GIGAOM

BENCHMARK/FIELD SERVICE
High Performance Application Security Testing

Product Evaluation: NGINX App Protect vs. ModSecurity
(plus AWS Web Application Firewall)

JAKE DOLEZAL AND WILLIAM MCKNIGHT | SEP 17, 2020 - 2:50 PM CDT

CREDIT? PETE:LINFORTH

SPONSORED BY () nowx .

https://gigaom.com/analyst/jake-dolezal/
https://gigaom.com/analyst/mcknight-william/
https://gigaom.com/sponsor/nginx/
https://gigaom.com/sponsor/nginx/

GIGAOM

High Performance Application Security Testing

Product Evaluation: NGINX App Protect vs. ModSecurity
(plus AWS Web Application Firewall)

TABLE OF CONTENTS

1 Summary

API Security in the Cloud
GigaOm API Workload Test Setup
Test Results

Conclusion

Appendix: Recreating the Test
Disclaimer

About NGINX

O 0 N O U1 o W N

About Jake Dolezal

Y
o

About William McKnight

=Y
-

About GigaOm

-
N

Copyright

High Performance Application Security Testing v1.0 2

GIGAOM

1. Summary

Data, web, and application security has evolved dramatically over the past few years. Just as new
threats abound, the architecture of applications—how we build and deploy them—has changed. We’ve
traded monolithic applications for microservices running in containers and communicating via
application programming interfaces (APIs)—and all of it deployed through automated continuous
integration/continuous deployment (CI/CD) pipelines. The frameworks we have established to build
and deploy applications are optimized for time to market—yet security remains of utmost importance.

The challenge of securing and innovating is profound, and requires a lightweight and integrated
security solution that won’t impede performance and delivery. For example, DevOps teams need
security controls that work across distributed environments without invasively slowing down or
burdening the release cycle. The maturation of these controls and processes ultimately transitions into
the realm of DevSecOps, where security is built into the CI/CD pipeline.

The multitude of deployed apps, APIs, and microservices produces a constant flow of communication
and data among applications that requires active management—both internal and external. Apps
themselves can vary greatly in the protocols, allowed methods, authorization/authentication schemes,
and usage patterns. Perhaps most important, IT departments need granular control over the entire
application ecosystem to prevent security breaches and attacks, be they man-in-the-middle, distributed
denial of service, or script/code/SQL injection attacks.

While security is of utmost importance, the pace of modern business demands high performance, and
this is especially true in application- and microservice-enabled enterprises. The conventional
approach—deploying a perimeter Web Application Firewall (WAF) to protect applications by filtering
and monitoring traffic between the app and the Internet—is no longer enough. Even internal
communication between apps and microservices on the trusted corporate network can be
compromised and must be addressed. A defense-in-depth strategy is needed with multiple WAFs.

This report focuses on web application security mechanisms deployed in the cloud and closer to your
apps. The cloud enables enterprises to differentiate and innovate with microservices at a rapid pace,
and allows microservice endpoints to be cloned and scaled in a matter of minutes. The cloud also
offers elastic scalability compared to on-premises deployments, enabling faster server deployment and
application development and less costly compute. However, the cloud is just as vulnerable, if not more
S0, to attacks and breaches as on-premises APIs and apps are.

Our focus is specifically on approaches to securing apps, APIs, and microservices that are tuned for
high performance and availability. We define “high performance” as companies that experience
workloads of more than 1,000 transactions per second (tps) and require a maximum latency below
30 milliseconds across the landscape.

Make no mistake, for many organizations, performance is a big deal—they need to ensure secured
transactions at rates that keep pace with the speed of their business. A WAF or application security
solution cannot be a performance bottleneck. Many of these companies seek a solution that can load

High Performance Application Security Testing v1.0 3

GIGAOM

balance across redundant microservices and enable high transaction volumes.

The numbers add up. If a business experiences 1,000 transactions per second, that translates into 3
billion API calls in a month. And it is not uncommon for large companies with high-end traffic levels to
experience 10 billion or more API calls in a 30-day period. Make no mistake, performance is a critical
factor when choosing an API security solution.

Benchmark Testing

In this report, we performance test three security mechanisms on NGINX: ModSecurity, NGINX App
Protect, and AWS Web Application Firewall (WAF). This last product was tested as a fully managed
security offering. Note, ModSecurity is commercially distributed by NGINX and will be referred to as
“ModSecurity” throughout the rest of this report.

In our benchmarks, NGINX App Protect outperformed ModSecurity at all tested attack rates. NGINX

App Protect produced 92% lower latency than NGINX running ModSecurity at the 99" percentile at
1,000 transactions per second (tps) on the 5% bad request test. In our tests, the latencies for App

Protect and ModSecurity diverged at the higher percentiles, becoming pronounced at the o5t
percentile and above.

For fully managed offerings, NGINX App Protect produced 82% lower latency than AWS WAF at 1,000
tps on the 5% bad request test. Since AWS WAF is fully managed, we do not know what underlying
compute resources are working behind the scenes, which makes an apples-to-apples performance

comparison difficult. Once again, latency differences were minimal until the oot percentile, with a
significant difference witnessed at the 99t percentile and above.

On a single small 2 CPU and 5.25GB of RAM EC2 instance, we captured the maximum transaction
throughput achieved with 100% success (no 5xx or 429 errors) and less than 30ms maximum latency.
NGINX App Protect produced about 5,000 requests per second, compared to only 2,000 requests per
second with ModSecurity. App Protect provides the same level of throughput as hitting the API directly
without a WAF in between.

Testing hardware and software in the cloud is very challenging. Configurations may favor one vendor
over another in feature availability, virtual machine processor generations, memory amounts, storage
configurations for optimal input/output, network latencies, software and operating system versions, and
the workload itself. Even more challenging is testing fully managed, as-a-service offerings where the
underlying configurations (processing power, memory, networking, and the like) are unknown. Our
testing demonstrates a narrow slice of potential configurations and workloads.

As the sponsor of the report, NGINX opted for a default NGINX installation and API gateway
configuration out of the box — the solution was not tuned or altered for performance. GigaOm selected
identical hardware configurations for both App Protect and ModSecurity. The fully managed AWS WAF
was used “as-is,” since, by virtue of being fully managed, we have no access, visibility, or control over

High Performance Application Security Testing v1.0 4

GIGAOM

its infrastructure.

We leave the issue of fairness for the reader to determine. We strongly encourage you to look past
marketing messages and discern for yourself what is of value. We hope this report is informative and
helpful in uncovering some of the challenges and nuances of security architecture selection.

We have provided enough information in the report for anyone to reproduce this test. You are
encouraged to compile your own representative workloads and test compatible configurations

applicable to your requirements.

High Performance Application Security Testing v1.0

GIGAOM
2. API Security in the Cloud

The landscape of API security in the cloud varies greatly based on an organization’s need and
underlying architecture. API security solutions offer either build-your-own or fully managed cloud
deployment styles, and a few offer both. While there are many ways to secure APIs, we are interested
specifically in enabling security while maintaining high performance. Again, for this report, we define
“high performance” as companies that experience workloads of more than 1,000 transactions per
second and need a maximum latency below 30 milliseconds across backend APIs and microservices.

Furthermore, in terms of high performance, we focus particularly on latency results at the 99"
percentile and above. At first glance, this might seem like an outlier case. However, in our experience,
these measures are extremely important in latency results, which tend to be multi-modal over time,
with the tops of the spikes representing “hiccups” in response times.

These hiccups matter. If the median response time or latency is less than 30 milliseconds, but there are
“hiccups” with latencies above 1 second, the cumulative effect will impact subsequent user
experiences. For example, if you visit a fast food drive-through where the median wait time for food is 1
minute, you probably think that was a good customer experience. However, what if the customer in
front of you has a problem with their order, and it takes 10 minutes to resolve? Your wait time would

actually be 11 minutes. Because your request came in line after the “hiccup,” the 99.99™" percentile’s
delay becomes your delay too.

This report aims to explore vendor API security options to better support this high-end performance
use case.

NGINX App Protect

NGINX Open Source was first released in 2004 as a reverse proxy load balancer, web server, mail
proxy, and HTTP cache. NGINX is offered as free-to-use, open-source software. Its popularity is evident

in @ March 2020 report by Netcraft' that found that 37% of all public websites use NGINX, compared to
24% that use Apache (whose usage peaked at 70% of all websites over a decade ago). NGINX was
acquired by F5 Networks in 2019.

NGINX Plus is a commercial offering built atop NGINX Open Source and was first introduced in 2013. It
quickly grew into a robust load balancer, Kubernetes Ingress controller, APl gateway, and sidecar proxy
solution, with hundreds of millions of instances deployed worldwide.

NGINX App Protect combines the proven effectiveness of F5’s advanced WAF technology with
NGINX’s agility and performance. App Protect runs natively on NGINX Plus to address security
challenges facing modern DevOps environments.

For App Protect, we installed the latest version of Attack Signatures and Threat Campaigns to enable

High Performance Application Security Testing v1.0 6

GIGAOM

the highest level of protection for underlying applications and APIs.
ModSecurity

ModSecurity was developed in 2002 to protect the Apache HTTP web server. In 2010, ModSecurity
was acquired by Trustwave SpiderLabs and released as an open-source, cross-platform web
application firewall (WAF) module. Known as the "Swiss Army Knife" of WAFs, it enables web
application defenders to gain visibility into HTTP traffic and provides a rules-language and API to
implement advanced protections.

For this test, we employed the OWASP ModSecurity Core Rule Set (CRS). CRS is a set of generic attack
detection rules for use with ModSecurity and compatible web application firewalls. This ruleset aims to
protect APIs from a wide range of attacks, including the OWASP Top Ten, with a minimum of false
alerts.

Amazon Web Services Web Application Firewall

Amazon Web Application Firewall (WAF) is a fully managed cloud service that provides a web
application firewall to help protect web applications and APIs against common web exploits that may
affect availability, compromise security, or consume excessive resources.

For AWS WAF, we installed the AWSManagedRulesCommonRuleSet, which is also the OWASP
implementation of the Core Rule Set for AWS WAF.

1 https://news.netcraft.com/archives/category/web-server-survey/

High Performance Application Security Testing v1.0 7

https://news.netcraft.com/archives/category/web-server-survey/

GIGAOM
3. GigaOm API Workload Test Setup

APl Workload Test

The GigaOm API Workload Field Test is a simple workload designed to attack an API or an API
management worker node (or a load balancer in front of a cluster of worker nodes) with a barrage of
identical GET requests at a constant number of requests per second.

To perform the attacks, we used the HTTP load testing tool, Vegeta, a free-to-use workload test kit
available on GitHub. The Vegeta tool returns a results bin file that contains the latencies and status
code of every request. The attacker measured latency as the elapsed time between the points when
an individual APl request was made and when the API response back was received. Thus, if we tested
1,000 requests per second for 60 seconds, the attack tool recorded 60,000 latency values. We used
that data to compile and interpret the results of the test.

The test also requires a backend API that can listen and respond to requests. In this case, our backend
API listens for a GET request that includes an integer, such as:

http://ipaddress/size/10

The API would respond with a string of pseudorandom Unicode characters, such as:

taZz3psgHkQ

where “10” is the size in bytes of the desired return string. Thus, if we wanted 1 KB of data returned, we
would send the request:

http://ipaddress/size/1024

For these tests, we used a request return size of 1 KB.
The backend API we used is further documented in the Appendix.

We completed three attempts per test on each platform, configuration, and request rate. We started
with an attack rate of 1,000 requests per second (rps) and incremented up to attack rates of 2,000 rps,

3,000 rps, and 5,000 rps. We ran each test for 60 seconds. We captured the latencies at the 50th,

90th, 95th, 99th, 99.9th, 99.99!" percentiles and the maximum latency seen during the test run. We
recorded the test run that resulted in the lowest maximum latency or the highest success rate in the
event of errors. Error status codes included HTTP status codes 429 Too Many Requests or any 5xx
codes, most often 500 Internal Server Error. A success rate of 100% meant all requests returned a 200
OK status code.

High Performance Application Security Testing v1.0 8

https://github.com/tsenart/vegeta

GIGAOM

In addition to standard attacks with “good” or expected traffic, we also tested the configuration’s ability
to block “bad” traffic under load. For this metric, we tested these security mechanisms with 5% and 10%
bad traffic. The “bad” traffic was sent as script injections, such as:

http://ipaddress/?v=<script>

The results are shared in the Field Test Results section.

Test Environments

Selecting and sizing the compute and storage for comparison can be challenging, particularly for fully
managed as-a-service vendor offerings. The figures below give a visual layout of the configurations we
tested.

Configurations Used for NGINX Comparable Tests

The first configuration we tested was single node workers of NGINX with no security. We installed
Vegeta on an Attack node and performed the API requests directly to the APl Worker, which routed the
requests through to a Backend API. The Backend APl would respond back to the APl Worker Node,
which routed the responses back to the Attack Node.

We installed all test components (excluding AWS WAF) onto AWS EC2 instances. For the components
vital to the test, we used the “cbn” family of EC2 instances to take advantage of enhanced networking
capabilities. According to Amazon:

Cbn instances are ideal for high compute applications (including High-Performance Computing (HPC)
workloads, data lakes, and network appliances such as firewalls and routers) that can take advantage
of improved network throughput and packet rate performance. C5n instances offer up to 100 Gbps
network bandwidth and increased memory over comparable C5 instances.

We also made a single operating system-level change to all NGINX instances. We increased the user
limits for soft and hard open files to 65,536. The reason for this move is that during high response per
second attack API testing, you can experience errors on worker nodes when user open file limits are
hit.

Configurations Used for Comparable Tests of Fully Managed
Platforms

For the fully managed security mechanism (AWS WAF), we were limited on the configurations we could
test and still achieve a comparable result. AWS WAF itself lacks a method to route requests to a
Backend API without a load balancer. Thus, we also deployed a single AWS Load Balancer and
associated AWS WAF with it. The "instance type” of AWS WAF is unknown--that is, it is a fully-managed

High Performance Application Security Testing v1.0 9

https://aws.amazon.com/ec2/instance-types/

GIGAOM

serverless platform, and we do not know its CPU or memory capabilities.

As shown in Table 1, we also installed the Attack Node, Backend APIs, NGINX instances, and the AWS
Load Balancer test components within the same placement group to ensure the closest network
proximity.

Table 1. EC2 Instances Used for Test Components

__

Source: GigaOm 2020

Results may vary across different configurations, and again, you are encouraged to compile your own
representative workloads and test compatible configurations applicable to your requirements.

High Performance Application Security Testing v1.0 10

GIGAOM

4. Test Results

This section analyzes the latencies in milliseconds from the various 60-second runs of each of the
scaled GigaOm API Workload Field Tests described above. A lower latency is better—meaning API

responses are coming back faster. Also, the latency reveals the response time at the SOth, 90th, 95th,

99th, 99.9”‘, and 99.99%" percentiles and the maximum latency. These are important values for service-
level agreements (SLAs) and gauging the slowest response times a user might experience.

Test Results without AWS WAF

Here we show all of the results of the App Protect, Mod Security, and No Security runs for all tests that
are completed. Tested elements are identified in the charts using the images in the chart key, as
follows:

Charts Key

No Security 0 NGINX App Protect

ModSecurity AWS Web Application Firewall

Source: GigaOm 2020

Test Results with No Bad Traffic

For these tests, we did not send any bad traffic through, in order to get a baseline of latency. Focusing
on the 99" percentile, at the 1,000 rps level, Mod Security had 3.76 times the latency of App Protect.

At the 991 percentile, App Protect response times were less than 2 milliseconds slower than with no
security at all. Figure 1 shows the results.

At 2,000 rps (Figure 2), Mod Security response times were in the 5.5 second range, while App Protect
was less than 1 millisecond. At 3,000 rps and above, Mod Security was not processing the traffic at
100% success, so it is not depicted on the charts in Figures 3 and 4. Meanwhile, App Protect and No
Security were generally very close in latency at both the 3K rps and 5K rps levels.

High Performance Application Security Testing v1.0 11

https://storage.googleapis.com/stateless-gigaom-com/2020/09/42049e7c-nginx_key.png

GIGAOM

APP PROTECT, MOD SECURITY AND NO SECURITY - 1K RPS - BAD TRAFFIC 0% - 1KB LATENCY CURVE

. 4780 4.839
.
wy
=]
[
S
e
E 1.838 1.921
o 2.0 _/1.766 ‘/ .
[
% 0.675 L 1.05 1171

10 | 0. . _

06\5}- e 0.686
0.485 0.501 0.509 0.662 0.772
00 : : 7 | ,
50th 90th 95th 9%th 99.9th 99.99th Max

Figure 1. Latency Curve at 1K rps

APP PROTECT, MOD SECURITY AND NO SECURITY - 2K RPS - BAD TRAFFIC 0% - 1KB LATENCY
CURVE

8,637

8500.0 8,121

6500.0
4500.0

Latency (Milliseconds)
=N
o

50th 90th 95th 99th 99.9th 99.99th Max

Figure 2. Latency Curve at 2K rps

High Performance Application Security Testing v1.0 12

https://storage.googleapis.com/stateless-gigaom-com/2020/09/905a1808-fg1.png
https://storage.googleapis.com/stateless-gigaom-com/2020/09/d1ed8da8-fg2.png

GIGAOM

APP PROTECT AND NO SECURITY - 3K RPS - BAD TRAFFIC 0% - 1KB LATENCY CURVE

" 4518
4.0
2
g 30
E
= 0
3
1.0 0.63? O 0.748 1.070
0500 0547 \gse3 0.689
0.0
50th 90th 95th 99th 99.9th 99.99th

Figure 3. Latency Curve at 3K rps

APP PROTECT AND NO SECURITY - 5K RPS - BAD TRAFFIC 0% - 1KB LATENCY CURVE

5.0
4.109
4.0
g
g 3.0
E‘
s 20
. o e L
o618 0661 48 0.826
0.0
50th 90th 95th 99th 99.9th 99.99th

Figure 4. Latency Curve at 5K rps

High Performance Application Security Testing v1.0

4.721

3.051

Max

Max

13

https://storage.googleapis.com/stateless-gigaom-com/2020/09/9bd56fda-fg3.png
https://storage.googleapis.com/stateless-gigaom-com/2020/09/3af8814e-fg4.png

GIGAOM

Test Results with 5% Bad Traffic

With 5% bad traffic, Mod Security consistently produced higher latency times than App Protect did. At
1,000 rps of combined good and bad traffic, shown in Figure 5, Mod Security latency was 11.5 times

higher than App Protect at the 99" percentile. We show charts for the good traffic (950 rps) and bad
traffic (50 rps) below.

APP PROTECT AND MOD SECURITY — 1,000 RPS WITH 95% GOOD/5% BAD TRAFFIC (SHOWING GOOD
TRAFFIC ONLY) 1KB LATENCY CURVE

25.0
20,385 21.243
20.0
B
S
&
E
> 100
B
: 1.485 v
0.947 -
“0.659 01 a0 L -)
0.0
50th 90th 95th 99th 99.9th 99.99th Max

Figure 5. Latency Curve at 1K rps and 5% Bad Traffic

High Performance Application Security Testing v1.0

14

https://storage.googleapis.com/stateless-gigaom-com/2020/09/c7a986e2-fg5.png

GIGAOM

APP PROTECT AND MOD SECURITY — 1,000 RPS WITH 95% GOOD/5% BAD TRAFFIC (SHOWING BAD
TRAFFIC ONLY) 1KB LATENCY CURVE

8.0
:,2 5.932 5975 5.993
5.0
40
3.0
2.0
10
0.0

Latency (Milliseconds)

0462 0487 0496 pg5so 9860 0893, .0.906

50th 90th 95th 99th 99.9th 99.99th Max

Figure 6. Latency Curve at 1K rps and 5% Bad Traffic

High Performance Application Security Testing v1.0

https://storage.googleapis.com/stateless-gigaom-com/2020/09/126bf75b-fg6.png

GIGAOM

Test Results with 10% Bad Traffic

With 10% bad traffic, Mod Security consistently continued to have more latency than App Protect. At

1,000 rps of combined good and bad traffic, the latency gap was 6.3 times at the 99" percentile. We
show charts for the good traffic (900 rps in Figure 7) and bad traffic (100 rps in Figure 8) below.

APP PROTECT AND AWS WAF — 1,000 RPS WITH 90% GOOD/ 10% BAD TRAFFIC (SHOWING GOOD
TRAFFIC ONLY) 1KB LATENCY CURVE

10.0 9.052 9.137
9.0
8.0
7.0
6.0
5.0
40

30 2.465

2.0 1.029 °
10 10,663 08 s 0Es

0.0

2.944

Latency (Milliseconds)

50th 90th 95th 99th 99.9th 99.99th Max

Figure 7. Latency Curve at 1K rps and 10% Bad Traffic

High Performance Application Security Testing v1.0

16

GIGAOM

APP PROTECT AND AWS WAF — 1,000 RPS WITH 90% GOOD/ 10% BAD TRAFFIC (SHOWING BAD
TRAFFIC ONLY) 1KB LATENCY CURVE

5.0
4.391
4.0
=
3
s 10
E
& 20
5 v
1.0 0.541 0.785 0.878, . 0]
_0.445 _-0.477 0.492
0.0
50th 90th 95th 99th 99.9th 99.99th Max

Figure 8. Latency Curve at 1K rps and 10% Bad Traffic

Test Results with AWS WAF

Test Results with No Bad Traffic

With no bad traffic, AWS WAF produced much higher latency than App Protect, with the gap expanding

at the 99.9" percentile for 1K rps (Figure 9), 2K rps (Figure 10), and 3K rps (Figure 11). At 5K rps, the
difference was dramatic from the start, as shown in Figure 12.

High Performance Application Security Testing v1.0

17

GIGAOM

APP PROTECT AND AWS WAF - 1K RPS - BAD TRAFFIC 0% - 1KB LATENCY CURVE
50.0 46.198 47451

40.0
g 300
E
= 00
10.0
, 2.937 3103
0.654 : _/0-814 1.052 . .
. i f
0.0 ,
50th 90th 95th 99th 99.9th 99.99th Max

Figure 9. Latency Curve versus AWS WAF at 1K rps

APP PROTECT AND AWS WAF - 2K RPS - BAD TRAFFIC 0% - 1KB LATENCY CURVE
50.0 10 i

40.0

g

= 300

E

200

G 1.604 0
1.431 1.960 . 3.607
0.769 0.801 1.239
0.0 i = , :

50th 90th 95th 99th 99.9th 99.99th Max

Figure 10 - Latency Curve versus AWS WAF at 2K rps

High Performance Application Security Testing v1.0

18

https://storage.googleapis.com/stateless-gigaom-com/2020/09/032b3b46-fg9.png
https://storage.googleapis.com/stateless-gigaom-com/2020/09/da2ab72b-fg10.png

GIGAOM

APP PROTECT AND AWS WAF - 3K RPS - BAD TRAFFIC 0% - 1KB LATENCY CURVE
38.268

40.0
0
3
S
S 200
by
=
0.915 1.257
0.0 .

Figure 11. Latency Curve versus AWS WAF at 3K rps

9%th

99.9th

APP PROTECT AND AWS WAF - 5K RPS - BAD TRAFFIC 0% - 1KB LATENCY CURVE

2010.0

1010.0
37 292

10.0
5.0 -
4.0
3.0
2.0

Latency (Milliseconds)

1,28

(0867 9 949, 1.013 1.148

1.0
0.0 ' '
50th 90th 95th

Figure 12. Latency Curve versus AWS WAF at 5K rps

Test Results with 5% Bad Traffic

High Performance Application Security Testing v1.0

99th

2612

39.094

1.574

99.9th

3.051
99.99th Max
2725 2727

4.109 4.195
99.99th Max

19

https://storage.googleapis.com/stateless-gigaom-com/2020/09/b78d3870-fg11.png
https://storage.googleapis.com/stateless-gigaom-com/2020/09/027043a1-fg12.png

GIGAOM

When bad traffic was introduced, AWS WAF experienced more latency at the higher percentiles, with
an expanding gap at the 99.99™" percentile. Figures 13 through 16 show the results.

APP PROTECT AND AWS WAF — 1,000 RPS WITH 95% G0OOD/5% BAD TRAFFIC (SHOWING GOOD

TRAFFIC ONLY) 1KB LATENCY CURVE
38.453 38.877

40.0
= 300
-]
S
. 18.498
= 200
=
s 0o
1.509 4704 3.957 4-5\25
: 0.681 | .
0‘659/ o4 Coso /0815 O s, 1584
0.0 :
50th 90th 95th 99th 99.9th 99.99th Max

Figure 13. Latency Curve versus AWS WAF at 1K rps and 5% Bad Traffic

APP PROTECT AND AWS WAF — 1,000 RPS WITH 95% GOOD/5% BAD TRAFFIC (SHOWING BAD
TRAFFIC ONLY) 1KB LATENCY CURVE

13.981
14.0
11.788
12.0 10.706 J-
3100 9.410
S
2 80
=
= 60
z 4210 s
s 10 o
20 0.550 0.860 0.893
0.462 01 016 . - _0.906
0.0
50th 90th 95th 99th 99.9th 99.99th Max

Figure 14. Latency Curve versus AWS WAF at 1k rps and 5% Bad Traffic

High Performance Application Security Testing v1.0

https://storage.googleapis.com/stateless-gigaom-com/2020/09/21cac6ed-fg13.png
https://storage.googleapis.com/stateless-gigaom-com/2020/09/c9a77d90-fg14.png

GIGAOM

Test Results with 10% Bad Traffic

The 5% bad traffic pattern continued at 10% bad traffic.

APP PROTECT AND AWS WAF — 1,000 RPS WITH 90% GOOD/ 10% BAD TRAFFIC (SHOWING GOOD
TRAFFIC ONLY) 1KB LATENCY CURVE

10.0 9.052 9.137
9.0
8.0
7.0
6.0
5.0
4.0

3.0 . 2.944
2.0 1.029 o
10 10,663 e 0e oars

0.0

3.193

Latency (Milliseconds)

50th 90th 95th 99th 99.9th 99.99th Max

Figure 15. Latency Curve versus AWS WAF at 1K rps and 10% Bad Traffic

High Performance Application Security Testing v1.0

GIGAOM

APP PROTECT AND AWS WAF — 1,000 RPS WITH 90% GOOD/ 10% BAD TRAFFIC (SHOWING BAD
TRAFFIC ONLY) 1KB LATENCY CURVE

5.0
4.391
4.0
=
3
s 10
E
& 20
5 v
1.0 0.541 0.785 0.878, . 0]
_0.445 _-0.477 0.492
0.0
50th 90th 95th 99th 99.9th 99.99th Max

Figure 16. Latency Curve versus AWS WAF at 1K rps and 10% Bad Traffic

Finally, we highlight the maximum throughput achieved with 100% success and no 5xx or 429 errors
and with less than 30ms maximum latency. See Figure 17.

High Performance Application Security Testing v1.0

22

GIGAOM

MAX THROUGHPUT WITH 100% SUCCESS RATE - 1KB PAYLOAD

6,000

5,000 5,000

5,000

4,000

3,000

2,000

1,000

PerSecond

B No Security M App Protect Mod Security

Figure 17. Max Throughput

The maximum transaction throughput achieved with 100% success (no 5xx or 429 errors) and with less
than 30ms maximum latency with our tiny c5n.large (2 CPU and 5.25 GB RAM) instance was
approximately 5,000 requests per second for NGINX App Protect. By comparison, ModSecurity began
to produce errors at the 2,000 requests per second threshold. That is, above 2,000 rps, we started to
receive 500 and 429 errors back from NGINX with ModSecurity, and above 5,000 rps, we started to
receive 500 and 429 errors back from NGINX with App Protect.

High Performance Application Security Testing v1.0 23

GIGAOM

5. Conclusion

This report outlines the results from a GigaOm API Workload Field Test.

NGINX App Protect outperformed ModSecurity at all tested attack rates. NGINX App Protect had 92%

lower latency of NGINX running ModSecurity at the ooth percentile at 1,000 tps on the 5% bad request
test. The latencies for App Protect and ModSecurity diverged at higher percentiles. Although the

differences are minimal until you get to the Tokk percentile, the difference in latency is pronounced at
the 951" percentile and above.

For fully managed offerings, NGINX App Protect had 82% lower latency than AWS WAF at 1,000 tps, on
the 5% bad request test. Since AWS WAF is fully managed, we do not know what underlying compute
resources are working behind the scenes, making it difficult to perform a true apples-to-apples

comparison. Although the differences are minimal until you get to the oot percentile, the difference in
latency is pronounced at the 9oth percentile and above.

On a single small 2 CPU and 5.25GB of RAM EC2 instance, the maximum transaction throughput
achieved with 100% success (no 5xx or 429 errors) and with less than 30ms maximum latency was
approximately 5,000 rps for NGINX App Protect, compared to only 2,000 rps for ModSecurity. App
Protect in the test was found to provide the same level of throughput as No Security.

For this test using this particular workload with these particular configurations, APl requests came
back with the lowest latencies and highest throughput on NGINX App Protect compared to any of the
other tested security solutions.

Keep in mind, optimizations on all platforms would be possible as the offerings evolve or internal tests
point to different configurations.

High Performance Application Security Testing v1.0 24

GIGAOM

6. Appendix: Recreating the Test

The back-end API used in this test was a custom application developed by GigaOm. It is a Python
application that leverages the free-to-use Gunicorn WSGI HTTP web server and Falcon API
frameworks.

The application works by binding the API application to port 8000 with Gunicorn and listening for GET
requests, such as:

GET http://fgdn-or-ip-address:8000/size/10

The API would respond with a string of pseudorandom Unicode characters from /dev/urandom, such
as:

taZz3psgHkQ

where “10” is the size in bytes you desire the return string to have.

The following is the code for the back-end API. You are free to use and modify it at your own discretion.
GigaOm makes no warranty or claim for its use beyond the scope of this test or report.

import falcon

import sys

from base64 import b64dencode

from os import urandom

def generate string(string length):
random bytes = urandom(string length)
token = b6dencode (random bytes) .decode ('utf-8")
return token

class SizeResource (object):
def on get(self, req, resp, size):

resp.status = falcon.HTTP 200

resp.body = (generate string(int(size)))
app = falcon.API()
size = SizeResource ()

app.add route('/size/{size}', size)
The Python application was compiled using the PyPy just-in-time compiler to improve performance.

Our goal was to create a back-end API that was as performant and lightweight as possible so the
latency generated by the application itself was minimized.

High Performance Application Security Testing v1.0 25

https://gunicorn.org/
https://falconframework.org/
https://en.wikipedia.org/wiki/dev/random
https://www.pypy.org/

GIGAOM

7. Disclaimer

Performance is important but it is only one criterion for a Web Application Firewall selection. This test is
a point-in-time check into specific performance. There are numerous other factors to consider in
selection across Administration, Features and Functionality, Workload Management, User Interface,
Scalability, Vendor, Reliability, and numerous other criteria. It is also our experience that performance
changes over time and is competitively different for different workloads. Moreover, a performance
leader can hit up against the point of diminishing returns and viable contenders can close the gap
quickly.

GigaOm runs all of its performance tests to strict ethical standards. The results of the report are the
objective results of the application of load tests to the simulations described in the report. The report
clearly defines the selected criteria and process used to establish the field test. The report also clearly
states the tools and workloads used. The reader is left to determine for themselves how to qualify the
information for their individual needs. The report does not make any claim regarding the third-party
certification and presents the objective results received from the application of the process to the
criteria as described in the report. The report strictly measures performance and does not purport to
evaluate other factors that potential customers may find relevant when making a purchase decision.

This is a sponsored report. NGINX chose the competitors and the test, and the NGINX Plus
configuration was the default provisioned by NGINX Controller. GigaOm chose the most compatible
configurations as-is out-of-the-box, and ran the testing workloads. Choosing compatible configurations
is subject to judgment. We have attempted to describe our decisions fully in this report.

High Performance Application Security Testing v1.0 26

GIGAOM
8. About NGINX

NGINX, acquired by F5 in 2019, is behind the popular open source project trusted by more than 450
million sites. NGINX offers a suite of technologies for developing and delivering modern applications.
NGINX software solutions enable enterprises undergoing digital transformation to modernize legacy
and monolithic applications as well as deliver new, microservices-based applications. Companies like
Netflix, Starbucks, and McDonalds rely on NGINX to reduce costs, improve resiliency, and speed
innovation. NGINX simplifies the journey to microservices. As enterprises move to a DevOps approach
to application development and delivery, the tools, stack and interoperability of it all can get very
complex. NGINX software reduces this complexity by consolidating common functions like load
balancing, APl management, security (App Protect), and service mesh down to far fewer components,
to help make application infrastructure scalable and more manageable.

High Performance Application Security Testing v1.0 27

GIGAOM

9. About Jake Dolezal

High Performance Application Security Testing v1.0

As a contributing Analyst at GigaOm, Jake Dolezal has two
decades of experience in the Information Management field
with expertise in analytics, data warehousing, master data
management, data governance, business intelligence,
statistics, data modeling and integration, and visualization.
Jake has experience across a broad array of industries,
including: healthcare, education, government, manufacturing,
engineering, hospitality, and restaurants. He has a doctorate
in information management from Syracuse University.

28

https://gigaom.com/analyst/jake-dolezal/

GIGAOM
10. About William McKnight

An Ernst & Young Entrepreneur of the Year Finalist and
frequent best practices judge, William is a former Fortune 50
technology executive and database engineer. He provides
Enterprise clients with action plans, architectures, strategies,
and technology tool selection to manage information.

William McKnight is an Analyst for GigaOm Research who
takes corporate information and turns it into a bottom-line
producing asset. He’s worked with companies like Dong
Energy, France Telecom, Pfizer, Samba Bank, ScotiaBank,
Teva Pharmaceuticals and Verizon — Many of the Global
2000 — and many others. William focuses on delivering business value and solving business problems
utilizing proven, streamlined approaches in information management.

He is a frequent international keynote speaker and trainer. William has taught at Santa Clara University,
UC-Berkeley and UC-Santa Cruz.

High Performance Application Security Testing v1.0 29

https://gigaom.com/analyst/mcknight-william/

GIGAOM
11. About GigaOm

GigaOm provides technical, operational, and business advice for IT’s strategic digital enterprise and
business initiatives. Enterprise business leaders, ClOs, and technology organizations partner with
GigaOm for practical, actionable, strategic, and visionary advice for modernizing and transforming their
business. GigaOm’s advice empowers enterprises to successfully compete in an increasingly
complicated business atmosphere that requires a solid understanding of constantly changing customer
demands.

GigaOm works directly with enterprises both inside and outside of the IT organization to apply proven
research and methodologies designed to avoid pitfalls and roadblocks while balancing risk and
innovation. Research methodologies include but are not limited to adoption and benchmarking
surveys, use cases, interviews, ROI/TCO, market landscapes, strategic trends, and technical
benchmarks. Our analysts possess 20+ years of experience advising a spectrum of clients from early
adopters to mainstream enterprises.

GigaOm'’s perspective is that of the unbiased enterprise practitioner. Through this perspective, GigaOm
connects with engaged and loyal subscribers on a deep and meaningful level.

High Performance Application Security Testing v1.0 30

GIGAOM
12. Copyright

© Knowingly, Inc. 2020 "High Performance Application Security Testing" is a trademark of Knowingly,
Inc.. For permission to reproduce this report, please contact sales@gigaom.com.

High Performance Application Security Testing v1.0 31

https://www.knowingly.com/
https://www.knowingly.com/
https://www.knowingly.com/
mailto:sales@gigaom.com

	High Performance Application Security Testing v1.0
	Product Evaluation: NGINX App Protect vs. ModSecurity (plus AWS Web Application Firewall)

	High Performance Application Security Testing
	Product Evaluation: NGINX App Protect vs. ModSecurity (plus AWS Web Application Firewall)
	Table of Contents
	1. Summary
	2. API Security in the Cloud
	3. GigaOm API Workload Test Setup
	API Workload Test
	Test Environments
	Configurations Used for Comparable Tests of Fully Managed Platforms

	4. Test Results
	Test Results without AWS WAF
	Test Results with AWS WAF

	5. Conclusion
	6. Appendix: Recreating the Test
	7. Disclaimer
	8. About NGINX
	9. About Jake Dolezal
	10. About William McKnight
	11. About GigaOm
	12. Copyright

