
Distributed Gateway
Actors: Evolving API
Management
By Rajesh Narayanan, Applications and Security

Reviewed by and Contributions from: Ian Smith, Sam Bisbee,
Andrew Stiefel, Lori MacVittie, Mike Wiley and others.

OFFICE OF THE CTO

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 2

Table of Contents
3 F5 Office of the CTO Opinion

3 Abstract

4 Summary

API Gateway Sprawl – Managing Distributed Monoliths

Legacy API Gateway Architectures

Solution: A Distributed Gateway Actor Pattern

8 Role of API Gateways in API Management

API Management Infrastructure and Functions

API Gateways

API Gateway Challenges

API Gateway Sprawl

Challenges in Standardizing API Gateways in an Enterprise

14 Design Considerations

15 Distributed Gateway Actors

Distributed Gateway Actors Design

Assumptions

API Gateway Functions

Component’s Features and Behavior

Gateway Actor Placement

21 Conclusion

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 3

F5 Office of the CTO Opinion
The Office of the CTO team at F5 has been exploring the technology field related to APIs
for over a year now. This latest white paper is a continuation of our efforts to understand the
ever-evolving API ecosystem.

The challenges we detailed with managing API sprawl will lead to challenges with API
gateway sprawl, and traditional approaches to addressing these challenges will not be
sufficient. While graph technologies such as GraphQL hold great promise with respect to
taming the complexity associated with APIs, it is only part of the solution as the challenges
go beyond connectivity, security, and routing. The right approach, based on nearly thirty
years of expertise with scaling systems and applications, is based on a distributed—not
federated—architecture that employs GraphQL but is not solely reliant on it.

This paper explores a distributed architectural approach to addressing the challenges of
API gateway sprawl.

Abstract
The digital economy will be powered through APIs, giving us an API-driven economy.
Following the API Sprawl white paper, our pursuit was to understand how to eliminate
or alleviate the impact of API sprawl. While GraphQL seemed promising to reduce the
ramifications of API sprawl, it tends to put the onus on developers to rewrite a large part
of their API codebase. However, an emerging viewpoint around GraphQL is its ability to
be used as an effective gateway actor. The gateway actor is a function or process
created near the client that initiates an API request. This gateway actor acts as the initial
API gateway terminating the API request. It can also be ephemeral, such that it can be
destroyed after servicing the request.

In addition to developers and operations teams prioritizing API management over API
gateways, we also discovered the issue of API gateway sprawl because of API sprawl.
From a developer's perspective, the main concern is ensuring the API functions correctly
and in a timely manner. On the other hand, the operations team is more focused on aspects
such as discovery, security, usability, and access controls. Since API gateways today are
a critical component of API infrastructure, it became evident that the proliferation of APIs
increases the deployment of API gateways—leading to API gateway sprawl.

The future of the API architecture needs to evolve to accept API sprawl while simplifying
deployment and operations. The architecture proposed is the next evolution of where API
gateway design patterns need to be. While GraphQL is not central to the architecture, or a
necessity, it has an ability to enhance the gateway actor pattern.

https://www.f5.com/pdf/reports/f5-office-of-the-cto-report-continuous-api-sprawl.pdf

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 4

Summary
The API management ecosystem must move away from managing API gateway monoliths
towards a more contemporary system design approach. This will result in a more agile and
effective API management ecosystem.

A P I G AT E WAY S P R AW L—
M A N A G I N G D I S T R I B U T E D M O N O L I T H S

API sprawl, already a challenge within the API economy, also results in API gateway sprawl,
a situation where managing APIs has become uncontrollable due to diverse API gateway
vendor technologies and opinionated teams managing the API gateways. We are at an
inflection point in API architectures as the legacy API gateway (API-GWs)—a dedicated
software layer that acts as the entry point for API calls—is no longer sufficient to manage
the scale and complexity of the emerging API ecosystem.

Figure 1 illustrates how we have moved from managing API sprawl to managing API
gateway sprawl.

Figure 1: From API sprawl to API gateway sprawl

The design pattern above alludes to a centralized control plane, with the API gateways
forming the distributed data plane as shown in Figure 2.

API gateways are an essential component of modern software architectures, providing a
central point of control and security for APIs. However, as the number of features offered by
API gateways has grown, they have become increasingly complex and difficult to manage.
In many cases, these gateways have evolved into monolithic systems, with a wide range of
functionalities bundled together in a single package.

API SPRAWL

API GATEWAY SPRAWL

Leads to an...

Results in... Creates...

Produces a whole new ops problem...

API MANAGEMENT PROBLEM

MANAGING API GATEWAY SPRAWL

MULTIPLE API GATEWAYS

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 5

While managing multiple gateways may appear to be a distributed design, the reality is that
it falls short of true distribution. This is because the gateways are still tightly coupled, sharing
resources and configurations that are difficult to separate. As a result, many enterprises end
up managing distributed monoliths and all the challenges that creates.

L E G A CY A P I G AT E WAY A R C H I T E C T U R E S

Figure 3 shows the architecture of existing API gateways. API requests originating from
the client are first transmitted via a shared or dedicated network, passing through a firewall
before reaching the API gateway. The API gateway, which acts as a reverse proxy, then
forwards the traffic to the API workload.

CONTROL PLANE

DATA PLANE

Management
and Operations

DATA PLANE DATA PLANE

API Gateways API Gateways API Gateways

Figure 2: Manage
distributed monoliths

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 6

The legacy API-GW becomes an API management choke point when API gateways are
deployed across the enterprise, or when the API workloads operationally move across
regions, zones, multiple clouds, or to the edge while contending with API sprawl. Multiple
API-GWs are spun up by different teams without a single point of enterprise management
and control. If an individual or group of API services moves to a different infrastructure
(cloud or otherwise), the operations team must have a method to migrate all the aspects
of API management—registration, discovery, authentication, networking, security, and
governance-risk-and-compliance (GRC) policies.

The architecture depicted in Figure 3 is thus not scalable or practical long term, as over
time it leads to managing distributed monoliths (Figure 2).

There are two problems creating the API gateway choke point: (1) API gateway vendor sprawl,
and (2) scale as you go when an enterprise has more applications running in more places.

1. API gateway vendor sprawl: Dealing with API gateway vendor sprawl is a human
challenge, as it can be difficult to convince all teams to adopt a single API gateway
vendor, and migrating to a new vendor can be a cumbersome task. As a result,
organizations end up spending time and resources managing multiple gateway
vendors. Although this problem can be addressed, it may not be entirely feasible
in reality.

2. Application scaling: Scaling applications is a problem when the application needs
to support more users within a single location or needs to be deployed at multiple
locations. This requires the application to scale horizontally or vertically. However,
as the application scales, the API gateways need to scale as well, and in some cases,
they need to be deployed at multiple locations to support the scaling based on current
architecture patterns. This can make managing the API gateways operationally complex.

Figure 3: Legacy API gateway
architectures

API Gateway Firewall InternetAPI Workload

ENTERPRISE APP

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 7

S O L U T I O N : A D I S T R I B U T E D G AT E WAY A C T O R PAT T E R N

Figure 4 depicts a distributed gateway actors’ pattern to address API gateway sprawl.
While the distributed pattern itself is not new, this paper formalizes it within the context
of API gateways. The clients initiate the API request. The distributed gateway actors are
ephemeral and instantiated on-demand as close to the client as possible. It becomes the
responsibility of the API transport layer to send the API request from the gateway actor to
the simplified API gateway, which then routes the request to the appropriate API workload.
While the use of GraphQL support in the distributed actors is more of a detail than a
requirement for this pattern to work, it does enable supporting features like service
orchestration. So instead of creating a new service orchestration layer, GraphQL
could provide that support.

Figure 4: GraphQL-based distributed gateway actors

To clarify, the traffic pattern is from right to left. That is, the clients are on the right and the API
requests are initiated by the client as shown in Figure 5.

Service Mesh

Application

Control Plane
Functions

APPLICATION API TRANSPORT

API Workload
Simple API
Gateway

Firewall Transport Edge

Gateway Actor

Gateway Actor

Gateway Actor

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 8

Figure 5: Traffic flows from client (right) to API workload (left)

There is an emerging deployment pattern using gateway actors to replace or reduce over
dependency on API gateways for managing APIs within and across an enterprise. While
GraphQL is not necessary for the architecture, the introduction of it is timely as the gateway
actor is the right vehicle to support GraphQL.

To gain a deeper understanding of the gateway actor as a potential solution, it's necessary
to closely examine the current state of API infrastructures, particularly API gateways. This is
because we have identified gateway sprawl as a significant contributor to the challenges of
operating and scaling API infrastructures.

Role of API Gateways in API Management
To gain a better understanding of API gateways, it is important to first examine the various
components of the modern API management infrastructure.

A P I M A N A G E M E N T I N F R A S T R U C T U R E A N D F U N C T I O N S

Figure 6 offers a comprehensive visual representation of the various features and
components that are integral to API management. In addition to API gateways, which
are required for routing and managing traffic to backend services, there are several other
important infrastructure components. These may include solutions for authentication,
rate limiting, caching, and service mesh, among others. By incorporating these
features, organizations can achieve control over their APIs, enhance security, and
optimize performance.

THERE IS AN EMERGING
DEPLOYMENT PATTERN
USING GATEWAY ACTORS
TO REPLACE OR REDUCE
OVER DEPENDENCY ON API
GATEWAYS FOR MANAGING
APIS WITHIN AND ACROSS
AN ENTERPRISE.

API TRANSPORT

Firewall

API REQ

API RESP

Rev. Proxy

Transport

Gateway Actor

API Workload

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 9

SECURITY AND
ACCESS CONTROLS OPTIMIZATION

• Edge caching
• Compression
• Request batching
• Request queuing

SERVICE DISCOVERY
AND DOCUMENTATION

• API registration and discovery
• Content negotiation
• API testing
• API documentation
• Automated testing support
• API customization

SERVICE COMPOSITION

• Service proxying and routing
• Service orchestration
• Service composition

and aggregation
• Data transformation

and mapping
• Data validation
• Service mediation
• API composition

• API security
• API governance
• API key management
• Access control
• Rate limiting
• Request validation

MANAGEMENT
AND OPERATIONS

• API lifecycle management
• API versioning
• API monetization
• API deployment
• API discovery

OPERATIONS

• Auto-scaling
• Blue-green deployments
• Canary deployments
• Rolling updates

ROUTING

• Load balancing
• Path routing
• Dynamic routing
• Health checking
• Retries and fallbacks

MONITORING AND
ANALYTICS

• API analytics
• Usage reporting
• Error rate monitoring
• Alerting and eventing

• Integration with
backend services

• Data integration
• Auth integration
• Third party integration
• Monitoring and

logging integration

INTEGRATION

Figure 6: API management and infrastructure features

API Gateway Common Features

Let us examine the commonly recognized and familiar features of API gateways:

1. Routing: Routes requests to the appropriate backend service based on the path or
content of the request.

2. Authentication and authorization: Authenticates and authorizes requests as a single
ingress point, ensuring that only authorized clients can access the backend services.

3. Rate limiting: Limits the rate at which clients can make requests to the underlying APIs,
preventing overuse and protecting the backend services from overload.

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 10

4. Caching: Caches responses from the underlying APIs, reducing the number of
requests needed to be made to the backend services and improving performance.

5. Protocol translation: Translates between different protocols, such as HTTP and
WebSockets, allowing clients to access the underlying APIs using different protocols.

6. Load balancing: Distributes requests to multiple backend services, improving scalability
and reliability.

7. Security: Handles security tasks, such as encryption and decryption, to ensure data is
transmitted securely.

8. Analytics and monitoring: Tracks and reports usage metrics and error information,
providing visibility into how the system is being used and helping to identify performance
bottlenecks and errors.

9. Versioning: Handles versioning of the underlying APIs, allowing clients to access
different versions of the API depending on their needs.

10. Service discovery: Discovers available backend services and dynamically route requests
to them, allowing for more dynamic and flexible service discovery.

Context: API Gateways in Focus

After analyzing API management infrastructure features, we identified the need to better
understand the role of API gateways and explore alternatives to the current monolithic API
gateway design.

With the growth in the number of APIs already leading to API sprawl and API gateway sprawl,
an increasing number of clients are becoming mobile or highly distributed, and compute
infrastructure has become available everywhere, including at the edge. We thus need an
approach which can improve the agility, flexibility, scalability, performance, and security of
the API ecosystem.

This new approach requires a streamlined design capable of fully leveraging the benefits
of a truly distributed architecture.

A P I G AT E WAYS

We further analyze the functionality and scope of an API gateway to tease out its nuances
and limitations.

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 11

An API gateway is a critical component of today’s API management infrastructure. At
its core, the API gateway is a reverse proxy; it acts as a middleman between clients and
backend services while performing a variety of tasks on the incoming request. For example,
the gateway can authenticate, rate limit, request route, apply security policies, monitor, and
apply versioning before forwarding the request to an appropriate backend service. Once the
backend service has processed the request and returned a response, the API gateway can
perform tasks such as caching, protocol translation, and response handling before forwarding
the response back to the client.

As the number of APIs have grown, API gateways have evolved to include a variety of
new functionalities beyond basic routing, effectively becoming monolithic systems. These
gateways now manage tasks like authentication and rate limiting to improve performance and
reduce the burden on backend services. However, even with this enhanced functionality, API
gateways remain a single access point to the backend service, which can present challenges
in highly distributed environments.

In particular, the rise of cloud, hybrid multi-cloud, and edge infrastructures has made it
more difficult to maintain agility, security, and manageability with an API gateway approach.
With clients, devices, and application workloads potentially spread out across a wide
range of locations, an API gateway may not be well suited to provide the necessary level
of edge-friendly architecture.

A P I G AT E WAY C H A L L E N G E S

Since they handle a wide range of tasks and need to integrate with multiple systems, API
gateways are typically hard to deploy and manage. While managing API gateways can be
complex, it is nevertheless a critical task for ensuring the availability, security, and scalability
of an API. Enterprises tend to use specialized tools, such as API management platforms, to
help manage and monitor their API gateways more effectively.

The list below is not comprehensive, but some of the elements contributing to API gateway
complexity include:

1. Configuration management: API gateways often have a wide range of configuration
options and settings that need to be managed and maintained, such as routing rules,
rate limiting, and security settings. Managing these settings can be complex and
time-consuming, especially as the number of underlying APIs and clients grows.

WHILE MANAGING
API GATEWAYS CAN
BE COMPLEX, IT
IS NEVERTHELESS
A CRITICAL TASK
FOR ENSURING THE
AVAILABILITY,
SECURITY, AND
SCALABILITY
OF AN API.

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 12

2. Integration with other systems: The gateways need to integrate with a wide range
of other systems, such as authentication and authorization systems, load balancers,
and databases. This can be complex, especially when the underlying systems are not
well integrated, or when the API gateway needs to handle multiple protocols or data
formats. This becomes more problematic when an enterprise has multiple API gateway
deployments from multiple vendors.

3. Scalability and availability: API gateways need to be able to handle large numbers of
requests and ensure high availability, which can be complex to manage, especially when
dealing with large numbers of backend services and clients.

4. Security: Being a critical API security component, security API gateways must be
configured and managed to ensure sensitive data is protected and access is
controlled. This can be complex and requires ongoing monitoring and management.

5. Versioning: As the number of underlying APIs and clients grow, it can become
increasingly difficult to manage different versions of the API and ensure clients are
accessing the correct version.

6. Monitoring and troubleshooting: API gateways can collect and generate large amounts
of data. In a large enterprise the gateways can be distributed across many locations,
making it hard to correlate events affecting the overall health of the application and
troubleshoot issues.

A P I G AT E WAY S P R AW L

API gateway sprawl refers to the proliferation of multiple, independent API gateways within
an organization. Different teams or business units often create their own APIs, which can lead
to the creation of multiple, independent API gateways to handle these different APIs. Different
teams may also use API gateways from different vendors or solutions to handle different
types of APIs.

This leads to the deployment of multiple API gateways, all with varying sets of capabilities.

API gateway sprawl creates several additional challenges:

1. Scaling API gateway management: Having multiple, independent API gateways can
make it difficult to manage and maintain the gateways, especially as the number of
underlying APIs and clients grows.

2. Inefficiencies in east-west traffic: Multiple gateways can result in requests needing to
pass through said multiple gateways, adding latency and reducing performance.

API GATEWAY SPRAWL
REFERS TO THE
PROLIFERATION OF
MULTIPLE, INDEPENDENT
API GATEWAYS WITHIN
AN ORGANIZATION.

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 13

3. Uniformity of security policies: Managing multiple gateways can be difficult and may
lead to inconsistent security policies, making it harder to ensure sensitive data is
protected and that access is controlled.

4. Standardized governance: With multiple gateways, it can be difficult to ensure all APIs
are properly governed and conform to standards and best practices.

5. Increased cost: Having multiple gateways may lead to higher costs for infrastructure,
development resources, and maintenance.

6. Amplified integration challenges: Having multiple gateways makes it harder to integrate
with other systems and technologies, such as other databases, data warehouses, and
data analytics tools.

Enterprises should strive to centralize their API management and governance and use a
single type of API gateway. While this will alleviate the above challenges of API gateway
sprawl, a homogenized strategy for API gateways is anything but simple.

C H A L L E N G E S I N S TA N D A R D I Z I N G A P I G AT E WAYS I N
A N E N T E R P R I S E

As enterprises grow organically or through acquisitions, internal teams aligned to specific
business units (BUs) will be at odds with each other while selecting an API gateway
technology or vendor. Some reasons for this include the following:

• Technology: Different teams or business units have different technology stacks or prefer
different API gateway solutions, making it difficult to standardize on a single
type of gateway.

• Legacy systems: Some teams have existing systems that were built using a different type
of API gateway, and it would be difficult to replace these systems with a new gateway,
especially if they are still in use.

• Customization: Some teams will customize their existing API gateways to meet
specific requirements and will find it difficult to replicate these customizations on
a new gateway.

• Replacement cost: Replacing existing API gateways with a new, standardized
gateway can be costly, both in terms of development and maintenance.

• Training developers: Teams vary in their levels of expertise and may need to
become familiar with, or undergo training on, a new gateway technology from a different
vendor—a process that can be both time-consuming and expensive.

• Limited resources: Organizations have limited resources in terms of developers, budget,
and time to make the change, making it difficult to implement a new gateway.

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 14

• Application dependencies: Different teams or business units have different
dependencies on their existing gateways, like being integrated with specific
systems, or other custom integrations, making it difficult to switch to a new one.

• Third-party solutions: Teams using third-party solutions that integrate with the
gateway will find it difficult to migrate to a new solution that doesn't support these
third-party solutions

Thus, if an existing application has a well-established and opinionated team, the team will not
want to pivot to a different deployment pattern so as not to cause disruption in their service.

We can thus conclude there is a need for a new approach which takes into consideration
multiple limitations of existing API infrastructure while highlighting API gateway sprawl as
one of the more important considerations.

Design Considerations
The following is not an exhaustive list but summarizes some of the high-level design
considerations we believe should be incorporated when building the solution:

1. Coexist with current deployments: As organizations strive to keep up with the
ever-changing technological landscape, it is common for enterprises to have a
diverse range of API gateway deployments. It is not feasible to forklift the existing
API infrastructure, as this can disrupt critical business operations. Thus, any new
deployment must be designed in a way that can coexist with the currently
deployed architecture.

2. Standardize API gateway functions: The primary goal of an enterprise's API strategy
should be to standardize their API gateway functionality, which can be a challenging
task due to the diverse range of APIs and the varying needs of different business units.
Nevertheless, this standardization is crucial for creating a stable and secure infrastructure
that can support the organization's digital transformation.

3. Leverage edge deployments: The edge infrastructure not only has the potential
to exponentially increase the number of APIs, but also provides an opportunity for
enterprises to move their gateway actors closer to the edge. This is possible as the
same infrastructure used to create APIs can also be utilized to create distributed
gateway actors. Therefore, the solution must fully leverage the proximity to the
edge infrastructure to the clients that initiate the API request.

4. Transport agnostic: An important consideration for the implementation of
distributed gateway actors’ architecture is that it should not be dependent on any

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 15

specific transport mechanism. Whether an enterprise wants to utilize traditional IP
networks, overlay networks, VPNs, or low latency messaging infrastructure, the solution
must be agnostic to the transport mechanism. This allows for greater flexibility and
enables enterprises to choose the transport mechanism that best suits their specific
needs and requirements.

5. GraphQL support: GraphQL is becoming an increasingly popular choice for API
development due to its many advantages over traditional REST APIs. One key advantage
is its ability to provide fine-grained access to data, allowing clients to specify exactly
what data they need in a single request. Additionally, GraphQL can simplify the process
of aggregating data from multiple services, making it the right architecture to do service
composability and orchestration. This can reduce network overhead and improve
performance, especially in a distributed system where multiple API services are used
to fulfill a single request. Finally, with its strongly typed schema and query language,
GraphQL can improve API discoverability and enable easier client development.

6. Security is table stakes: The paramount design goal is it should be additive to the API
security posture of the enterprise. The solution could subsume some of the functionality,
like the ability to authenticate and authorize API requests, implement access controls,
and protect against common security threats such as cross-site scripting (XSS) and
SQL injection attacks. Under no circumstance should the new solution compromise
the existing threat model or change it so significantly that the attack surface changes.
By prioritizing security as a design goal, the architecture must provide a more secure
environment for API communication, reducing the risk of data breaches and other
security incidents.

Specific requirements can be derived based on these design considerations, which we’ve
incorporated into our distributed gateway actors (DGA) solution.

Distributed Gateway Actors
Now having fully explored API gateways, we can explain the distributed gateway
actor solution.

D I S T R I B U T E D G AT E WAY A C T O R S D E S I G N

The distributed gateway actors (DGA) design pattern takes inspiration from edge computing
and computing available close to a client. The crux of the idea lies in hyper-distributing each
gateway actor as close as possible to the client and having the gateway actor exist only for
the duration of the transaction before it’s cleared at the end.

THE DISTRIBUTED
GATEWAY ACTORS (DGA)
DESIGN PATTERN TAKES
INSPIRATION FROM EDGE
COMPUTING AND COMPUTING
AVAILABLE CLOSE TO
A CLIENT.

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 16

A S S U M P T I O N S

Here are some of the underlying assumptions to this solution.

Edge compute has become more pervasive, and we can now find some type of compute that
is geographically available closer to the client. The gateway actors can be instantiated on
these edge compute nodes. The intent is to have an implementation where the DGA is very
lightweight and ephemeral so it can be instantiated on any edge compute.

API transport is a crucial component of the infrastructure since it involves establishing a
network between the gateway actors and the API gateway. The type of infrastructure required
is dependent upon the vendor or enterprise and can vary. For example, a large public cloud
may use their own backbone to run the API transport. Another implementation could be a low-
latency messaging bus layered on top of an existing high-bandwidth and low-latency network
within an enterprise data center.

A P I G AT E WAY F U N C T I O N S

To reiterate, the API gateway is essentially a reverse proxy whose principal function is to
route the HTTP traffic to the appropriate API workloads. This approach makes sense where
all the APIs are collocated, like within a local on-prem network or within a virtual private cloud
(VPC) inside an availability zone. But as the number of APIs scale, move across a hybrid
infrastructure, or just become mobile, this approach of API gateway design is rendered
inefficient, complex to operate, and expensive.

While there might be different views on how to classify all the features descried in Figure 6,
we can agree that API management infrastructure has become a complex deployment of
many components that need to be carefully orchestrated.

Figure 7 maps the various features and functions of the API management from Figure 6 to the
distributed gateway actors architecture. This mapping visually illustrates how each feature and
function is aligned with the DGA approach, highlighting the seamless integration of the API
management components within the architecture.

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 17

Figure 7: GraphQL-based distributed gateway actors

Centralized Functions

Most of the features listed above have some management component which can be logically
centralized. Our goal is not to rearchitect the management plane but, if possible, remove
certain functions.

Core API Gateway Functions

These are data plane functions and thus best implemented in the API and collocated with
application workloads. API gateways are a crucial component of modern microservices
architecture that serves as the entry point for all external traffic. We categorized its core
functions to include routing, load balancing, dynamic routing, health checking, retries,
and fallbacks.

An API gateway directs incoming requests to the appropriate microservice, distributes traffic
across multiple instances, supports dynamic routing, monitors the health of microservices and
their instances, retries failed requests, and provides fallback responses when a microservice
is unavailable or has failed. Other functions such as authentication, authorization, rate limiting,
caching, and logging can be distributed to the edge or centralized functions depending on
the specific requirements of the system.

CORE API
GATEWAY FEATURES

• Load balancing
• Path routing
• Dynamic routing
• Health checking
• Retries and fallbacks

CONFLATED

• API security
• API governance
• API lifecycle

management
• API versioning
• API monetization
• API registration

and discovery
• API testing
• API documentation

CENTRALIZED

• Auto-scaling
• Blue-green deployments
• Canary deployments
• Rolling updates

• Service proxying
and routing

• Service orchestration
• Service composition

and aggregation
• Data transformation

and mapping
• Data validation
• Service mediation
• API composition

GRAPHQL CANDIDATES

• Automated testing
support

• API customization
• Content negotiation
• API deployment
• API discovery

OTHERS

Control Plane
Functions

APPLICATION API TRANSPORT

Simple API
Gateway

Firewall Transport

Gateway Actor

Gateway Actor

Gateway Actor

INLINE DEPENDENT
FEATURES

• API analytics
• Usage reporting
• Error rate monitoring
• Alerting and eventing
• Auth integration
• Third party integration
• Monitoring and logging

integration
• Access control
• Rate limiting
• Request validation
• Edge caching
• Compression

API Workload

API Workload

API Workload

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 18

This modular approach allows for a more flexible and optimized architecture and is at
the heart of our recommendation for simplifying, modernizing, and scaling the enterprise
API infrastructure.

Conflated

API gateway and API management are often mistakenly conflated by vendors as part of
the API gateway function, but they are actually two distinct functions that should be treated
separately. An API gateway is responsible for routing requests from clients to backend
services, while API management encompasses a broader set of features such as access
control, rate limiting, analytics, and developer portal management.

While some vendors may offer both API gateway and API management functions as part of
a single product, it's important to understand the differences between these functions and
evaluate them separately based on their specific requirements. Combining these functions
can lead to confusion and potentially limit the flexibility and scalability of an organization's
API infrastructure. This is also critical in understanding our position on distributing the API
gateway functionality.

Gateway Actor – Inline Features

The features listed here are core functions which need to be inline to the data path. In a
distributed gateway pattern, some of the inline functions of the API gateway also become
distributed. These functions include access control, rate limiting, request validation, API
analytics, usage reporting, error rate monitoring, alerting and eventing, auth integration,
third-party integration, monitoring and logging integration, edge caching, and compression.

Moving these functions to the distributed gateway pattern has the following benefits:

• Reduced load on API gateway: Help to reduce the load on the centralized API gateway
and improve the performance and scalability of the system.

• Enable faster response times: Enable faster response times and reduced latency by
deploying these functions closer to the clients. By leveraging caching of the data and
the function, the edge hosted API gateways can rapidly respond to incoming requests.

For example, access control, rate limiting, and request validation can be handled by an edge
gateway actor, which is deployed closer to the clients. This can help to reduce the number of
requests needing to be handled by the centralized API gateway, improving its performance
and scalability. Similarly, API analytics, usage reporting, error rate monitoring, alerting and
eventing, and monitoring and logging integration can be handled by edge gateways, which
can collect and aggregate data from multiple microservices.

WHILE SOME VENDORS MAY
OFFER BOTH API GATEWAY
AND API MANAGEMENT
FUNCTIONS AS PART OF
A SINGLE PRODUCT, IT'S
IMPORTANT TO UNDERSTAND
THE DIFFERENCES
BETWEEN THESE FUNCTIONS
AND EVALUATE THEM
SEPARATELY BASED
ON THEIR SPECIFIC
REQUIREMENTS.

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 19

Gateway Actors – GraphQL Candidates

Today, an important capability that API gateways support is service composition and
orchestration. While this can get rather complex, it would become a concern if this
feature were not supported by the simplified API gateway. We believe GraphQL can be an
interesting approach to service composition, acting as a sort of middleware to existing APIs.

Due to its visibility of all the APIs, the API gateway becomes a logical place to perform
service composition, enabling developers to combine the APIs behind the gateway to
enhance the business logic without needing to write new services which can be more
easily combined in a service composition layer.

Service composition in GraphQL is made possible through its use of a strongly typed
schema, which defines the shape of the data available to clients. Clients can use this
schema to construct queries that specify the exact data they need, regardless of which
services or sources provide it. Resolvers, which are functions that map queries to data
sources, are used to retrieve data from the appropriate service or source. However, while
GraphQL promises better security, it is only as good as the developer who writes the code.

Others

There are still some remaining features not highlighted from Figure 6: API management and
infrastructure features. These remaining features and functions are candidates that can be
moved to individual management and operations or data-plane functions.

We deliberately choose to use the term “actor” to avoid suggesting a specific implementation
or vendor technology. The gateway actor’s implementation could be based on methods,
functions, workers, threads, and processes, implemented using infrastructures based on
VMs, containers, serverless, or other approaches specific to a vendor.

C O M P O N E N T ’S F E AT U R E S A N D B E H AV I O R

The approach taken with the distributed gateway actors (DGA) architecture simplifies
the API gateway functions and moves other inline features either to the edge, or to the
control plane.

Control Plane

Apart from the API gateway features, the DGA architecture also recommends identifying
functions that could be better served in the control plane as a logically centralized
component rather than implemented within a monolithic API gateway. The management
and control of API infrastructure that already exists can be extended and expanded to
include this additional functionality.

DISTRIBUTED GATEWAY ACTORS: EVOLVING API MANAGEMENT 20

Simplified API Gateway

The simplification of the API gateway thus becomes an exercise to derive a standard set
of core functions that all API gateway vendors can manage through a common set of
configuration parameters.

An enterprise wanting to make this transformation could roll out the DGA architecture one
application at a time, without disturbing the existing deployments and without the need for
a forklift operation.

Distributed Gateway Actors

An important aspect of the DGA is that each gateway actor is ephemeral, being instantiated
only for the duration of an API session (i.e., one client making one API call).

A distributed gateway actor can be more flexible, scalable, and cost-effective than the
traditional API gateway. Rather than relying on multiple monolithic API gateways from
different vendors to aggregate and handle API traffic, the gateway actor allows developers
to specify and deploy individual gateway instances for each API closer to the edge of the
network. The APIs themselves could provide greater control and customization for their
specific needs.

This new approach also allows for greater scalability, as developers can easily spin up the
gateway actor instances as needed to handle increased traffic without worrying about the
overhead of managing a large, centralized gateway.

In addition to its technical benefits, the gateway actor also offers cost savings over the
traditional API gateway, by allowing enterprises to only pay for the ephemeral gateway
actor instances they use. This deployment model can open opportunities for additional
revenue models.

G AT E WAY A C T O R P L A C E M E N T

By leveraging an API transport layer, the DGAs essentially decouple the API ingress location
from the API gateway. The DGAs can be moved to the edge, i.e., closer to the client making
the API call. The APIs can terminate in the DGAs and then be transported by any means. This
is different from Figure 3: Legacy API gateway architectures where the client traffic ingresses
topologically adjacent to the API gateways.

AN ENTERPRISE
WANTING TO MAKE
THIS TRANSFORMATION
COULD ROLL OUT THE
DGA ARCHITECTURE ONE
APPLICATION AT A TIME,
WITHOUT DISTURBING THE
EXISTING DEPLOYMENTS
AND WITHOUT THE
NEED FOR A FORKLIFT
OPERATION.

©2023 F5, Inc. All rights reserved. F5, and the F5 logo are trademarks of F5, Inc. in the U.S. and in certain other countries. Other F5 trademarks are identified at f5.com.
Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or affiliation, expressed or implied, claimed by F5, Inc.
DC0623| REPORT-CORP-1110257067-distributed-gateway-actors-evolving-api-management

Conclusion
Our intent thus has been to propose a vendor and deployment agnostic approach, as
different vendors may have their own intellectual property to build these components to
achieve similar objectives as outlined.

In this paper we have summarized our learnings from multiple quarters researching API
sprawl, Edge 2.0 architectures, the API economy, and investigations into GraphQL. While
the jury is still out with respect to legacy API infrastructure, we believe there is a need for
a new approach.

Just the promise of unlocking value within every individual device or entity globally provides
a strong enough reason to explore a new approach. We need to move away from the legacy
API infrastructure today, because even though it looks distributed, it is monolithic under
the hood.

We propose the distributed GraphQL based gateway actor approach as a vendor agnostic
way to unlock the full potential of the emerging API economy.

https://www.f5.com/pdf/reports/f5-office-of-the-cto-report-continuous-api-sprawl.pdf
https://www.f5.com/pdf/reports/f5-office-of-the-cto-report-continuous-api-sprawl.pdf
https://www.f5.com/resources/reports/office-of-the-cto-report-edge-2-0-core-principles
https://www.f5.com/company/blog/inverting-the-api-is-the-digital-transformation-that-enterprises-need-to-participate-and-compete-in-an-api-economy

