU5B:PRJK:L4QD:TRKG:RWL6:5T6W:AVA3:2FXF:ESRC:6DCT
Username: amouat
Registry: https://index.docker.io/v1/

Provisioning Resources with Docker Machine | 33

https://cloud.digitalocean.com/settings/applications

1 Some providers, including AWS, may require you to open port 5000 in the firewall first.

WARNING: No swap limit support
Labels:
 provider=digitalocean

And we can see that we’re connected to an Ubuntu host running on Digital Ocean. If
we now run docker run hello-world, it will execute on the remote server.

Now to run identidock, you can use the previous docker-compose.yml from the end
of ???, or use the following docker-compose.yml, which uses an image from the Docker
Hub for identidock:

identidock:
 image: amouat/identidock:1.0
 ports:
 - "5000:5000"
 - "9000:9000"
 environment:
 ENV: DEV
 links:
 - dnmonster
 - redis
dnmonster:
 image: amouat/dnmonster:1.0
redis:
 image: redis:3

Note that if the Compose file includes a build instruction, this build will occur on the
remote server. Any volume mounts will need to be removed, as they will refer to the
disk on the remote server, not your local computer.

Run Compose normally:

$ docker-compose up -d
...
Creating identidock_identidock_1...
$ curl $(docker-machine ip identihost-do):5000
<html><head><title>Hello...

This will take a while as it will need to first download and build the required
images.

We can use the docker-machine ip command to find where our Docker host is
running.

So now identidock is running in the cloud and accessible to anyone.1 It’s fantastic that
we were able to get something up and running so quickly, but there are a few things
that aren’t quite right. Notably, the application is running the development Python

34 | Chapter 2: Deploying Containers

web server on port 5000. We should change to use the production version, but it
would also be nice to put a reverse proxy or load balancer in front of the application,
which would allow us to make changes to the identidock infrastructure without
changing the external IP address. Nginx has support for load balancing, so it also
makes it simple to bring up several identidock instances and share traffic between
them.

Smoke Testing Identidock

Throughout this book, we curl the identidock service to make sure
it works. However, simply grabbing the front page isn’t a great test;
it only proves that the identidock container is up and running. A
better test is to retrieve an identicon, which proves both the identi‐
dock and dnmonster containers are active and communicating.
You can do this with a test such as:

$ curl localhost:5000/monster/gordon | head -c 4
�PNG

Here we’ve used the Unix head utility to grab the first four charac‐
ters of the image, which avoids dumping binary data to our termi‐
nal.

Using a Proxy
Let’s start by creating a reverse proxy using nginx that our identidock service can sit
behind. Create a new folder identiproxy for this and create the following Dockerfile:

FROM nginx:1.7

COPY default.conf /etc/nginx/conf.d/default.conf

Also create a file default.conf with the following contents:

server {
 listen 80;
 server_name 45.55.251.164;

 location / {

 proxy_pass http://identidock:9090;
 proxy_next_upstream error timeout invalid_header http_500 http_502
 http_503 http_504;
 proxy_redirect off;
 proxy_buffering off;
 proxy_set_header Host 45.55.251.164;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

Using a Proxy | 35

Replace this with the IP address of your Docker host or a domain name that
points to it.

Redirect all traffic to the identidock container. We’ll use links to make this work.

If you still have Machine running and pointed to the cloud server, we can now build
our image on the remote server:

$ docker build --no-cache -t identiproxy:0.1 .
Sending build context to Docker daemon 3.072 kB
Sending build context to Docker daemon
Step 0 : FROM nginx:1.7
 ---> 637d3b2f5fb5
Step 1 : COPY default.conf /etc/nginx/conf.d/default.conf
 ---> 2e82d9a1f506
Removing intermediate container 5383f47e3d1e
Successfully built 2e82d9a1f506

It’s easy to forget that we’re speaking to a remote Docker engine, but the image now
exists on the remote server, not your local development machine.

Now we can return to the identidock folder and create a new Compose configura‐
tion file to test it out. Create a prod.yml with the following contents:

proxy:
 image: identiproxy:0.1
 links:
 - identidock
 ports:
 - "80:80"
identidock:
 image: amouat/identidock:1.0
 links:
 - dnmonster
 - redis
 environment:
 ENV: PROD
dnmonster:
 image: amouat/dnmonster:1.0
redis:
 image: redis:3

Note that I’ve used tags for the all the images. In production, you should be care‐
ful about the versions of containers you are running. Using latest is particularly
bad, as it can be difficult or impossible to figure out what version of the applica‐
tion the container is running.

36 | Chapter 2: Deploying Containers

Note that we’re no longer exposing ports on the identidock container (only the
proxy container needs to do that) and we’ve updated the environment variable to
start the production version of the web server.

Using extends in Compose
For more verbose YAML files, you can use the extends keyword to share config
details between environments. For example, we could define a file common.yml with
the following contents:

identidock:
 image: amouat/identidock:1.0
 environment:
 ENV: DEV
dnmonster:
 image: amouat/dnmonster:1.0
redis:
 image: redis:3

We can then rewrite our prod.yml file as:

proxy:
 image: identiproxy:0.1
 links:
 - identidock
 ports:
 - "80:80"
identidock:
 extends:
 file: common.yml
 service: identidock
 environment:
 ENV: PROD
dnmonster:
 extends:
 file: common.yml
 service: dnmonster
redis:
 extends:
 file: common.yml
 service: redis

Where the extends keyword pulls in the appropriate config from the common file.
Settings in the prod.yml will override settings in the common.yml. Values in links and
volumes-from are not inherited to avoid unexpected breakages. Because of this, in our
case, using extends actually results in a more verbose prod.yml file, although it would
still have the important advantage of automatically inheriting any changes made to
the base file. The main reason I’ve avoided using extends in the book is simply to
keep the examples standalone.

Using a Proxy | 37

Stop the old version and start the new:

$ docker-compose stop
Stopping identidock_identidock_1... done
Stopping identidock_redis_1... done
Stopping identidock_dnmonster_1... done
Starting identidock_dnmonster_1...
Starting identidock_redis_1...
Recreating identidock_identidock_1...
Creating identidock_proxy_1...

Now let’s test it out; it should now answer on the default port 80 rather than port
9090:

$ curl $(docker-machine ip identihost-do)
<html><head><title>Hello...

Excellent! Now our container is sitting behind a proxy, which makes it possible to do
things like load balance over a group of identidock instances or move identidock to a
new host without breaking the IP address (as long as the proxy remains on the old
host and is updated with the new value). In addition, security has increased because
the application container can only be accessed via the proxy and is no longer expos‐
ing ports to the Internet at large.

We can do a bit better than this though. It’s really annoying that the IP of the host and
the container name are hardcoded into the proxy image; if we want to use a different
name than “identidock” or use identiproxy for another service, we need to build a
new image or overwrite the config with a volume. What we want is to have these
parameters set as environment variables. We can’t use environment variables directly
in nginx, but we can write a script that will generate the config at runtime, then start
nginx. We need to go back to our identiproxy folder and update the default.conf file so
that we have placeholders instead of the hardcoded variables:

server {
 listen 80;
 server_name {{NGINX_HOST}};

 location / {

 proxy_pass {{NGINX_PROXY}};
 proxy_next_upstream error timeout invalid_header http_500 http_502
 http_503 http_504;
 proxy_redirect off;
 proxy_buffering off;
 proxy_set_header Host {{NGINX_HOST}};
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

and create the following entrypoint.sh, which will do our replacement:

38 | Chapter 2: Deploying Containers

#!/bin/bash
set -e

sed -i "s|{{NGINX_HOST}}|$NGINX_HOST|;s|{{NGINX_PROXY}}|$NGINX_PROXY|" \
 /etc/nginx/conf.d/default.conf
cat /etc/nginx/conf.d/default.conf
exec "$@"

We’re using the sed utility to do our replacement. This is a bit hacky, but it will be
fine for our purposes. Note we’ve used bars (|) instead of slashes (/) to avoid
confusion with slashes in URLs.

Prints the final template into the logs, which is handy for debugging.

Executes whatever CMD has been passed. By default, the Nginx container defines a
CMD instruction that starts nginx in the foreground, but we could define a differ‐
ent CMD at runtime that runs different commands or starts a shell if required.

Now we just need to update our Dockerfile to include our new script:

FROM nginx:1.7

COPY default.conf /etc/nginx/conf.d/default.conf
COPY entrypoint.sh /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]
CMD ["nginx", "-g", "daemon off;"]

This command starts our proxy and will be passed as an argument to our
entrypoint.sh script if no command is specified in docker run.

Make it executable and rebuild. This time we’ll just call it proxy, as we’ve abstracted
out the identidock details:

$ chmod +x entrypoint.sh
$ docker build -t proxy:1.0 .
...

To use our new image, go back to the identidock folder and update our prod.yml to
use the new image:

proxy:
 image: proxy:1.0
 links:
 - identidock
 ports:
 - "80:80"
 environment:
 - NGINX_HOST=45.55.251.164
 - NGINX_PROXY=http://identidock:9090
identidock:

Using a Proxy | 39

 image: amouat/identidock:1.0
 links:
 - dnmonster
 - redis
 environment:
 ENV: PROD
dnmonster:
 image: amouat/dnmonster:1.0
redis:
 image: redis:3

Set this variable to the IP or name of your host.

So now if you bring down the old version and restart the app, we’ll be using the new,
generic image. For our simple web app, this is all we need, but due to the use of
Docker links, we are currently stuck with a single-host configuration—we can’t move
to a multihost architecture (which would be necessary for fault tolerance and scaling)
without using more advanced networking and service discovery features that we will
see in Chapters 11 and 12.

Once you’ve finished with the application, you can stop it as follows:

$ docker-compose -f prod.yml stop
...
$ docker-compose -f prod.yml rm
...

When you’re ready to shut down the cloud resource, just do this:

$ docker-machine stop identihost-do
$ docker-machine rm identihost-do

It’s worth making sure the resources have been correctly freed in the cloud provider’s
web interface.

Next, let’s take a look at some of the alternatives to using Compose.

40 | Chapter 2: Deploying Containers

2 Well, not really. It’s important to think about how to secure your application before inviting Joe Public to take
a look. See ??? for more information.

3 Oh, and you’ll want to think about how to handle monitoring and logging, too. Don’t forget those. See ???.

Setting the COMPOSE_FILE Variable

Rather than explicitly specifying -f prod.yml to compose each
time, you can also set the COMPOSE_FILE environment variable. For
example:

$ export COMPOSE_FILE=prod.yml
$ docker-compose up -d
...

This will use the file prod.yml rather than the default docker-
compose.yml.

Supercharged Config File Generation
The technique of using templates to build configuration files for Docker containers is
fairly common when Dockerizing applications, especially when they don’t natively
support environment variables. When moving beyond simple examples like the one
here, you will want to use a proper template processor, such as Jinga2 or Go tem‐
plates, in order to avoid strange errors due to regexp clashes.

The problem is common enough that there is now a utility to help automate this pro‐
cess: Jason Wilder’s dockerize. Dockerize will generate configuration files from a tem‐
plate file and environment variables, then call the normal application. In this way, it
can be used to wrap application startup scripts called from a CMD or ENTRYPOINT
instruction.

However, Jason took this one step further with docker-gen, which can use values from
container metadata (such as IP address) as well as environment variables. It can also
run continuously, responding to Docker events such as new container creation to
update configuration files appropriately. A great example of this is his nginx-proxy
container, which will automatically add containers with the VIRTUAL_HOST environ‐
ment variable to a load-balanced group.

Execution Options
Now that we’ve got a production ready system,2 how should we go about starting the
system on the server?3 So far we’ve looked at Compose and Machine, but because
both these projects are relatively new and in rapid development, it’s wise to be wary of
using them in production for anything except small side projects (and, at the time of
writing, there are warnings to this extent on the Docker website). Both the projects

Execution Options | 41

https://github.com/jwilder/dockerize
https://github.com/jwilder/docker-gen

are quickly maturing and developing production features; to get an idea of where
they are going, you can find roadmap documents in the GitHub repositories, which
are great for feeling out how close the projects are to production-ready.

So, if Compose isn’t an option, what is? Let’s take a look at some of the other possibili‐
ties. All of the following code assumes that images are available on Docker Hub,
rather than building them on the server. If you want to follow along, either push your
own images to a registry or use my images from the Docker Hub (amouat/identi
dock:1.0, amouat/dnmonster:1.0 and amouat/proxy:1.0).

Shell Scripts
The easiest answer to running without Compose is just to write a short shell script
that executes Docker commands to bring up the containers. This will work well
enough for a lot of simple use cases, and if you add in some monitoring, you can
make sure you know about it if anything goes wrong that requires your attention.
However, in the long run, it is far from perfect; you will likely end up maintaining a
messy and unstructured script that evolves over time to grow features of other solu‐
tions.

We can ensure containers that exit prematurely are automatically restarted by using
the --restart argument to docker run. The argument specifies the restart policy,
which can be no, on-failure, or always. The default is no, which will never automat‐
ically restart containers. The on-failure policy will only restart containers that exit
with a nonzero exit code and can also specify a maximum number of retries (e.g.,
docker run --restart on-failure:5 will attempt to restart the container five times
before giving up).

The following script (named deploy.sh) will get our identidock service up and run‐
ning:

#!/bin/bash
set -e

echo "Starting identidock system"

docker run -d --restart=always --name redis redis:3
docker run -d --restart=always --name dnmonster amouat/dnmonster:1.0
docker run -d --restart=always \
 --link dnmonster:dnmonster \
 --link redis:redis \
 -e ENV=PROD \
 --name identidock amouat/identidock:1.0
docker run -d --restart=always \
 --name proxy \
 --link identidock:identidock \
 -p 80:80 \
 -e NGINX_HOST=45.55.251.164 \

42 | Chapter 2: Deploying Containers

 -e NGINX_PROXY=http://identidock:9090 \
 amouat/proxy:1.0

echo "Started"

Note that we’re really just converting our docker-compose.yml file into the equivalent
shell commands. But unlike Compose, there is no logic for cleaning up after failures,
or to check for already running containers.

In the case of Digital Ocean, I can now use the following ssh and scp commands to
start identidock using the shell script:

$ docker-machine scp deploy.sh identihost-do:~/deploy.sh
deploy.sh 100% 575 0.6KB/s 00:00
$ docker-machine ssh identihost-do
...
$ chmod +x deploy.sh
$./deploy.sh
Starting identidock system
3b390441b16eaece94df7e0e07d1edcb4c11ce7232108849d691d153330c6dfb
57459e4c0c2a75d2fbcef978aca9344d445693d2ad6d9efe70fe87bf5721a8f4
5da04a34302b400ec08e9a1d59c3baeec14e3e65473533c165203c189ad58364
d1839d8de1952fca5c41e0825ebb27384f35114574c20dd57f8ce718ed67e3f5
Started

We could also have just run these commands directly in the shell. The main reason to
prefer the script is for documentation and portability reasons—if I want to start iden‐
tidock on a new host, I can easily find the instructions to bring up an identical ver‐
sion of the application.

When we need to update images or make changes, we can either use Machine to con‐
nect our local client to the remote Docker server or log directly into the remote server
and use the client there. To perform a zero-downtime update of a container, you will
need to have a load balancer or reverse proxy in front of the container and do some‐
thing like:

1. Bring a up a new container with the updated image (it’s best to avoid trying to
update images in place).

2. Point the load balancer at the new image, for some or all of the traffic.
3. Test the new container is working.
4. Turn off the old container.

Also, refer to “Testing in Production”, which describes various techniques for deploy‐
ing updates without breaking services.

Execution Options | 43

Breaking Links on Restart

Older versions of Docker had problems with links breaking when
containers restarted. If you see similar issues, make sure you are
running an up-to-date version of Docker. At the time of writing, I
am using Docker version 1.8, which works correctly; any changes
to a container’s IP address are automatically propagated to linked
containers. Also note that only /etc/hosts is updated, and environ‐
ment variables are not updated on changes to linked containers.

In the rest of this section, we’ll look at how you can control the initialization and
deployment of containers using existing technology you may already be familiar with.
In ???, we will look at some of the newer, Docker-specific tooling that also addresses
this issue.

Using a Process Manager (or systemd to Rule Them All)
Instead of relying on a shell script and the Docker restart functionality, you can use a
process manager or init system such as systemd or upstart to bring up your contain‐
ers. This can be particularly useful if you have host services that don’t run in a con‐
tainer, but are dependent on one or more containers. If you want to do this, be aware
that there are some issues:

• You will need to make sure you don’t use Docker’s automatic container restarting
functionality-that is, don’t use --restart=always in your docker run com‐
mands.

• Normally, your process manager will end up monitoring the docker client pro‐
cess, rather than the processes inside the container. This works most of the time,
but if the network connection drops or something else goes wrong, the Docker
client will exit but leave the container running, which can cause problems.
Instead, it would be much better if the process manager monitored the main pro‐
cess inside the container. This situation may change in the future, but until then,
be aware of the systemd-docker project, which works around this by taking con‐
trol of the container’s cgroup. (For more information on the problem, see this
GitHub issue.)

To give you an example of how to manage containers with systemd, the following ser‐
vice files can be used to start our identidock service on a systemd host. For this exam‐
ple, I’ve used CentOS 7, but other systemd-based distributions should be very similar.
I haven’t included an upstart example, as all major distributions seem to be moving to
systemd. All of the files should be stored under /etc/systemd/system/.

Let’s start by looking at the service file for the Redis container, identidock.redis.service,
which isn’t dependent on any other containers:

44 | Chapter 2: Deploying Containers

https://github.com/ibuildthecloud/systemd-docker
https://github.com/docker/docker/issues/6791

[Unit]
Description=Redis Container for Identidock
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
Restart=always
ExecStartPre=-/usr/bin/docker stop redis
ExecStartPre=-/usr/bin/docker rm redis
ExecStartPre=/usr/bin/docker pull redis
ExecStart=/usr/bin/docker run --rm --name redis redis

[Install]
WantedBy=multi-user.target

We need to make sure Docker is running before starting the container.

As the Docker commands may take some time to run, it’s easiest to turn the
timeout off.

Before starting the container, we first remove any old container with the same
name, which means we will destroy the Redis cache on restart. But in the case of
identidock, it’s not an issue. The use of - at the start of the command tells sys‐
temd not to abort if the command returns a nonzero return code.

Doing a pull ensures we are running the newest version.

The identidock service identidock.identidock.service is similar but requires other serv‐
ices:

[Unit]
Description=identidock Container for Identidock
After=docker.service
Requires=docker.service
After=identidock.redis.service
Requires=identidock.redis.service
After=identidock.dnmonster.service
Requires=identidock.dnmonster.service

[Service]
TimeoutStartSec=0
Restart=always
ExecStartPre=-/usr/bin/docker stop identidock
ExecStartPre=-/usr/bin/docker rm identidock
ExecStartPre=/usr/bin/docker pull amouat/identidock
ExecStart=/usr/bin/docker run --name identidock \
 --link dnmonster:dnmonster \
 --link redis:redis \
 -e ENV=PROD \

Execution Options | 45

 amouat/identidock

[Install]
WantedBy=multi-user.target

In addition to Docker, we need to declare that we are dependent on the other
containers used in identidock-in this case, the Redis and dnmonster containers.
Both After and Requires are needed to avoided race conditions.

The proxy service (called identidock.proxy.service) looks like:

[Unit]
Description=Proxy Container for Identidock
After=docker.service
Requires=docker.service
Requires=identidock.identidock.service

[Service]
TimeoutStartSec=0
Restart=always
ExecStartPre=-/usr/bin/docker stop proxy
ExecStartPre=-/usr/bin/docker rm proxy
ExecStartPre=/usr/bin/docker pull amouat/proxy
ExecStart=/usr/bin/docker run --name proxy \
 --link identidock:identidock \
 -p 80:80 \
 -e NGINX_HOST=0.0.0.0 \
 -e NGINX_PROXY=http://identidock:9090 \
 amouat/proxy

[Install]
WantedBy=multi-user.target

And finally, the dnmonster service (called identidock.dnmonster.service) looks like:

[Unit]
Description=dnmonster Container for Identidock
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
Restart=always
ExecStartPre=-/usr/bin/docker stop dnmonster
ExecStartPre=-/usr/bin/docker rm dnmonster
ExecStartPre=/usr/bin/docker pull amouat/dnmonster
ExecStart=/usr/bin/docker run --name dnmonster amouat/dnmonster

[Install]
WantedBy=multi-user.target

We can now start identidock with systemctl start identidock.*. The major dif‐
ference between using this system and the Docker restart functionality is that restart‐

46 | Chapter 2: Deploying Containers

ing a stopped container will kick off a chain of restarts in systemd; if the Redis
container goes down, both the identidock and proxy containers will also be restarted.
This isn’t the case in Docker, as it knows how to update links without restarting the
container completely.

Despite the previously mentioned issues, it is worth noting that both CoreOS and the
Giant Swarm PaaS use systemd to control containers. At the moment, it seems fair to
say that there is unresolved tension between Docker and systemd, both of which want
to be in charge of the lifecycle of services running on the host.

Using a Configuration Management Tool
If your organization is responsible for more than a handful of hosts, chances are that
you’re using some sort of configuration management (CM) tool (and if not, you
probably should be). All projects need to consider how they are going to ensure the
operating system on the Docker host is up to date, especially with regard to security
patches. In turn, you also want to make sure the Docker images you are running are
up to date and you aren’t mixing multiple versions of your software. CM solutions
such as Puppet, Chef, Ansible, and Salt are designed to help manage these issues.

There are two main ways we can use CM tools with containers:

• We can treat our containers as VMs and use CM software to manage and update
the software inside them.

• We can use the CM software to manage the Docker host and ensure containers
are running the correct version of images, but view the containers themselves as
black boxes that can be replaced, but not modified.

The first approach is feasible, but is not the Docker way. You’ll be working against
Dockerfiles and the small-container-with-a-single-process philosophy that Docker is
built around. In the rest of this section, we’ll focus on the second alternative, which is
much more in line with the Docker philosophy and microservices approach.

In this approach, the containers themselves are similar to golden images in VM par‐
lance and shouldn’t be modified once running. When you need to update them, you
replace the entire container with one running the new image rather than try to
change anything running inside the image. This has the major advantage that you
know exactly what is running in your container by just looking at the image tag
(assuming you are using a proper tagging system and aren’t reusing tags).

Let’s look at an example of how you can do this.

Execution Options | 47

Ansible
For this example, we’ll use Ansible—it’s popular, easy to get started with, and open
source. This isn’t to say it is better or worse than other tools!

Unlike many other configuration management solutions, Ansible doesn’t require the
installation of agents on hosts. Instead, it mainly relies on SSH to configure hosts.

Ansible has a Docker module, which has functionality for both building and orches‐
trating containers. It is possible to use Ansible inside Dockerfiles to install and con‐
figure software, but here we will just consider using Ansible to set up a VM with our
identidock image. We’re only running on a single host so we’re not really making the
most the Ansible here, but it does demonstrate how well Ansible and Docker can be
used together.

Rather than install the Ansible client, we can just use an Ansible client image from
the Hub. There isn’t an official image available, but the generik/ansible image will
work for testing.

Start by creating a hosts file that contains a list of all the servers we want Ansible to
manage (make sure to include the IP address of your remote host or VM here):

$ cat hosts
[identidock]
46.101.162.242

Now we need to create the “playbook” for installing identidock. Create a file identi‐
dock.yml with the following contents, replacing the image names if you want to use
your own:

- hosts: identidock
 sudo: yes
 tasks:
 - name: easy_install
 apt: pkg=python-setuptools
 - name: pip
 easy_install: name=pip
 - name: docker-py
 pip: name=docker-py
 - name: redis container
 docker:
 name: redis
 image: redis:3
 pull: always
 state: reloaded
 restart_policy: always
 - name: dnmonster container
 docker:
 name: dnmonster
 image: amouat/dnmonster:1.0

48 | Chapter 2: Deploying Containers

http://www.ansible.com

 pull: always
 state: reloaded
 restart_policy: always
 - name: identidock container
 docker:
 name: identidock
 image: amouat/identidock:1.0
 pull: always
 state: reloaded
 links:
 - "dnmonster:dnmonster"
 - "redis:redis"
 env:
 ENV: PROD
 restart_policy: always
 - name: proxy container
 docker:
 name: proxy
 image: amouat/proxy:1.0
 pull: always
 state: reloaded
 links:
 - "identidock:identidock"
 ports:
 - "80:80"
 env:
 NGINX_HOST: www.identidock.com
 NGINX_PROXY: http://identidock:9090
 restart_policy: always

Most of the configuration is very similar to Docker Compose, but note that:

• We have to install docker-py on the host in order to use the Ansible Docker
module. This in turn requires us to install some Python dependencies.

• The pull variable determines when Docker images are checked for updates. Set‐
ting it to always ensures Ansible will check for a new version of the image each
time the task executes.

• The state variable determines what state the container should be in. Setting it to
reloaded will restart the container whenever a change is made to the configura‐
tion.

There are many more configuration options available, but this config will get us
something very similar to the other setups described in this chapter.

All that’s left to do is to run the playbook:

$ docker run -it \
 -v ${HOME}/.ssh:/root/.ssh:ro \
 -v $PWD/identidock.yml:/ansible/identidock.yml \
 -v $PWD/hosts:/etc/ansible/hosts \

Execution Options | 49

 --rm=true generik/ansible ansible-playbook identidock.yml

PLAY [identidock] ***

GATHERING FACTS ***
The authenticity of host '46.101.41.99 (46.101.41.99)' can't be established.
ECDSA key fingerprint is SHA256:R0LfM7Kf3OgRmQmgxINko7SonsGAC0VJb27LTotGEds.
Are you sure you want to continue connecting (yes/no)? yes
Enter passphrase for key '/root/.ssh/id_rsa':
ok: [46.101.41.99]

TASK: [easy_install] **
changed: [46.101.41.99]

TASK: [pip] ***
changed: [46.101.41.99]

TASK: [docker-py] ***
changed: [46.101.41.99]

TASK: [redis container] ***
changed: [46.101.41.99]

TASK: [dnmonster container] ***
changed: [46.101.41.99]

TASK: [identidock container] **
changed: [46.101.41.99]

TASK: [proxy container] ***
changed: [46.101.41.99]

PLAY RECAP **
46.101.41.99 : ok=8 changed=7 unreachable=0 failed=0
$ curl 46.101.41.99
<html><head><title>Hello...

This command is needed to map in the SSH key pair used to access the remote
server.

This will take some time, as Ansible will need to pull the images. But once it’s fin‐
ished, our identidock application should be running.

This brief example has merely scratched the surface of Ansible’s full power. There are
many more things you can do, especially in terms of defining processes to perform
rolling updates of containers without breaking dependencies or significant downtime.

50 | Chapter 2: Deploying Containers

Host Configuration
So far, this chapter has assumed that containers are being run on the stock Docker
droplet (Digital Ocean’s term for preconfigured VMs) provided by Digital Ocean
(which, at the time of writing, runs Ubuntu 14.04). But there are many other choices
for the host operating system and infrastructure with different trade offs and advan‐
tages. In particular, if you are responsible for running an on-premise resource, you
should consider your options carefully.

Although it is possible to provision bare-metal machines for running Docker hosts
(both on-premise and in the cloud), currently the most practical option is to use
VMs. Most organizations will already have some sort of VM service you can use to
provision hosts for your containers and provides strong guarantees of isolation and
security between users.

Choosing an OS
There are already a few choices in this space, with different advantages and disadvan‐
tages. If you want to run a small- to medium-sized application, you will probably find
it easiest to stick to what you know—if you use Ubuntu or Fedora and you or your
organization is familiar with it with that OS, use it (but be aware of the storage driver
issues discussed shortly). If, on the other hand, you want to run a very large applica‐
tion or cluster (hundreds or thousands of containers across many hosts), you will
want to look at more specialized options such as CoreOS, Project Atomic, or
RancherOS, as well as the orchestration solutions we discuss in ???.

If you’re running on a cloud host, most of them will already have a Docker image
ready to use, which will have been tried and tested to work on their infrastructure.

Choosing a Storage Driver
There are currently several storage drivers supported by Docker, with more on the
way. Choosing an appropriate storage driver is essential to ensuring reliability and
efficiency in production. Which driver is best depends on your use case and opera‐
tional experience. The current options are:

AUFS
The first storage driver for Docker. To date, this is probably the most tested and
commonly used driver. Along with Overlay, it has the major advantage of sup‐
porting sharing of memory pages between containers—if two containers load
libraries or data from the same underlying layer, the OS will be able to use the
same memory page for both containers. The major problem with AUFS is that it
is not in the mainline kernel, although it has been used by Debian and Ubuntu
for some time. Also, AUFS operates on the file level, so if you make a small
change to a large file, the whole file will be copied into the container’s read/write

Host Configuration | 51

4 Don’t ask me how to pronounce BTRFS: some people say “ButterFS” and some say “BetterFS.” I say “FSCK.”
5 In thin provisioning, rather than allocating all the resources a client asks for immediately, resources are only

allocated on demand. This contrasts with thick provisioning, where the requested resources are immediately
set aside for the client, even though the client may only use a fraction of the resources.

layer. In contrast, BTRFS and Device mapper operate on the block level and are
therefore more space efficient with large files. If you currently use an Ubuntu or
Debian host, you will most likely be using the AUFS driver.

Overlay
Very similar to AUFS and was merged into the Linux kernel in version 3.18.
Overlay is very likely to be the main storage driver going forward and should
have slightly better performance than AUFS. Currently, the main drawbacks are
the need to have an up-to-date kernel (which will require patching for most dis‐
tros) and that it has seen less testing than AUFS and some of the other options.

BTRFS
A copy-on-write filesystem4 focused on supporting fault tolerance and very large
files sizes and volumes. Because BTRFS has several quirks and gotchas (especially
regarding chunks), it’s recommended only for organizations that have experience
with BTRFS or require a particular feature of BTRFS that is not supported by the
other drivers. It may be a good choice if your containers read and write to very
large files due to the block-level support.

ZFS
This much-loved filesystem was originally developed by Sun Microsystems. Simi‐
lar to BTRFS in many regards, but arguably with better performance and reliabil‐
ity. Running ZFS on Linux isn’t trivial, as it can’t be included in the kernel
because of licensing issues. For this reason, it’s only likely to be used by organiza‐
tions with substantial existing experience with ZFS.

Device mapper
Used by default on Red Hat systems. Device mapper is a kernel driver that is used
as a foundation to several other technologies, including RAID, device encryption,
and snapshots. Docker uses Device mapper’s thin provisioning5 (sometimes
called thinp) target to do copy-on-write on the level of blocks, rather than files.
The “thin pool” is allocated from a sparse file that defaults to 100 GB. Containers
are allocated a filesystem backed by the pool when created whose size defaults to
100 GB (as of Docker 1.8). As the files are sparse, the actual disk usage is much
less, but a container won’t be able to grow past 100 GB without changing the
defaults. Device mapper is arguably the most complex of the Docker storage
drivers and is a common source of problems and support requests. If possible, I
would recommend using one of the alternatives. But if you do use device mapper,

52 | Chapter 2: Deploying Containers

be aware that there are a lot of options that can be tuned to provide better perfor‐
mance (in particular, it’s a good idea to move storage off the default “loopback”
device and onto a real device).

VFS
The default Linux Virtual Filesystem. This does not implement CoW and
requires making a full copy of the image when starting a container. This slows
down starting containers significantly and massively increases the amount of disk
space required. The advantages are that it is simple and doesn’t require any spe‐
cial kernel features. VFS may be a reasonable choice if you have problems with
other drivers and don’t mind taking the performance hit (e.g., if you have a small
number of long-lived containers).

Unless you have a specific reason to choose an alternative, I would suggest running
either AUFS or Overlay, even if it means applying kernel updates.

Switching storage driver
Switching storage driver is pretty easy, assuming you have the requisite dependencies
installed. Just restart the Docker daemon, passing the appropriate value for
--storage-driver (-s for short). For example, use docker daemon -s overlay to
start the daemon with the overlay storage driver if your kernel supports it. It’s also
important to note the --graph or -g argument, which sets the root of the Docker
runtime—you may need to move this to a partition running the appropriate filesys‐
tem (e.g., docker daemon -s btrfs -g /mnt/btrfs_partition for the BTRFS
driver).

To make the change permanent, you’ll need to edit the startup script or config file for
the docker service. On Ubuntu 14.04, this means editing the variable DOCKER_OPTS in
the file /etc/default/docker.

Host Configuration | 53

Moving Images Between Storage Drivers

When you switch storage driver, you will lose access to all your old
containers and images. Switching back to the old storage driver will
restore access. To move an image to a new storage driver, just save
the image to a TAR file and then load in the new filesystem. For
example:

$ docker save -o /tmp/debian.tar debian:wheezy
$ sudo stop docker
$ docker daemon -s vfs
...

From a new terminal:
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
$ docker load -i /tmp/debian.tar
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
debian wheezy b3d362b23ec1 2 days ago 84.96 MB

Specialist Hosting Options
There are already some specialist container hosting options that don’t require you to
manage hosts directly, including Triton, Google Container Engine, Amazon EC2
Container Service, and Giant Swarm. The following subsections take a closer look at
each of these options.

Triton
Triton from Joyent is perhaps the most interesting of the options, as it doesn’t use
VMs internally. This gives Triton a significant performance benefit over VM-based
solutions and allows for provisioning on a per-container basis.

Triton doesn’t use the Docker engine but has its own container engine running on the
SmartOS hypervisor (which has its roots in Solaris) using Linux Virtualization. By
implementing the Docker remote API, Triton is fully compatible with the normal
Docker client, which is used as the standard interface to Triton. Images from the
Docker Hub work as normal.

Triton is open source and available in both a hosted version that runs on the Joyent
cloud and an on-premise version. We can quickly get identidock running using the
public Joyent public cloud. After setting up a Triton account and pointing the Docker
client at Triton, try running a docker info:

$ docker info
Containers: 0
Images: 0
Storage Driver: sdc

54 | Chapter 2: Deploying Containers

https://www.joyent.com

 SDCAccount: amouat
Execution Driver: sdc-0.3.0
Logging Driver: json-file
Kernel Version: 3.12.0-1-amd64
Operating System: SmartDataCenter
CPUs: 0
Total Memory: 0 B
Name: us-east-1
ID: 92b0cf3a-82c8-4bf2-8b74-836d1dd61003
Username: amouat
Registry: https://index.docker.io/v1/

Note the values for the OS and execution driver, which indicate we aren’t running on
a normal Docker engine. We can use Compose and the following triton.yml file to
launch identidock, as Triton supports the majority of the Docker engine API:

proxy:
 image: amouat/proxy:1.0
 links:
 - identidock
 ports:
 - "80:80"
 environment:
 - NGINX_HOST=www.identidock.com
 - NGINX_PROXY=http://identidock:9090
 mem_limit: "128M"
identidock:
 image: amouat/identidock:1.0
 links:
 - dnmonster
 - redis
 environment:
 ENV: PROD
 mem_limit: "128M"
dnmonster:
 image: amouat/dnmonster:1.0
 mem_limit: "128M"
redis:
 image: redis
 mem_limit: "128M"

This is almost the same as the prod.yml from before, with the addition of memory
settings that tell Triton the size of container to launch. We’re also using public images
rather than building our own (Triton doesn’t currently support docker build).

Launch the application:

$ docker-compose -f triton.yml up -d
...
Creating triton_proxy_1...
$ docker inspect -f {{.NetworkSettings.IPAddress}} triton_proxy_1
165.225.128.41

Specialist Hosting Options | 55

6 See the paper, “Large-Scale Cluster Management at Google with Borg”, for a fascinating look at how to run a
cluster handling hundreds of thousands of jobs.

$ curl 165.225.128.41
<html><head><title>Hello...

Triton automatically uses a publicly accessible IP when it sees a published port.

After running containers on Triton, make sure to stop and remove them; Triton
charges for stopped but not removed containers.

Using the native Docker tools to interact with Triton is a great experience, but there
are some rough edges; not all API calls are supported, and there are some issues sur‐
rounding how Compose handles volumes, but these should be worked out in time.

Until mainstream cloud providers are convinced that the isolation guarantees of the
Linux kernel are strong enough that containers can be run without security concerns,
Triton is one of the most attractive solutions for running containerized systems.

Google Container Engine
Google Container Engine (GKE) takes a more opinionated approach to running con‐
tainers, building on top of the Kubernetes orchestration system.

Kubernetes is an open source project designed by Google, using some of the lessons
learned from running containers internally with their Borg cluster manager.6

Deploying an application to GKE requires a basic understanding of Kubernetes and
the creation of some Kubernetes-specific configuration files (this will be more fully
discussed in ???).

In return for this extra work in configuring your application, you get services such as
automatic replication and load balancing. These may sound like services that are only
needed for large services with high traffic and many distributed parts, but they
quickly become important for any service that wants to have any guarantees about
up-time.

I’d strongly recommend Kubernetes, and GKE in particular, for deploying container
systems, but be aware that this will tie to you to the Kubernetes model, making it
more difficult to move your system between providers.

Amazon EC2 Container Service
Amazon’s EC2 Container Service (ECS) helps you run containers on Amazon’s EC2
infrastructure. ECS provides a web interface and an API for launching containers and
managing the underlying EC2 cluster.

56 | Chapter 2: Deploying Containers

https://research.google.com/pubs/pub43438.html
https://cloud.google.com/container-engine/
https://aws.amazon.com/ecs/

On each node of the cluster, ECS will start a container agent, which communicates
with the ECS service and is responsible for starting, stopping, and monitoring con‐
tainers.

It’s relatively quick to get identidock running on ECS, although it does involve a typi‐
cal AWS interface with dozens of configuration options. Once you are registered with
ECS and have created a cluster, we need to upload a “Task Definition” for identidock.
The following JSON can be used as the definition for identidock:

{
 "family": "identidock",
 "containerDefinitions": [
 {
 "name": "proxy",
 "image": "amouat/proxy:1.0",
 "cpu": 100,
 "memory": 100,
 "environment": [
 {
 "name": "NGINX_HOST",
 "value": "www.identidock.com"
 },
 {
 "name": "NGINX_PROXY",
 "value": "http://identidock:9090"
 }
],
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "links": [
 "identidock"
],
 "essential": true
 },
 {
 "name": "identidock",
 "image": "amouat/identidock:1.0",
 "cpu": 100,
 "memory": 100,
 "environment": [
 {
 "name": "ENV",
 "value": "PROD"
 }
],
 "links": [
 "dnmonster",

Specialist Hosting Options | 57

 "redis"
],
 "essential": true
 },
 {
 "name": "dnmonster",
 "image": "amouat/dnmonster:1.0",
 "cpu": 100,
 "memory": 100,
 "essential": true
 },
 {
 "name": "redis",
 "image": "redis:3",
 "cpu": 100,
 "memory": 100,
 "essential": false
 }
]
}

Each container needs to specify an amount of memory (in megabytes) and number of
CPU units. The essential key defines whether or not the task should be stopped if
that container fails. In our case, the Redis container can be considered as nonessen‐
tial, as the application will still work without it. The other fields should be self-
explanatory.

Once the task has been successfully created, it needs to be started on the cluster. Iden‐
tidock should be started as a service, rather than a one-off task. Running as a service
means that ECS will monitor the containers to ensure availability and provides the
option to connect to Amazon’s Elastic Load Balancer to spread traffic between instan‐
ces. When creating the service, ECS will ask for a name and the number of task
instances it should ensure are running. After creating the service and waiting for the
task to start, you should be able to access identidock via the IP address of the EC2
instance. This can be found on the task instance details page, in the expanded infor‐
mation for the proxy container.

Stopping the service and associated resources takes several steps. First, the service
needs to be updated and the number of tasks changed to 0, to avoid ECS trying to
bring up replacement tasks when shutting down. At this point, the service can be
deleted. Before the cluster can be deleted, you will also need to deregister the con‐
tainer instances. Be careful to also stop any associated resources you may have
started, such as Elastic Load Balancers or EBS storage.

There is a lot of engineering work going on behind the scenes in ECS. It’s easy to
launch hundreds or thousands of containers with a few clicks, providing serious capa‐
bilities for scaling. The scheduling of containers onto hosts is highly configurable,
allowing users to optimize for their own needs, such as maximum efficiency or maxi‐

58 | Chapter 2: Deploying Containers

7 No relation to Docker’s clustering solution, which is also called Swarm.

mum reliability. Users can replace the default ECS scheduler with their own or use a
third-party solution such as Marathon (see ???).

ECS also integrates with existing Amazon features such as Elastic Load Balancer for
spreading load over multiple instances and the Elastic Block Store for persistent stor‐
age.

Giant Swarm
Giant Swarm bills itself as “an opinionated solution for microservice architectures,”
which really means it’s a fast and easy way to launch a Docker-based system using a
specialized configuration format. Giant Swarm offers a hosted version on a shared
cluster as well as a dedicated offering (where Giant Swarm will provision and main‐
tain bare-metal hosts for you) and an on-premise solution. At the time of writing, the
shared offering is still in alpha, but the dedicated offering is production ready.

Giant Swarm is a rarity in that it makes minimal-to-no use of VMs. Users with strict
security requirements have separate bare-metal hosts, but the shared cluster has con‐
tainers from separate users running next to each other.

Let’s see how to run identidock on the Giant Swarm shared cluster. Assuming you’ve
got access to Giant Swarm and installed the Swarm CLI,7 start by creating the follow‐
ing configuration file and saving it as swarm.json:

{
 "name": "identidock_svc",
 "components": {
 "proxy": {
 "image": "amouat/proxy:1.0",
 "ports": [80],
 "env": {
 "NGINX_HOST": "$domain",
 "NGINX_PROXY": "http://identidock:9090"
 },
 "links": [{
 "component": "identidock",
 "target_port": 9090
 }],
 "domains": { "80": "$domain" }
 },
 "identidock": {
 "image": "amouat/identidock:1.0",
 "ports": [9090],
 "links": [
 {
 "component": "dnmonster",

Specialist Hosting Options | 59

https://giantswarm.io

 "target_port": 8080
 },
 {
 "component": "redis",
 "target_port": 6379
 }
]
 },
 "redis": {
 "image": "redis:3",
 "ports": [6379]
 },
 "dnmonster": {
 "image": "amouat/dnmonster:1.0",
 "ports": [8080]
 }
 }
}

Now it’s time to kick identidock into action:

$ swarm up --var=domain=identidock-$(swarm user).gigantic.io
Starting service identidock_svc...
Service identidock_svc is up.
You can see all components using this command:

 swarm status identidock_svc

$ swarm status identidock_svc
Service identidock_svc is up

component image instanceid created status
dnmonster amouat/dnmonster:1.0 m6eyoilfiei1 2015-09-04 09:50:40 up
identidock amouat/identidock:1.0 r22ut7h0vx39 2015-09-04 09:50:40 up
proxy amouat/proxy:1.0 6dr38cmrg3nx 2015-09-04 09:50:40 up
redis redis:3 jvcf15d6lpz4 2015-09-04 09:50:40 up
$ curl identidock-amouat.gigantic.io
<html><head><title>Hello...

Here we’ve shown off one of the features that distinguishes Giant Swarm configura‐
tion files from Docker Compose—the ability use template variables. In this case,
we’ve passed in the hostname we want on the command line, and Swarm has gone
ahead and replaced the $domain in the swarm.json with this value. Other features pro‐
vided by swarm.json include the ability to define pods—groups of containers that are
scheduled together—as well as the ability to define how many instances of a container
should be running.

Finally, in addition to the Swarm CLI, there is a web UI for monitoring services and
viewing logs and a REST API for automating interaction with Giant Swarm.

60 | Chapter 2: Deploying Containers

8 If you’re using configuration management software such as Ansible to manage container deployment, it may
come with or prescribe a solution to this problem.

Persistent Data and Production Containers
Arguably, the data storage story hasn’t changed much under Docker, at least at the
larger end of the scale. If you run your own databases, you have the choice of using
Docker container, VMs, or raw metal. Whenever you have a large amount of data,
your VM or container will end up effectively pinned to the host machine due to the
difficulties of moving the data around. This means the portability benefits normally
associated with containers won’t be of help here, but you may still want to use con‐
tainers to keep a consistent platform and for isolation benefits. If you have concerns
about performance, using --net=host and --privileged will ensure the container is
effectively as efficient as the host VM or box, but be aware of the security implica‐
tions. If you don’t run your own databases, but use a hosted service such as Amazon
RDS, things continue much as before.

At the smaller end of the scale, where containers have configuration files and moder‐
ate amounts of data, you may find volumes limiting, as they tie you to a host
machine, making scaling and migrating containers more difficult. You may want to
consider moving such data to separate key-value stores or DBs, which you can also
run in a container. An interesting alternative approach is to use Flocker to manage
your data volumes. Flocker leverages the features of the ZFS filesystem to support the
migration of data with containers. If you’re trying to take a microservices approach,
you will find things a lot simpler if you strive to keep your containers stateless where
possible.

Sharing Secrets
You will probably have some sensitive data, such as passwords and API keys, that
needs to be securely shared with your containers. The following subsections describe
the various approaches to doing this, along with their advantages and disadvantages.8

Saving Secrets in the Image
Never do this. It’s a bad idea.TM

It might be the easiest solution, but it means the secret is now available to anyone
with access to the image. It can’t be deleted because it will still exist in previous layers.
Even if you’re using a private registry or not using a registry at all, it would be far too
easy for someone to accidentally share the image, and there is no need for everyone
who can access the image to know the secret. Also, it ties your image to a specific
deployment.

Persistent Data and Production Containers | 61

https://github.com/ClusterHQ/flocker

9 It’s worth pointing out that the Twelve-Factor methodology predates Docker containers, so some advice needs
to be adapted.

You could store secrets encrypted in images, but then you still need a way of passing
the decryption key, and you are unnecessarily giving attackers something to work
with.

Just forget about this idea. I only included it here so I can point at this section when
someone does it and it goes horribly wrong.

Passing Secrets in Environment Variables
Using environment variables to pass secrets is a very straightforward solution and is
considerably better than baking secrets into the image. It’s simple to do: just pass the
secrets as arguments to docker run. For example:

$ docker run -d -e API_TOKEN=my_secret_token myimage

A better method is to pass the variables in via a file, which has the advantage of keep‐
ing them from appearing in shell history or the output of the ps command (which
will be visible to other users on a shared host):

$ cat pass.txt
API_TOKEN=my_secret_token
$ docker run -d --env-file ./pass.txt myimage

Many applications and configuration files will support using environment variables
directly. For the rest, you may need some scripting similar to what we did in “Using a
Proxy”.

This is the method recommended by The Twelve-Factor App, a popular and respec‐
ted methodology for building software-as-a-service applications.9 While I would
strongly recommend reading this document and implementing most of the advice,
storing secrets in the environment has some serious drawbacks, including:

• Environment variables are visible to all child processes, docker inspect, and any
linked containers. None of these has a good reason for being able to see these
secrets.

• The environment is often saved for logging and debugging purposes. There is a
large risk of secrets appearing in debug logs and issue trackers.

• They can’t be deleted. Ideally we would overwrite or wipe the secret after using it,
but this isn’t possible with Docker containers.

For these reasons, I would advise against using this method.

62 | Chapter 2: Deploying Containers

http://12factor.net

Passing Secrets in Volumes
A slightly better—but still far from perfect—solution is to use volumes to share
secrets. For example:

$ docker run -d -v $PWD:/secret-file:/secret-file:ro myimage

Unless you map in whole configuration files with secrets, you will probably require
some scripting to handle secrets passed this way. If you’re feeling really clever, it is
possible to create a temporary file with the secret and delete the file after reading it
(be careful not to delete the original though!).

For configuration files that use environment variables, you can also create a script
that sets up the environment variables and can be sourced prior to running the
appropriate application. For example:

$ cat /secret/env.sh
export DB_PASSWORD=s3cr3t
$ source /secret/env.sh && run_my_app.sh
...

This has the important advantage of not exposing the variables to docker inspect or
linked containers.

The major drawback with this approach is that it requires you to keep your secrets in
files, which are all too easy to check into version control. It can also be a more fiddly
solution that typically requires scripting.

Using a Key-Value Store
Arguably the best solution is to use a key-value store to keep secrets and retrieve
them from the container at runtime. This allows a level of control over the secrets
that isn’t possible with the previous options, but also requires more set up and putting
your trust in the key-value store.

Some solutions in this area include:

KeyWhiz
Stores secrets encrypted in memory and provides access via a REST API and a
CLI. Developed and used by Square (a payment-processing company).

Vault
Can store secrets encrypted in a variety of backends, including file and Consul.
Also has a CLI and API. Has several features not currently present in KeyWhiz,
but is arguably less mature. Developed by HashiCorp, which is also behind the
Consul service discovery tool and the Terraform infrastructure configuration
tool.

Sharing Secrets | 63

https://square.github.io/keywhiz/
https://hashicorp.com/blog/vault.html

10 Virtual Ethernet, or veth, is a virtual network device with its own MAC address that was developed for use in
VMs.

Crypt
Stores values encrypted in the etcd or Consul key-value stores. The major advan‐
tage with this approach is that it allows a degree of control over the secrets that
wasn’t previously possible. It becomes easy to change and delete secrets, apply
“leases” to secrets so they expire after a given time period, or to lock down access
to secrets in case of a security alert.

However, there is still a problem here: how does the container authenticate itself to
the store? Typically, you will still need to pass the container either a private key using
a volume or a token via an environment variable. The previous objections to using an
environment variable can be mitigated by creating a one-use token that is revoked
immediately after use. Another solution currently in development is to use a volume
plugin for the store that mounts secrets from the store as a file inside the container.
GitHub has more information on this approach with regard to the KeyWhiz store.

This type of solution will be the future. The level of control it provides over sensitive
data is more than worth any complications in implementation, which should be
reduced as tooling improves. However, you may wish to wait and see how the sector
evolves before making a decision. In the meantime, use volumes to share your secrets,
but be very careful not to check them into SCM.

Networking
Networking is discussed in depth in ???. However, it is worth noting that if you’re
using the stock Docker networking in production, you are taking a considerable per‐
formance hit—setting up the Docker bridge and using veth10 means that a lot of net‐
work routing is happening in user space, which is a lot slower than being handled by
routing hardware or the kernel.

Production Registry
With identidock, we’ve just been using the Docker Hub to retrieve our images. Most
production setups will include a registry (or multiple registries) to provide fast access
to images and avoid relying on a third party for crucial infrastructure (some organi‐
zations will also be uneasy about storing their code with a third party, whether it’s in a
private repository or not). For details on setting up a registry, refer back to ???.

Keeping the images inside the registry up to date and correct is important—you don’t
want hosts to be able to pull old and potentially vulnerable images. For this reason,
it’s a good idea to run regular audits on registries, as discussed in ???. However,

64 | Chapter 2: Deploying Containers

https://xordataexchange.github.io/crypt/
https://github.com/calavera/docker-volume-keywhiz

remember that each Docker host will also maintain its own cache of images, which
also needs to be checked.

The Docker distribution project is currently working on supporting highly available
and scalable registry deployments using techniques such as mirroring.

Continuous Deployment/Delivery
Continuous delivery is the extension of continuous integration to production; engi‐
neers should be able to make changes in development, have them run through test‐
ing, and then have them be available for deployment at the touch of a button.
Continuous deployment takes this a step further and automatically pushes changes
that pass testing to deployment.

We saw in Chapter 1 how to set up a continuous integration system using Jenkins.
Extending this to continuous deployment can be achieved by pushing images to the
production registry and migrating running containers to the new image. Migrating
images without downtime requires bringing up new containers and rerouting traffic
before stopping the old containers. As discussed in “Testing in Production”, there are
several possible ways to achieve this in a safe manner, such as blue/green deploy‐
ments and ramped deployments. Implementing these techniques is often done with
in-house tooling, although frameworks such as Kubernetes offer built-in solutions,
and I expect to see specialist tools arrive on the market.

Conclusion
We’ve covered a great deal of information in this chapter-there are a lot of different
aspects to consider when deploying containers to production, even with something as
simple as identidock.

Although the container space is still very young, there are already several production-
grade options for hosting containers. The best option to choose is dependent on the
size and complexity of your system and how much effort and money you are willing
to expend on deployment and maintenance. Small deployments can be managed by
simply running a Docker Engine on a VM in the cloud, but this incurs a large main‐
tenance burden with larger deployments. This can be mitigated by using systems such
as Kubernetes and Mesos, which are discussed in ???, or by using a specialist hosting
service such as Giant Swarm, Triton, or ECS.

In this chapter, we looked at some of the issues commonly faced in production, from
tasks as seemingly simple as launching containers to thorny issues such as passing
secrets, handling data volumes, and continuous deployment. Some of these issues
require new approaches in a containerized system, especially when it is comprised of
dynamic microservices. New patterns and best practices will be developed to deal

Continuous Deployment/Delivery | 65

https://github.com/docker/distribution/

with these issues, leading to new tooling and frameworks. Containers can already be
used reliably in production, but the future is even brighter.

66 | Chapter 2: Deploying Containers

About the Author
Adrian Mouat is the chief scientist for Container Solutions, a pan-European services
company that specializes in Docker and Mesos. Previously, he was an applications
consultant at EPCC, part of the University of Edinburgh.

Colophon
The animal on the cover of Using Docker is a bowhead whale (Balaena mysticetus). It
is a dark-colored, stocky whale, notable for its lack of dorsal fin. Bowhead whales live
their lives in Arctic and sub-Arctic waters, unlike other whales that migrate to low-
latitude waters to feed or reproduce.

Bowhead whales are large and robust, growing up to 53 feet (males) and 59 feet
(females). They have massive, triangular skulls that they use to break through Arctic
ice in order to breathe. Bowhead whales have strongly bowed, white lower jaws and
narrow upper jaws, which house the longest baleen of any whale (at 9.8 feet) and is
used to strain tiny prey from the water. Paired blowholes are found at the highest
point of the whale’s head; they can spout water 20 feet high. It boasts the thickest
blubber of any animal, ranging from 17–20 inches thick.

Bowhead whales travel alone or in small pods of six. They can remain underwater for
up to an hour, but tend to limit their single dives to 4–15 minutes. These whales typi‐
cally travel about 2–5 kilometers per hour—slow for a whale—but when in danger,
they can reach speeds of 10 km/hr. Despite not being very social, bowhead whales are
the most vocal of large whales. They communicate using underwater sounds while
traveling, socializing, and feeding. During mating season, bowheads make long, com‐
plex songs as mating calls.

These whales are known as the longest-living mammals, with an average lifespan of
over 200 years. In 2007, a 49-foot bowhead whale was caught off the coast of Alaska
with an explosive harpoon head found embedded in its neck blubber. The weapon
was traced back to a major whaling center in New Bedford, Massachusetts, and deter‐
mined to have been manufactured in 1890. Other bowhead whales have been aged
between 135 and 172 years old. Once in danger of extinction, bowhead whales have
increased since commercial whaling ceased. Small numbers (25–40) are still hunted
during subsistence hunts by Alaska natives, but this level of hunt is not expected to
affect the population’s recovery.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover image is from Braukhaus Lexicon. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	nginx
	Copyright
	Table of Contents
	Foreword
	Chapter 1. Continuous Integration and Testing with Docker
	Adding Unit Tests to Identidock
	Creating a Jenkins Container
	Triggering Builds

	Pushing the Image
	Responsible Tagging
	Staging and Production
	Image Sprawl
	Using Docker to Provision Jenkins Slaves

	Backing Up Jenkins
	Hosted CI Solutions
	Testing and Microservices
	Testing in Production

	Conclusion

	Chapter 2. Deploying Containers
	Provisioning Resources with Docker Machine
	Using a Proxy
	Execution Options
	Shell Scripts
	Using a Process Manager (or systemd to Rule Them All)
	Using a Configuration Management Tool

	Host Configuration
	Choosing an OS
	Choosing a Storage Driver

	Specialist Hosting Options
	Triton
	Google Container Engine
	Amazon EC2 Container Service
	Giant Swarm

	Persistent Data and Production Containers
	Sharing Secrets
	Saving Secrets in the Image
	Passing Secrets in Environment Variables
	Passing Secrets in Volumes
	Using a Key-Value Store

	Networking
	Production Registry
	Continuous Deployment/Delivery
	Conclusion

	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

