W/ ////

- Shifting Left /.|
for Application

Securlty]

Bridging the Divide Between'" /;
DevOps and Security with the
Right: Security Tools

VR \

;‘\\o

\
I

\\

\

Achieve Modern Application
Security as Agile as Your
DevOps Processes with

F5 NGINX App Protect

Build Secure and Reliable Apps with Ease

Being agile is something every business strives for: adapting quickly
to the latest trends, keeping up with competitors, and better serving
your customers are all more essential than ever before. Modern
apps are microservices that run in containers, communicate via APlIs,
and deploy via automated CI/CD pipelines. DevOps teams need to
integrate security controls authorized by the SecOps team across
distributed environments without slowing app release velocity

or performance.

NGINX App Protect is a lightweight, high-performance, modern
application security solution that integrates seamlessly into DevOps
environments as a WAF or app-level DoS defense, helping your
enterprise shift security left and deliver secure apps from code

to customer.

Lightweight, self-managed A~ Simple integration into
security solution for cloud, (DEV‘\OPS) the CI/CD tool chain,
microservices, containers, infrastructure agnostic

and APIs

Facilitates declarative Protect against Layer 7
policies for “security as Denial of Service (DoS)
code” enabling enterprises Attacks

to shift security left

nginx.com/free-trial-request/

Download a 30-day free trial today at: m NG'NX

2022 F5, Inc. All rights

. F5, the F5 logo, NGINX, the pp Protect, are trademarks of F5, Inc. in the U.S. and in certa

identified at f5 ny names referenced herein may trademarks of their respe:

orimplied, claimed

https://www.nginx.com/free-trial-request

Shifting Left for
Application Security

Bridging the Divide Between
DevOps and Security with
the Right Security Tools

Peter Conrad

Beijing + Boston + Farnham -« Sebastopol « Tokyo [KOAR{=I|NAE

Shifting Left for Application Security
by Peter Conrad

Copyright © 2022 O’Reilly Media Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock Proofreader: Gregory Hyman

Development Editor: Gary O’Brien Interior Designer: David Futato
Production Editor: Kate Galloway Cover Designer: Randy Comer

Copyeditor: Liz Wheeler lllustrator: Kate Dullea

April 2022: First Edition

Revision History for the First Edition
2022-04-06: First Release

The O'Reilly logo is a registered trademark of O’'Reilly Media, Inc. Shifting Left
for Application Security, the cover image, and related trade dress are trademarks of
O'Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement
of editorial independence.

978-1-098-12732-9
[LSI]

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Preface
Introduction

1.

Table of Contents

DevOps and DevSecOps.cvvvererenerenneennennn.

DevOps

DevSecOps

How DevOps and DevSecOps Are Changing the
Organization

The Challenges of Adopting DevSecOps

. Shifting Security Left..........cooviiiiiiiiiiiiiiinn,

DevSecOps: Shifting Security Left

The Challenges of Shifting Security Left
Why Shifting Left Is Important
Strategies for Change

. Application Security..........coovviiiiiiiiiiiiiiiiienn,

How the Security Landscape Is Changing
Threats
The DevSecOps Approach

Scenarios: Making the Cultural Shift.....................

Example: A Large Bank in Europe
Example: A Bank in Australia

15
15
16
18

23
24
25

Example: An Energy Company
Example: A Telecommunications Company

Conclusion

iv | Table

of Contents

Preface

Security is important to everyone in application development and
support, from design through deployment. Whether you're a devel-
oper, a security or operations engineer, or the CISO of a company,
youre already thinking about security. To take on security holisti-
cally requires considering all available tools and their position in the
software development pipeline. Shifting security left means bringing
tools and processes to bear on security from the earliest phases of
the pipeline, rather than bolting on a few security tests at the end.

This report will help you understand why shifting security left is
important and how to do it. You'll learn some of the challenges
facing organizations under pressure to deliver applications faster
and more securely, how shifting left helps solve these problems, and
the change in thinking that’s necessary across the organization to
make it all happen.

By the end of the report, you'll be able to make a few application
security recommendations to your organization, and you’ll have the
tools to create strategies you and your team can apply to make
security a priority for everyone. With the right relationships among
teams and a shared set of security priorities, any organization can
successfully strengthen its applications, services, and development
processes by shifting security left.

Introduction

Shifting left is not a new idea. As the modern software pipeline has
evolved to make everything continuous, shifting left has become
the norm for various processes that were traditionally relegated to
a testing phase between development and production. Shifting secu-
rity left means implementing security policies, controls, and designs
starting from the earliest stages of design and continuing through to
production.

Despite broad agreement that shifting security left is a good idea, it
can be hard to align on which tools and approaches are best suited
to the task. A certain amount of the public discussion focuses on
code- and container-scanning tools, automated patching, and other
new security tools designed specifically for modern applications and
infrastructure. Tools with a long history of protecting applications
at runtime seem to have fallen out of fashion, labeled “legacy” tools
that have no place in a modern software development environment.

These long-standing tools turn out to be important in today’s enter-
prise. Tools such as web application firewalls (WAFs) provide run-
time protection and valuable feedback on application performance
that helps developers and security engineers refine both code and
policies. WAFs and other tools have not stagnated, but rather
have adapted to modern infrastructure and applications, becoming
smarter as threat actors have developed more sophisticated attacks.

As the enterprise moves applications to the cloud, shifting left
becomes ever more important. Modern applications, no longer
monolithic, are composed of large numbers of services that present
a complex, variegated attack surface that can’t be defended with code
scanning and good programming practices alone. Shifting left must

vii

be about more than just security by design. The enterprise needs to
execute an intentional cultural shift that makes security everyone’s
job, from design through production, driven by policies that are
refined using feedback from runtime tools.

Traditionally, development and security teams have seemed to be
at odds. Developers face pressure to deliver more features more
quickly, while security is seen as a gatekeeper, sometimes halt-
ing development to investigate issues. The cultural change neces-
sary to shift security left requires development and security to
work together. This means new ways of working for everyone
involved. Security must become an enabler of good practices,
providing guardrails that keep applications and infrastructure pro-
tected without putting walls in the way of engineering. Developers
must take on security as part of their role, from design through
deployment.

Many factors can make such a significant cultural shift difficult,
from entrenched processes, to budget, to internal politics. This
report provides a survey of the current security landscape for cloud
native application architecture, a few types of threats, and some
strategies and tools for bringing a shift-left strategy to the con-
tinuous integration and continuous deployment (CI/CD) software
pipeline.

vii | Introduction

CHAPTER1
DevOps and DevSecOps

The traditional software development process separated designing,
building, testing, and shipping into separate phases that focused on
creating monolithic applications. It seems obvious in hindsight that
this approach was neither nimble nor efficient. As a response to
ever-increasing pressure to move faster, Agile methodology made
the pipeline more flexible by breaking large tasks into smaller units.
As the workforce became globally distributed, it was no longer prac-
tical to tie everyone to a single codebase. Application architecture
moved from a monolithic model to microservices, which allowed
dispersed teams to work on different parts without blocking each
other. The challenge of managing the development process for
increasingly complex collections of microservices has given rise to
continuous everything in the software development pipeline. This is
where DevOps comes in.

DevOps

DevOps is a philosophy and a set of practices that encompass
several goals. As the name suggests, DevOps brings development
and operational support together, blurring the lines of responsi-
bility between the phases of developing, building, deploying, and
maintaining applications. This breaks down boundaries between
the teams responsible for these phases, enabling them to establish
continuous integration and deployment of applications and features.
Figure 1-1 shows the phases in a CI/CD approach to software devel-
opment and deployment.

(D

Opergte

MOnitor

Figure 1-1. Software development phases in the DevOps CI/CD
pipeline

Continuous integration means merging code changes to a shared
main codebase as quickly as they’re developed, keeping the codebase
up-to-date with the latest of everyone’s work so it can be tested and
released as soon as possible. Continuous deployment automates the
release process, including tests that ensure the final product is ready
to deploy. By merging and testing changes constantly, the DevOps
pipeline reduces the risk of integration conflicts from distributed
teams working independently.

At its heart, DevOps is about breaking down barriers wherever they
prevent continuous motion in the direction of quality. Testing and
feedback loops become faster, partly through a shifting left of these
steps to earlier phases in the development pipeline, meaning that
developers begin to take on more responsibility for testing their own
code. DevOps relies heavily on automation to reduce risk at every
step while improving the workflow of coding, testing, and deploying
changes.

DevOps brings faster development and deployment with higher
quality, fewer failures, and shorter recovery times. One concern that
DevOps doesn’t explicitly address is security. The pressure to move
ever faster has made it challenging for organizations to prioritize
security, which is seen as a drag on the development process.

2 | Chapter 1: DevOps and DevSecOps

In the traditional waterfall development model, security was typi-
cally tacked on at the end. Figure 1-2 shows the waterfall approach,
in which security often happens during the verification and mainte-
nance steps.

Requirements

Implementation

Verification

Maintenance

Figure 1-2. The traditional waterfall development model for software
development

This approach to security wasn't effective in traditional mono-
lithic software development, and it's even worse for modern
microservices-based applications. A new way of thinking emerged,
to integrate security throughout the development process: the evolu-
tion of DevOps into DevSecOps.

DevSecOps

When development and security are separate, friction is a natural
consequence. Developers might see themselves as the drivers of
change, and security as a constant impediment. Security teams are
known to bring development to a halt to perform audits or inves-
tigate incidents. At the same time, security teams see developers
creating or ignoring the same problems time and time again, unable
or unwilling to adopt clear solutions.

DevSecOps integrates security as a priority within DevOps, placing
it at the center of application development and building a security-
first culture among everyone in the software pipeline. In the Dev-
SecOps model, security is everyone’s job. This is a first step in
reducing friction between developers and security engineers.

DevSecOps | 3

Like DevOps, DevSecOps focuses on breaking down barriers
between teams, making transparent communication easier. The goal
is to build security into every product from the beginning, sacrific-
ing as little speed and agility as possible during the development
process. Just as DevOps gave developers more responsibility for
testing their own code, DevSecOps makes building secure and com-
pliant code every developer’s top priority.

DevSecOps builds security practices into every phase of the applica-
tion development lifecycle, providing feedback at each step. Security
often starts even before the design phase, in the form of training to
help developers learn secure coding practices. Security teams work
together with developers, helping educate them, documenting secu-
rity policies and best practices, and coaching everyone to adopt a
security mindset. As an organization’s DevSecOps practices mature,
different teams begin to view themselves as part of a single culture
with security as a central goal.

How DevOps and DevSecOps Are Changing the
Organization

Whereas security was once an add-on feature at the end of develop-
ment, DevSecOps has brought awareness that every component in
an application can be vulnerable and must be secure by design. By
bringing flexibility and transparency to the software development
pipeline, DevSecOps has aided the move to cloud-first software,
deployable in any environment. As more and more companies rec-
ognize the need to bring security into the core of development,
DevSecOps is becoming mainstream. DevSecOps has proven to be
a natural evolution of DevOps, just as DevOps naturally grew from
Agile.

The cultural shift that DevSecOps represents is significant. Security
and DevOps teams work with a common purpose: to bring high-
quality products to market quickly and securely. Developers no
longer feel stymied at every turn by security procedures that stop
their workflow. Security teams no longer find themselves fixing the
same problems repeatedly. This makes it possible for the organiza-
tion to maintain a strong security posture, catching and preventing
vulnerabilities, misconfigurations, and violations of compliance or
policy as they occur. Developers, operations, and security teams
work together on threat modeling, sharing knowledge to anticipate

4 | Chapter1: DevOps and DevSecOps

and close potential weaknesses in both the product and the pro-
cesses involved in its development.

Beyond a change in attitude, DevSecOps provides tangible benefits.
By catching problems earlier, organizations deliver better, more
secure products and services to their customers. The end-user expe-
rience is better when there are fewer urgent patches or unexpected
breaches. DevSecOps finds vulnerabilities earlier and fixes them
before deployment. This results in less downtime for customers,
making it a more cost-effective for the enterprise.

The Challenges of Adopting DevSecOps

Adopting DevSecOps practices has clear advantages, but that doesn’t
mean it's easy at every step. From the day-to-day mechanics of
securing distributed applications to the heavy lift of cultural change,
bringing DevSecOps into an organization presents challenges.

Traditionally, security focused on a well-understood application
perimeter, usually surrounding a single data center. As the enter-
prise adopts DevOps and cloud native, microservices-based archi-
tecture, applications—and security challenges—decentralize. These
applications are composed of microservices running in multiple
environments, communicating across many networks, working with
data from devices and users all over the globe. This makes the attack
surface both difficult to define and very large. It's nearly impossible
to inventory all the interactions among services, or all the data
transmitted across public and private networks.

At the same time, when application ownership shifts from teams
to wider departments, it’s easy for security to fall by the wayside.
Individual engineering teams don’t invest in security if they see it as
a problem for a dedicated security team. This tends to push security
rightward, toward the later stages of the software development pipe-
line, where security becomes more difficult and less effective.

Shifting left only works when developers understand security well.
Not only do the developers need a good working knowledge of
secure development practices, but they also need enough education
to understand the issues they are tasked with fixing. This means
training, which takes time and money.

The Challenges of Adopting DevSecOps | 5

The key to solving these problems is to create a culture of collabora-
tion that supports rapid, continuous iteration with a security focus.
That means many teams, once siloed, learning to work together:
development, IT operations, and security. Rather than a continual
interruption, security must become a practice incorporated in all
aspects of work throughout the software development pipeline.
Security teams must provide guidance rather than interruptions,
becoming continuous just like the development and operations parts
of the pipeline.

The good news is that the benefits outweigh the costs. When secu-
rity becomes everyone’s job, problems can be resolved earlier, with
less expense, providing a better experience for everyone involved in
the development pipeline—and for the customers.

6 | Chapter 1: DevOps and DevSecOps

CHAPTER 2
Shifting Security Left

As modern software architecture and the software supply chain have
become more sophisticated, security threats have also continued
to evolve. High-profile attacks have shown that vulnerabilities can
appear at any point in the software development lifecycle (SDLC).
In 2020, threat actors gained access to the build system at a soft-
ware company called SolarWinds, maliciously modifying software
updates that were then distributed to customers. The same year,
attackers compromised the upload script of a code-scanning tool
called Codecov, giving them access to environment variables on cus-
tomer machines. Attacks like these, which use a company’s supply
chain itself to distribute malware, give threat actors access to infra-
structure that belongs to the company’s customers. Detecting attacks
after the fact is no longer a practical solution. Only by integrating
security throughout the SDLC can organizations protect themselves
and their customers.

DevSecOps: Shifting Security Left

Traditionally, security and other tests were relegated to the end of
the software development process, after the design and build phases.
Only at the end of the process was security tested, the results deter-
mining whether software was fit for shipment. Shifting security left
means embedding security by design throughout the entire SDLC.

In traditional waterfall development, software follows a linear path
from design to deployment. By contrast, the continuous integration
and deployment in a DevOps software environment mean that

everything is happening all the time. To understand shifting security
left in the modern SDLC, we must temporarily unfold the infinity
symbol of the CI/CD pipeline, as illustrated in Figure 2-1.

peploy

&8

Security

Figure 2-1. Shifting security left by embedding security into every
phase of the CI/CD pipeline

Shifting security left involves strong security measures throughout
the software supply chain, from planning all the way to the opera-
tion and monitoring of deployed software. Treating security as an
integral part of the application design helps teams detect and fix
potential issues earlier. According to Accenture, shifting security
left can reduce build costs by 70% and halve the time to go-live.
Earlier identification and remediation of issues strengthens applica-
tion quality and security, prevents the need to design and apply
workarounds for flaws after the fact, and eases the operation team’s
application maintenance burden.

Shifting left is not just about catching vulnerabilities earlier. DevSec-
Ops is a security-first cultural shift that aims to prevent issues by
design, while also assuming that vulnerabilities will always exist—
what the Accelerate State of DevOps 2021 report, produced by the
DevOps Research and Assessment (DORA) team at Google Cloud,
calls a diagnostic approach. To quickly and automatically assess
security, DevSecOps uses a number of tools as part of the CI/CD
pipeline, including the following:

8 | Chapter2: Shifting Security Left

https://oreil.ly/h0TXl
https://oreil.ly/sw6aC

Static application security testing (SAST)
Scans source code for weaknesses, providing early feedback to
developers

Container image-scanning tools
Automatically scan containers to identify vulnerabilities

Dynamic application security testing (DAST)
Scans applications at runtime to detect issues that aren’t appa-
rent by scanning the code

Runtime application self-protection (RASP)
Analyzes actions and blocks suspicious activity by applications

Web application firewalls (WAFs)
Monitor application-level network traffic to detect and block
attacks

In particular, WAFs can provide protection that is specific to an
application. Historically, WAFs were used by security and network
operations teams to protect applications running in production in
a centralized data center. In a modern, cloud native infrastructure
environment, this approach is not fast or efficient enough. It no
longer makes sense to wait for an app to go into production, flag
issues the WAF identifies, and fix them in the next version of the
code. The modern development approach is to include the WAF
earlier in the build and test phases, addressing issues as they come
up. This means that the WAF itself must be capable of being shifted
left.

WAFs can be configured with knowledge of the application’s end-
points, APIs, and data, making it easier to detect anomalies while
leaving legitimate traffic alone. This provides finer-grained security
than policies that only address traffic at the protocol level. WAFs can
also be aware of the users and devices using the app, and which priv-
ileges they require, making it possible to automate policies such as
providing the lowest necessary privilege to each client. In this way,
WAFs make it possible to shift security further left, both efficiently
and precisely, providing protection tailored to the applications being
developed and deployed. In turn, this enables the development of
stronger apps that can be deployed in a broader array of environ-
ments. With some WAFs, you can encapsulate security policy as
code, making it possible to build stronger policies that can be devel-
oped and evolved using source code management.

DevSecOps: Shifting Security Left | 9

The Challenges of Shifting Security Left

Shifting security left involves both technical and cultural challenges
in any organization. Different teams have different roles. Developers
strive to move forward quickly, adding innovation to their projects,
and security teams continually work to reduce risk, even if it means
slowing things down. This can lead to friction or conflict. To alle-
viate these challenges, the CI/CD pipeline will need to adopt new
processes and tools, and teams must learn to use existing tools
in new ways. All teams involved must strive for the consistency,
visibility, and transparency necessary to bring security to new parts
of the SDLC.

In some organizations, different teams have a great deal of leeway in
how they organize themselves and their work. While this provides
flexibility, it can make it difficult for teams to shift security left
consistently. It’s difficult to bring a holistic view to applications
and services that might not be developed uniformly across the orga-
nization. Visibility is key to security, especially in the realms of
vulnerability detection and compliance. Without consistent visibility
along the entire CI/CD pipeline, it is very difficult to shift security
left in a meaningful way. As teams mature, they tend to align with
organization-wide best practices, but when shifting left you can’t
wait for this to happen. It’s impossible to implement good security
in a project that doesn’t already follow best practices. Every team
must have good test coverage and high visibility into other teams’
processes, so that developers can innovate securely together.

If the company culture is too formal about accountability, it might
be hard for people outside the security team to take on additional
responsibility for security testing early in the SDLC. A fear of blame
when something goes wrong can lead people to duck responsibili-
ties that they feel might result in undesirable consequences. This
problem can be mitigated somewhat by automated tools, but it’s still
important for everyone involved with application development and
operations to proactively take on security responsibility.

One pitfall when shifting left is a failure to engage early and strongly
with the security team. The security team must be prepared to
interact with a much broader group, many of whom might not have
much expertise in security. Developers are not always accustomed
to thinking of security as part of the development process. Without
guidance from the security team, developers don’t always have a

10 | Chapter2: Shifting Security Left

strong awareness of potential security risks. This often necessitates
training and coaching, an additional burden of responsibility for the
security team, and a potential point of friction between security and
others in the organization.

If security is not given the budget to grow, the team might rightly
feel they’ve been asked to do more with less. Worse, if development
teams are inadequately prepared for these engagements, the security
team might encounter resistance as they try to help educate others
about how to build in security by design. The security team must
be sufficiently staffed, prepared, and ready to engage with devel-
opment and operations teams from day one. Agile methodology
and DevOps have increased the speed of software development and
deployment, requiring companies to move faster without sacrificing
reliability and security. This has placed a heavy burden on security
teams, and made security a bottleneck that throttles fast, iterative
development cycles. Security is responsible not only for protecting
the applications under development but the development tools as
well.

Some tools familiar to security teams remain useful as security shifts
left. Other legacy tools, which are not designed for automation and
integration into modern software development infrastructure, are
difficult to use in a shift-left strategy. Solving these problems takes
time. This can perpetuate a perception that the security team is an
impediment to a fast, efficient development pipeline, undermining
the relationship that security is attempting to build with develop-
ment and operations teams.

Why Shifting Left Is Important

Every interaction customers have with a service or application rep-
resents the company, building or destroying customer trust. The
importance of steady, trusted interactions remains constant as threat
actors get smarter and faster. In large organizations, there is a
potentially vast landscape of vulnerabilities, any one of which can
represent an existential threat to the organization.

While the applications and services under development are the
most salient security target, software development relies increasingly
on third-party, open source libraries and packages that can them-
selves contain vulnerabilities. Left undetected, these weaknesses
can propagate throughout the software pipeline all the way to the

Why Shifting Left Is Important | 11

build and deployment phases, leaving the application or the devel-
opment environment itself open to attack. Relegating security to a
test process at the end of development would leave vulnerabilities
open throughout the pipeline. Furthermore, the tools themselves
can present attack surfaces. In large organizations, the number
of installed tools can be sizable, and can include abandoned or
orphaned tools whose only remaining function is to wait until their
vulnerabilities can be exploited.

Shifting security left helps security keep up with the DevOps soft-
ware development model while managing emerging vulnerabilities
and risks. Shifting security left transforms it from a bothersome
bolt-on to a design constraint, reducing the cost and complexity of
fixing and preventing vulnerabilities.

Strategies for Change

The benefits of shifting security left are clear: catching problems
earlier is more effective and far less costly than tacking security
testing onto the end of a waterfall-style development process. To
make it work, however, all teams involved must change the way they
think about security, how they interact with each other, and how
they respond to problems as they emerge. This cultural change is
not a prerequisite for shifting security left, nor a result of it, but a
corequisite; the cultural change drives the leftward shift, and vice
versa. Here are a few steps you can take to begin the journey.

Define Your Strategy

The first step is to understand what shifting security left means to
your organization. You must have a clear idea of what success looks
like so that your teams know what to aim for. This means defining
roles and ownership, milestones along the way, a way to measure
progress, and a clear vision. To make the cultural changes required
for success, everyone involved needs to align on common goals. For
example, this means understanding the current threat landscape and
how shifting security left can help.

Only by making everyone a stakeholder can your organization
accomplish the most important aspect of the cultural change: to
make security everyone’s responsibility. The security team can help
other teams build continuous security throughout the CI/CD pipe-
line from the beginning of the planning phase, before a single line

12 | Chapter2: Shifting Security Left

of code is written. Programmers must have security in the front
of their minds as they implement and test every component. Good
security practices must become second nature to everyone.

Understand the Supply Chain

Understanding the software supply chain at an organization can be
more difficult than it appears. Often, different business units use
very different software development processes and tools. Unless the
organization is already moving in lockstep, it can be challenging
to understand what dependencies each team incorporates in their
builds, which tools are important and which have been abandoned,
and how code flows from individual developers’ laptops to the
CI/CD pipeline. To shift security left means baking security into
every aspect of the software supply chain.

Developers must become more aware of security risks at every stage
of development. Selecting packages and libraries as dependencies,
planning application architecture, deploying environments, writing
functions, and running tests are all processes with security implica-
tions and needs. Developers must take responsibility for assessing
and managing these risks, and for continuing to accumulate knowl-
edge that helps them make their work more secure.

Provide Guardrails

It's not only developers who must adjust to new ways of thinking
about security. The security team must shift from a gatekeeping
mindset, in which they stop everything to troubleshoot or review a
problem, to establishing guardrails that help development continue
with fewer problems. By building new policies, tools, and recom-
mendations, the security team can help developers keep moving
safely. With automation and self-service, security can help devel-
opers help themselves. Security engineers can use their extensive
knowledge about what attacks are possible to help developers build
in security more effectively.

Automation and feedback are very important, because they enable
developers to adapt and keep moving. Test-automation tools, code-
and container-scanning tools, and automated integration tools take
some of the burden off developers, while giving them the informa-
tion they need to fix problems early in the development process
and avoid introducing vulnerabilities into the final product. It's

Strategies for Change | 13

important to have tools that provide sufficient automated feedback
to enable security, developers, and operations teams to continually
adapt.

Make Training Continuous

When security is a new responsibility for developers, there is a steep
learning curve as they become aware of practices that they must
adopt to create secure code. The first step is to assess the security
knowledge of the development team, and to help educate everyone
about secure coding practices. The security journey is never-ending.
There is no “done” when it comes to learning how to mitigate
threats and vulnerabilities. Developers must continue to learn as a
part of their jobs.

As the security team teaches other teams about building security
into the product from the start, they are learning too, discovering
new kinds of threats and new ways of mitigating them. As the
security team learns, they must share information with developers
so that everyone’s security practices continuously evolve.

14 | Chapter2: Shifting Security Left

CHAPTER 3
Application Security

Application security has evolved over the last several years as soft-
ware architecture has changed. The main goal of application secu-
rity remains the same: to mitigate vulnerabilities and other threats.
Today’s SDLC is faster, more iterative, and more distributed. With
teams dispersed geographically and application components sepa-
rated into microservices on cloud infrastructure, the network has
become an attractive attack surface. As the complexity of protecting
applications continues to grow, the pressure to move more quickly
is unrelenting. These new realities of software development require
new approaches to application security.

How the Security Landscape Is Changing

In the days of monolithic software development, security was
mainly at the edge. Once a secure perimeter was established, defend-
ing it was straightforward. Planning, coding, and testing an applica-
tion were sequential phases, with security often applied only at the
end.

In a modern software development pipeline, everything moves
much more quickly. The development phases are iterative, concur-
rent, and continuous. Infrastructure itself, which used to mean
physical hardware that had to be planned, ordered, delivered, and
installed, has become virtual and fungible. Provisioning new hard-
ware is essentially instant, meaning that organizations can scale up
and down quickly as demand changes. Monolithic architecture has
given way to collections of microservices, developed in pipelines

15

that release code many times per day. All these factors add up to
rapid, unceasing change at all levels.

The cloud infrastructure presents a broader, more complex attack
surface. Only a few years ago, it was reasonable to assume that
infrastructure and network boundaries were stable and well defined,
presenting a defensible perimeter. In cloud or hybrid environments,
this is no longer true. These boundaries have become fuzzy, with
many points of access and ingress that can change at any time.
Nearly any resource can be made public or private with a few
configuration changes, and sensitive data is transmitted routinely
across public networks. Containerization turns monolithic applica-
tions into large collections of services available on the network, each
with its own perimeter.

DevOps is dragging security into a new model, focusing on trans-
parency, immediacy, agility, and continuous integration. Shifting
security left entails building and using security tools and controls
throughout the pipeline for applications, containers, microservices,
and APIs, relying on automation to maintain consistency and
keep up with the rapid pace of development. This security-as-code
approach, like infrastructure-as-code, must use declarative policies
to maintain the desired security state, getting out of the way of
innovation.

Threats

Because applications and services rely so heavily on distributed
infrastructure, the network itself has become the critical attack
point. Layer 7, the application layer, is a target of particular interest.
The complex communications among interconnected services and
systems on layer 7 make it difficult to secure. Ironically, secure
transport protocols such as HTTPS and Transport Layer Security
(TLS) can actually help attackers by hiding payloads, making certain
kinds of attacks more difficult to detect.

Denial of Service Attacks

The new frontier for attacking the application layer is an old kind
of threat: the denial of service (DoS) attack. Layer 7 attacks are
relatively easy and inexpensive, because all that’s needed is the ability
to make HTTPS requests or API calls to the application. Traditional
defenses leave the application layer open to these attacks by design,

16 | Chapter3: Application Security

since they are the mechanism by which a legitimate client uses the
service or application.

Modern DoS attacks usually take one of the following forms:

GET and POST flood
The attacker overwhelms the service with a large number of
requests

Slow and low
The attacker slows the server down by consuming resources
sluggishly

TLS attack
The attacker ties up the TLS server with invalid messages

In GET and POST flood attacks, the attacker sends so many requests
that the service can't respond to real users, often using a network
of hijacked servers or internet-connected devices to do so. In slow
and low attacks, the attacker sends legitimate requests so that the
service keeps the connection open, but then slows down, tying up
server resources. In a Slowloris attack, for example, the attacker
sends partial request headers slowly, saturating the service’s pool
of available connections while the service waits for the remainder
of each header. In a TLS attack, the attacker bottlenecks the entire
network by targeting the network traffic security mechanism itself.
In all these cases, the goal is the same: to make the application or
service unavailable to real users.

DosS attacks can be difficult to detect. Attackers can use encryption
or network address translation (NAT) to disguise the origin of
their attacks, making it more difficult to detect or filter malicious
traffic. Because payloads are encrypted, it’s difficult to differentiate
attacks from legitimate traffic except at the endpoints. One tactic
to defeat such attacks has been rate-limiting, setting an upper limit
to the number of requests allowed through. However, attacks on
layer 7 can be damaging with a lower volume of requests than
DoS attacks on layers 3 and 4, which deal with networking and
transport respectively. This means that rate-limiting alone is not
enough to mitigate them. Security tools must be able to recognize
the difference between legitimate traffic and attacks reliably enough
to know quickly when an attack has started.

Threats | 17

Attackers have become more sophisticated, using AI and machine
learning to make their attacks more difficult to detect. Security
based on static rules can’t keep up with changes in attack strategies
and the changes in application architecture that make new attacks
possible. Detecting attacks against an application requires insight
into the behavior of the application itself, establishing baselines to
help determine which traffic is legitimate. This means that every
application, service, and endpoint must be protected individually
with tailored tools that are aware of the application or service API.

Other Threats

Although DoS attacks represent an easy exploit of the application
layer attack surface, subtler threats are possible as well. In many
cases, these attacks take advantage of failures to protect data or
code. Authentication and access control attacks, for example, often
work by modifying session identifiers or other parts of a request,
by exploiting weak passwords or password recovery procedures,
or, in the case of brute force attacks, by guessing valid credentials
after some period of time. Injection attacks slip past data validation
deficiencies to insert malicious SQL commands, scripting, or data
into an application or service.

In some cases, threats come from within by accident. Misconfigura-
tion of security controls, use of outdated or vulnerable packages as
dependencies in the build process, and insecure design can open
vulnerabilities in the application without anyone being aware of
them. For this reason, it's important to employ automated tools at all
access points on the network, providing redundant security checks.

The DevSecOps Approach

The challenge DevSecOps must address is to shift left with a built-in
security solution that can keep up with the velocity and complex-
ity of modern cloud native application architecture. Tools and pro-
cesses are emerging to integrate security earlier in the SDLC without
slowing the DevOps team down. In a way, the move to DevSecOps
is not much different from the Agile, integrated testing, and contin-
uous integration shifts that came before.

Shifting security left helps protect applications by making security
an integral part of every phase in the workflow so that engineers can
catch vulnerabilities before they become problems. In this model,

18 | Chapter3: Application Security

the developer’s first step is to look at the proposed architecture of
an application, service, or feature with a security lens. From the
start of design, it's important to look at what ports and components
are available, what information is to be transmitted or exposed, and
how this data is to be protected both in transit and at rest. These
issues and others must remain at the forefront throughout the devel-
opment pipeline. Fortunately, there are tools and techniques to help
make the process easier. These include automated analysis tools,
policy management strategies, defense in depth, and the proper use
of legacy security tools.

Automated Analysis Tools

There’s no replacement for human expertise, but automatic code-
scanning and security-testing tools bring consistency, speed, and
relentlessness to the search for security issues. Along with code
audits and reviews, automated analysis tools help prevent and detect
vulnerabilities in the codebase, the dependencies, and the deployed
application or service.

SAST and DAST tools can automatically detect some security prob-
lems in applications and services under development. SAST exam-
ines the application from the inside out, scanning the source code
for weaknesses such as potential injections, authentication vulner-
abilities, and other exploitable flaws. SAST happens early in the
CI/CD pipeline, before the application is built and deployed to
staging or test environments. SAST works by analyzing how well
the source code complies with a set of coding rules designed to
provide strong security protections. DAST works with the running
application, testing it from the outside in with no knowledge of
the source code or frameworks on which the code is built. The
intention of DAST is to take the attacker’s approach, looking for a
way in through a security hole. DAST runs as part of the application
testing, and can often surface coding defects that SAST doesn’t find.

Although SAST and DAST help secure the application codebase,
these tools don’t directly address potential vulnerabilities in third-
party libraries and packages. These upstream dependencies can
either be specified directly by the build process, or indirectly by
other dependencies, making it difficult to keep an inventory of all
the packages included and the vulnerabilities they might contain.
Software code analysis helps track dependencies, detecting which

The DevSecOps Approach | 19

components contain known vulnerabilities and providing informa-
tion to help developers mitigate them.

Policy Management

Security policies help protect the environment where applications
and services are deployed. The goal of a security policy is to allow
valid traffic, usage, and requests while blocking threats, abuse, and
malicious misuse of a service or application. It makes sense to model
security policy on the intended legitimate use of an API, for exam-
ple, so that policy management tooling can properly enforce the
goals of each policy.

By managing policies declaratively, taking them directly from API
schemas, it becomes possible to represent the API contract precisely
in security policy. When the schema changes, the policy changes
accordingly. In this way, policy management becomes automated,
versionable along with the API schema, and effectively managed in
source control; because the policy is derived from the API itself, it
becomes effectively policy-as-code. This makes it easier to define an
individual policy for each service, using the control plane to manage
them.

Defense in Depth

Any single layer of protection can fail, letting attacks through. For
example, during a DoS attack, the first layer of defense is to block
requests from IP addresses known to be controlled by the attacker.
As we've seen, attackers can use encryption or NAT to hide their
true origin, or a network of hijacked devices to attack from many IP
addresses at once. A second layer of defense can take an additional
step such as blocking requests that appear to share characteristics
with the attack. This strategy, layering protections on top of each
other so that a failure in one layer is covered by another layer, is
called defense in depth. Defense in depth helps prevent attackers
from breaching a system in the first place, but also provides layers
of defense within the system, reducing how far a successful attacker
can explore once they get inside.

20 | Chapter 3: Application Security

Shifting Traditional Tools Left

Modern security tools designed for cloud native architecture and
infrastructure are proactive and intelligent, leading many to ignore
tools that were originally designed to protect a simple perimeter
around a monolithic application. So-called “legacy” tools are evolv-
ing and adapting to the new ecosystem, used in new ways to protect
clusters, containers, and microservices by enforcing runtime secu-
rity policies.

For example, a WAF is a powerful tool in protecting against applica-
tion layer attacks. After all, if a WAF can protect a large perimeter,
many WAFs can protect many small perimeters. To be effective,
the WAF itself must evolve and shift left. The WAF must be light-
weight, easy to deploy, and adaptable for tailored deployment to
protect different components in the application, the cluster, and the
software development pipeline itself. For a cloud native application,
each WAF must be aware of the API of the service it protects,
preferably by consuming the schema from source control directly.
To fit into a modern CI/CD pipeline, the WAF must make it possible
to automate security policies declaratively so that developers and
security teams can treat security as a provisionable resource rather
than something that must be manually configured.

The DevSecOps Approach | 21

CHAPTER 4

Scenarios: Making the
Cultural Shift

Moving toward cloud native containerized architectures takes time.
Many enterprises still rely on legacy applications, infrastructure, and
traditional waterfall development. This often means a “bookend”
security model: defining security requirements at the beginning of
development, performing penetration testing in production, and not
much in between. Leadership may understand that this approach
doesn't scale, but moving to DevSecOps is complex, requiring
changes in how different teams relate to each other.

Often, the enterprise starts by building static code-analysis and
composition-analysis tools into the development process. This
checks the box of building security into the pipeline but falls short
of a holistic solution. The responsibility for protecting the code
still falls squarely on the security team. They may provide feedback
to the developers, but the relationship is not as collaborative as a
true DevSecOps approach requires. Only when a true cultural shift
makes security everyone’s responsibility is end-to-end accountability
possible. The result is the ability to deploy a mix of tools, including
traditional security tools, throughout the pipeline from design to
runtime.

This last point is key: no matter how good your vulnerability detec-
tion is during the development process, you still need strong run-
time security. Even with security built into the design, it's impossible
to catch a DoS attack early in the pipeline. Tools like WAFs, which

23

can be inserted throughout the process, provide a last line of defense
and a strong source of feedback to help teams collaborate better on
security.

While the cultural shift requires cooperation by all teams, it’s often
the security team that must make the first move. By becoming
more transparent, security teams can overcome their reputation
as gatekeepers. Managing threat modeling and security policies as
code helps make their initiatives and tactics accessible to engineers,
promoting collaboration. The engineers know how the application
has been designed, but security has spent time observing how it
performs in production. Automated tests, WAFs, and other tools
can help validate that the performance of the application meets the
design requirements, which in turn makes it easier to ensure that
security is built in rather than bolted on. One key to a successful
shift is to cultivate a few champions who can show others the impor-
tance of shifting security left.

Example: A Large Bank in Europe

Faced with nimble competition, a large bank in Europe needed to
build new infrastructure quickly to move their many data centers
and employees to a modern application architecture while main-
taining compliance with a host of financial and other regulations.
Though they had firewalls and other security measures in place,
their security and development teams were only loosely connected.
Testing new applications usually only meant that the software was
installed on a virtual machine (VM) and an email sent to the secu-
rity team asking them to test it. Teams within the company had their
own budgets, didn’t talk to each other much, and didn’t get along.

Adopting automation was a necessity, but the question of how to do
it created a great deal of internal resistance. Security didn’t have the
budget for the tools. The application developers didn't want to take
on the burden of a CI/CD pipeline. The network team didn’t want
the responsibility of owning central automation that affected all the
different teams. No one wanted to take on the job of managing tools
for everyone else. At the same time, no one wanted to lose people,
power, or budget. The result was an internal cold war.

The executive team understood the value of end-to-end security and
gave more power to the application developers, asking them to work
side by side with security on building a modern application. The

24 | Chapter4: Scenarios: Making the Cultural Shift

shift involved moving from VM-based architecture to orchestrated
containers. As they built a true DevSecOps pipeline, they selected
WAFs and other tools that they could control and operate with
representational state transfer (REST) APIs, helping them automate
security and infrastructure. The overall result was greater collabora-
tion and transparency across the organization.

Example: A Bank in Australia

Around the world, banking is heavily regulated and highly competi-
tive. Customers sometimes choose a bank based on how quickly it
can respond to a loan application. This fast pace is driving a strong
push to cloud native architecture to serve banks many customer-
facing channels and applications. The biggest internal challenge is
getting applications to production quickly. The days of architecting
an application for months and testing only at the end of the process
are long gone.

To reduce friction, teams are moving to the cloud, working to
manage infrastructure and security as code so that releases can be
automated. Facing such a shift, the security team at one prominent
Australian bank realized quickly that a gatekeeping posture doesn’t
work in the cloud. Unlike on-premises infrastructure where security
has a great deal of control, the cloud makes it possible for teams to
spin up whatever they need without the security team’s knowledge
or involvement. In order to continue providing value to the organi-
zation, the security team understood that they needed to collaborate
closely with other teams.

Catalyzed by the move to the cloud, the security team took an
active role in managing WAFs and other tools in the application
runtime environment, building a feedback pathway back into the
pipeline to inform changes to the design and build processes. The
security team helps manage WAF configurations and other policies
as code, making releases easier. The result is better cooperation
among teams, helping the bank compete more effectively in a fast-
moving marketplace.

Example: A Bank in Australia | 25

Example: An Energy Company

In many enterprises, the rift between application developers and
other teams is the main obstacle to cultural change. A large
energy company in Europe faced an additional schism. Owned in
a public/private partnership, the company’s goals were often split.
Those on the private side, holding the purse strings, were usually
the decision makers. The public side, accountable to the citizenry,
was shackled in regulations and bureaucracy. This made a move
to DevSecOps especially challenging, because shifting security left
involves such tight cooperation among different teams. Adding to
the friction was the fact that the decision makers often weren't
technical, which sometimes made it difficult for them to see the
value in technology options. In fact, at the beginning of the process,
the company had not adopted VMs, running instead on bare metal
servers.

The main impediment to adopting cloud native DevSecOps was
inertia. Many people wanted to keep things as they were rather than
changing things they felt were already working. The DevSecOps
story was hard to sell inside the company to people who didn’t want
to lose their power or budgets, didn't understand the technology,
and didn't care about features such as REST APIs and automation.
The company knew it had to adapt to the times, but bureaucracy
and inertia kept them where they were, without a roadmap for
change. Eventually, the company hit the limits of the existing tools
and was forced to look at new solutions.

The company began to develop a list of requirements, including
telemetry, customization, and programmability. Champions within
the company had to work hard to help the decision makers under-
stand the capabilities and limits of the technologies. Ultimately, what
made the difference was having conversations with other companies
who had adopted DevSecOps tools, including shifting WAFs and
other tools left in the pipeline. In the end, the move to DevSecOps
was not about getting security and other teams to work together.
The solution was educating the decision makers about why end-to-
end security is important and how to implement it.

26 | Chapter4: Scenarios: Making the Cultural Shift

Example: A Telecommunications Company

The telecommunications world is always moving. As bandwidth
has become a commodity, telecommunications companies must stay
competitive by branching out into add-on products without losing
focus on supporting network infrastructure, service delivery, and
other IT goals. The transition to 5G is pushing telecommunications
companies to adapt and move faster, and driving their adoption of
cloud native architecture.

The cultural change in a telecommunications company can some-
times happen faster than in a bank or an energy company, because
the security team is smaller. A telecommunications company might
have a security team of 30 people, whereas a bank’s security might
be 20 times that size. With a small security team, the challenge shifts
to educating the application developers, who might see security
as an afterthought. A knowledgeable champion can help engineers
understand the problems that result from releasing code without the
right level of controls in place.

Building security into the automation pipeline as the company tran-
sitions its architecture to cloud native helps reduce friction. By
adding runtime controls and commit-time code scans, the company
can begin its journey to a mature DevSecOps pipeline. Continual
education can help the application developers understand that end-
to-end security is everyone’s responsibility.

Example: A Telecommunications Company | 27

Conclusion

Shifting security left for modern cloud native applications is not
just about a specific technology or practice. Although it’s important
to build security in by design, a holistic approach requires much
more: thinking like a threat actor, considering all available tools,
and making a decisive cultural shift to build bridges among security,
operations, and engineering teams.

Thinking like a threat actor means acknowledging that no matter
how much security is built in, vulnerabilities will always exist.
Throughout the design process, threat modeling helps everyone
understand, predict, and mitigate vulnerabilities, but it’s important
to protect and monitor applications—and the tools used to build
them—at runtime as well. This is especially important at the applica-
tion layer of the network. The complexity of communication among
interconnected systems and services makes the application layer
both difficult to secure and attractive to threat actors. Threats such
as DoS attacks can’t be designed out of an application, and can
require a great deal of diligence to detect and mitigate. When a
DosS attack is thwarted, the attacker can pivot slightly to evade secu-
rity controls, then continue the attack. As attackers become more
sophisticated, DevSecOps efforts must become smarter as well.

SAST and DAST tools are good ways to catch known security issues
during testing. Container-scanning tools can identify additional vul-
nerabilities. In production, tools such as WAFs can be tailored to
protect individual applications, services, or APIs. In this way, WAFs
can detect anomalies and attacks without disturbing legitimate traf-
fic, while providing feedback about application performance and
threats. This helps inform both stronger policies and refinement

29

of the code itself, enabling the development of more secure applica-
tions that can be safely deployed in a broad array of environments.

Central to shifting security left is a cultural change that makes every-
one a stakeholder in security throughout the development process
and beyond. Teams across the organization must take ownership
of security, changing how they respond to issues and the way they
interact with other teams. It can be challenging to get all teams
aligned on a security vision, but defining success is a crucial first
step. Everyone needs to understand the threat landscape, the state of
the application in development and production, and everyone’s role
in meeting common security goals. Developers, operations teams,
and security engineers must become more aware of one another’s
practices, processes, and concerns.

The security team must be willing to shift from a gatekeeping
mindset to providing guardrails that help everyone avoid problems.
Policies, recommendations, and tools—including the effective use of
feedback from WAFs—can help developers move forward safely. In
turn, developers must take on their part of the security journey,
understanding the risks along the way. From the design phase,
through selecting dependencies, through building and testing, secu-
rity must be at the top of their minds. As developers learn how
to build applications more securely, and as threats evolve, ongoing
training is a must. Security never stops, and learning must be as
continuous as other processes in the CI/CD pipeline.

Changing the culture in an organization is never easy, and it is
different from one company to another. In some cases, the challenge
is educating leadership about why security is important. In other
cases, the first step is to heal a rift between security and developers.
No team wants to lose their power, their budget, or control over
their own roadmap. Security can feel like an imposition, or even
like an attack. Security champions can help build understanding,
locating sources of friction and smoothing them. Ultimately, a true
leftward shift in security can only happen when everyone works
together.

30 | Condusion

About the Author

Peter Conrad is a technical writer with diverse content development
experience, ranging from consumer electronics and telecommunica-
tions to IoT and enterprise software, in both hardware and software
environments. He has cultivated strong interpersonal skills from
interviewing and collaborating with diverse subject matter experts;
from showcasing technology effectively for different audiences; as a
liaison obtaining reviews and approvals of documentation; and as a
user advocate.

	Cover
	NGINX
	Copyright
	Table of Contents
	Preface
	Introduction
	Chapter 1. DevOps and DevSecOps
	DevOps
	DevSecOps
	How DevOps and DevSecOps Are Changing the Organization
	The Challenges of Adopting DevSecOps

	Chapter 2. Shifting Security Left
	DevSecOps: Shifting Security Left
	The Challenges of Shifting Security Left
	Why Shifting Left Is Important
	Strategies for Change
	Define Your Strategy
	Understand the Supply Chain
	Provide Guardrails
	Make Training Continuous

	Chapter 3. Application Security
	How the Security Landscape Is Changing
	Threats
	Denial of Service Attacks
	Other Threats

	The DevSecOps Approach
	Automated Analysis Tools
	Policy Management
	Defense in Depth
	Shifting Traditional Tools Left

	Chapter 4. Scenarios: Making the
Cultural Shift
	Example: A Large Bank in Europe
	Example: A Bank in Australia
	Example: An Energy Company
	Example: A Telecommunications Company

	Conclusion
	About the Author

