
NGINX SSL
Performance

 © Nginx Inc., 450 Townsend St, San Francisco, CA 94107

NGINX SSL Performance

NGINX is commonly used to terminate encrypted SSL and TLS connections on behalf of upstream
web and application servers. SSL termination at the edge of an application reduces the load on
internal servers, simplifies certificate management and reduces certificate costs. However,
because it is extremely CPU-intensive, it can create a scalability bottleneck that may limit growth.

This paper investigates the performance of NGINX’s SSL termination under a range of traffic
types and ciphers. It seeks to establish a correlation between OpenSSL benchmarks and NGINX
performance, to enable users to rapidly estimate the capacity of selected hardware or virtual
machines.

Summary of Results

A single virtualized Intel core can typically perform up to 350 full 2048-bit SSL handshake
operations per second, using modern cryptographic ciphers. This equates to several hundred
new users of your service per second per core.

NGINX’s SSL performance scales with the number of cores available on the host server, until
other limits (typically bandwidth) are met, so an 8-core virtual machine could accept traffic from
over 1,000 new users per second and still have resources to spare.

Older, less compute-intensive ciphers can give significantly better performance in some
benchmarks, but the benefits are outweighed by the security improvements of modern SSL and
TLS ciphers.

NGINX SSL
Performance

 © Nginx Inc., 450 Townsend St, San Francisco, CA 94107

Interpreting the Results – some background on SSL

SSL connections are complex to analyze because there are many variables that affect
performance – the server key size, the key exchange protocol, the bulk cipher and the quantity of
data transferred down that SSL connection. Furthermore, the industry standards for SSL and TLS
operations have changed in the last 3 years in response to developments in encryption-breaking
technology and concerns about government snooping on traffic.

Server Key size – 1024 or 2048-bit?

An SSL connection will begin with an authentication step, where the server presents an
identifying ‘public certificate’ and the client verifies the server owns the corresponding RSA
private key.

In this step, the client encrypts some random data using the server’s public key (in the public
certificate) and the server then decrypts it using the private key. Both parties must agree on the
value of the client’s random data for the SSL handshake to proceed successfully.

What has changed? Until recently, 1024-bit RSA private keys were common, but industry
standards have now fully migrated to 2048-bit keys. In general, operations using 2048-bit keys
are 5 times slower than 1024-bit keys.

Key Agreement - RSA or Perfect Forward Secrecy

The client and server then need to negotiate a shared secret that is used to derive the encryption
key for the SSL connection. The results of the RSA operation used in the authentication step can
be used to generate the shared secret, or an additional key-exchange step can be used.

What has changed? Many published benchmarks select an SSL cipher that uses the RSA
operation in the authentication step to generate the shared secret. However, RSA-encrypted
session keys can be decrypted if the RSA key is compromised in the future.

Modern SSL implementations favor ‘Perfect Forward Secrecy’ methods1. This involves an
additional step in the SSL handshake where the server generates an ephemeral (temporary) key
pair for the connection. A shared secret is negotiated securely using this ephemeral key, and the
ephemeral key is then destroyed. However, improved security comes at the cost of greater
computation on behalf of the server, and a corresponding performance impact.

1 http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html

NGINX SSL
Performance

 © Nginx Inc., 450 Townsend St, San Francisco, CA 94107

Bulk Ciphers – RC4 or AES?

Once the shared secret is determined, both parties must negotiate a stream or block cipher (to
encrypt the data) and signing method (to generate message authentication codes) for data
transmission. The shared secret is used to derive the encryption and signing keys.

What has changed? The RC4 bulk cipher is now regarded as weak and now the slower AES128
cipher is preferred. MD5 and SHA-1 signing methods have now been replaced with SHA-256 or
other more secure but more expensive signing methods.

SSL Session Reuse

The expensive authentication and key negotiation operations in an SSL handshake do not need
be performed for every HTTP request. Clients are extremely efficient at using single HTTPS
connections for multiple GETs and reusing SSL session credentials across multiple SSL
connections.

The number of RSA operations per second that a server can perform provides an upper limit on
the number of new clients per second, not a limit on the number of individual requests per
second the server can perform.

Summary

It is very difficult to compare SSL performance benchmarks from different sources or vendors
without knowing the precise details of the SSL ciphers used. In this study, we will consider two
cipher combinations:

• TLS_RSA_WITH_RC4_128_SHA illustrates ‘legacy performance’;
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 gives a more representative measure of

contemporary performance.

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (or a related cipher) is necessary to score an ‘A’ on
Qualys’ SSL Server Test.2

It’s even more difficult to infer real-world performance from benchmark results. The aim of this
study is to help you make some good judgements, but it’s no substitute for evaluating
performance on your own hardware, with your own content, applications and users.

2 https://www.ssllabs.com/ssltest/

NGINX SSL
Performance

 © Nginx Inc., 450 Townsend St, San Francisco, CA 94107

System Under Test

NGINX 1.7.2 was tested on Ubuntu 14.04 on a range of virtual machine sizes from DigitalOcean.
No operating system or NGINX tuning was applied, other than to increase NGINX’s
worker_processes to match the number of cores in each virtual machine.

 CPU cores Network
Throughput
(MBs)

2048 RSA
ops per
second

RC4
throughput
(MBs)

AES
throughput
(MBs)

Server-1 1 112 619.5 516 175
Server-2 2 111 1120 1101 406
Server-3 4 111 2380.4 2352 861
Server-4 8 110 4404.8 4300 1575

Network throughput was measured using ab (apachebench) to transfer large files from client to
server using HTTP. 111 MBs application-layer throughput is consistent with a 1 GbE network, and
this should be regarded as the peak possible application network performance.

Cryptographic speed tests were taken using openssl speed. This is an easy-to-run process, and
this study investigates the correlations between openssl speed results and the benchmark
results:

• RSA operations per second measured using openssl speed rsa (signatures per
second with 2048-bit keys).

• RC4 throughput measured using openssl speed rc4 (bulk encryption with 1024-byte

block size).

• AES throughput measured using openssl speed aes, (128-bit key, 1024-byte block
sizes).

OpenSSL speed results are multiplied by the number of cores in the server to get total server
capacity.

NGINX SSL
Performance

 © Nginx Inc., 450 Townsend St, San Francisco, CA 94107

Results – Requests per second and Bandwidth

For small requests, where the performance is dominated by the handshake, the additional
ECDHA key exchange step reduces the performance of the ECDHA-RSA cipher to approximately
85% the performance of the simple RSA cipher.

For larger requests, where the performance is dominated by the bulk cipher, the AES-based
ciphers are approximately 35% the performance of the RC4 ciphers. Where performance is
dominated by available bandwidth, both ciphers are then limited by network bandwidth.

0.0	

500.0	

1000.0	

1500.0	

2000.0	

2500.0	

3000.0	

0	
 1k	
 10k	
 100k	
 1m	

Re
qu
es
ts
	
 p
er
	
 S
ec
on
d	

File	
 size	
 (bytes)	

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	

0	
 1k	
 10k	
 100k	
 1m	

File	
 size	
 (bytes)	

TLS_RSA_WITH_RC4_128_SHA	

1	
 core	

2	
 cores	

4	
 cores	

8	
 cores	

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

0	
 1k	
 10k	
 100k	
 1m	

Ba
nd
w
id
th
	
 (M

Bs
)	

File	
 size	
 (bytes)	

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	

0	
 1k	
 10k	
 100k	
 1m	

File	
 size	
 (bytes)	

TLS_RSA_WITH_RC4_128_SHA	

1	
 core	

2	
 cores	

4	
 cores	

8	
 cores	

NGINX SSL
Performance

 © Nginx Inc., 450 Townsend St, San Francisco, CA 94107

Correlating Performance with other measurements

Performing full benchmark tests is complex and error prone. It’s useful to determine if there is a
strong correlation between easy-to-measure performance metrics (e.g. openssl speed) and SSL
performance.

Estimating Requests per Second

The strongest correlation for Requests per Second for small files is against the RSA speed test:

Number of cores RSA speed 0 bytes RPS Ratio 1k RPS Ratio
1 core 619.5 379.7 0.61 371.4 0.60
2 cores 1120 663.2 0.59 636.7 0.57
4 cores 2380.4 1230.8 0.52 1218.5 0.51
8 cores 4404.8 2120.5 0.48 2169.4 0.49

… giving a rough approximation that requests per second for small files is between 50% and 60%
of the RSA speed, tailing off for more powerful machines where other factors (e.g. interrupt
handing) begin to affect performance.

0	

500	

1000	

1500	

2000	

2500	

0	
 1000	
 2000	
 3000	
 4000	
 5000	

Re
qu
es
ts
	
 p
er
	
 S
ec
on
d	

RSA	
 speed	
 test	
 *	
 cores	

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	

0k	

1k	

10k	

100k	

1m	

NGINX SSL
Performance

 © Nginx Inc., 450 Townsend St, San Francisco, CA 94107

Estimating Bandwidth - AES

Determining a correlation between bandwidth and AES speed is more challenging because the
test network was only 1GbE-capable (approx. 111MB/s effective throughput), and because bulk
ciphers such as AES are relatively efficient; the performance of the cipher does not have a
significant bearing on the performance of the system.

Number of cores
AES speed
(MB/s)

Throughput
(100K files) Ratio

Throughput
(1M files) Ratio

1 core 175 19.9 0.11 43.0 0.25
2 cores 406 30.0 0.07 46.1 0.11
4 cores 861 70.5 0.08 109.3 0.13
8 cores 1575 95.6 0.06 110.7 0.07

The ‘sweet spot’ is clearly on low-powered machines (where bandwidth limits cannot be met),
with very large files (where the very-expensive RSA operation has less effect). We saw a peak
throughput of 25% the theoretical AES speed, but overall throughput limits quickly dominated.
Because the cipher is relatively lightweight, there is not a strong correlation between theoretical
speed and actual speed.

0	

20	

40	

60	

80	

100	

120	

140	

0	
 500	
 1000	
 1500	
 2000	

Th
ro
ug
ht
pu
t	
 (
M
B/
se
co
nd
)	

AES	
 speed	
 test	
 *	
 cores	

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	

0	

1k	

10k	

100k	

1m	

NGINX SSL
Performance

 © Nginx Inc., 450 Townsend St, San Francisco, CA 94107

Estimating Bandwidth – RC4

Note that even the low-powered machines in the test quickly saturated the 1 GbE network when
using the RC4 bulk cipher.

Number of cores
RC4 speed
(MB/s)

Throughput
(100K files) Ratio

Throughput
(1M files) Ratio

1 core 516 31.6 0.06 91.2 0.18
2 cores 1101 59.6 0.05 106.9 0.10
4 cores 2352 82.2 0.03 110.8 0.05
8 cores 4300 106.7 0.02 111.0 0.03

AES Acceleration with AES-NI

AES-NI is a set of instructions on modern Intel processors that accelerates the encryption speed
of the AES algorithm.

The virtual machines used in these tests were not AES-NI-capable. Informal reports indicate that
AES-NI is between 4-8x the performance of AES, so one would expect that the performance
difference against RC4 would be significantly reduced or eliminated.

0	

20	

40	

60	

80	

100	

120	

0	
 1000	
 2000	
 3000	
 4000	
 5000	

Th
ro
ug
hp
ut
	
 (M

B/
se
co
nd
)	

RC4	
 speed	
 test	
 *	
 cores	

TLS_RSA_WITH_RC4_128_SHA	

0	

1k	

10k	

100k	

1m	

NGINX SSL
Performance

 © Nginx Inc., 450 Townsend St, San Francisco, CA 94107

Conclusions

NGINX software can handle large volumes of SSL traffic on a modern 8-core or beyond server.
Scalability is very cost-effective; NGINX leverages general-purpose physical or virtual hardware
and SSL connections-per-second scales linearly with the number of cores, up to other limitations
in the hardware or operating system.

A single virtualized Intel core can typically perform up to 350 full 2048-bit SSL handshake
operations per second; this equates to several hundred new users of your service per second per
core. NGINX’s SSL performance scales with the number of cores available on the host server, until
other limits (typically bandwidth) are met, so an 8-core virtual machine could accept traffic from
over 1,000 new users per second and still have resources to spare.

For other hardware, you can use openssl tests to determine approximately what the SSL capacity
could be.

Specialized hardware devices exist that can perform many thousands of RSA operations per
second. You should consider whether the cost of these devices (acquisition, support, upgrades)
is merited given the traffic levels you need to terminate, and the corresponding cost of an NGINX-
based solution.

