
The Role and Impact
of GraphQL
By Rajesh Narayanan, Applications and Security

Reviewed by and Contributions from: OCTO Team and others.

OFFICE OF THE CTO

THE ROLE AND IMPACT OF GRAPHQL 2

Table of Contents
3 F5 Office of the CTO Opinion

3 GraphQL Primer

 Why GraphQL?

 Meta's Motivation for GraphQL

 GraphQL Advantages

 Challenges with GraphQL

9 GraphQL Usage Patterns

10 Industry GraphQL Adoption Experience (Case Studies)

 Netflix

 Other Early Adopters

13 GraphQL at F5

 Improving Data Models and Visibility

 CloudGraph Integration

16 GraphQL Security Concerns

 Introspection Attack

 SQL Injection

 REST Proxy API Attack

 Batching Attacks

 Denial-of-Service Attack

18 GraphQL Deployment Patterns

 Monolithic Deployment

 Composed Monoliths

 Federated Sub-Graphs

 Hybrid Graphs

 Serverless Routing

 Edge-Deployment

22 Conclusion

THE ROLE AND IMPACT OF GRAPHQL 3

F5 Office of the CTO Opinion
GraphQL has emerged as a modern and efficient approach to API development, surpassing
the limitations of traditional REST APIs. While REST has been widely used since the early
days of the web, GraphQL offers a fresh perspective and greater control for developers.
With GraphQL, developers can define a strongly-typed schema that empowers clients to
precisely request the data they need. By eliminating over-fetching and under-fetching of data,
GraphQL optimizes performance and facilitates the creation of modern, interactive
web applications which have complex data querying and data modeling requirements.

However, we acknowledge that GraphQL is not without its challenges. This paper provides
insights into the security concerns and learning curve associated with GraphQL adoption.
We explore real-world case studies describing the benefits netted by renowned companies
that have successfully implemented GraphQL.

Furthermore, we present our own investigation into GraphQL, sharing our experiences and
discoveries. We outline a short primer on GraphQL, compare it with REST, and delve into the
challenges it addresses. Security considerations are also discussed to help organizations
make informed decisions. Our research reveals the transformative potential of GraphQL.
We showcase how we simplified a test management suite software architecture, resulting in
a growth of over 300% in the amount of exposed data hidden within JSON objects through
GraphQL.

In conclusion, we strongly recommend that enterprises grappling with scaling, optimizing, or
operating a REST API infrastructure consider GraphQL as a viable solution. Our insights offer
practical guidance to those embarking on the GraphQL journey, enabling them to harness its
benefits and overcome challenges effectively.

GraphQL Primer

W H Y G R A P H Q L?

Limitations with REST APIs are driving demand for a new API technology approach.

The REST (Representational State Transfer)-based approach was originally proposed as a
set of architectural principles for designing web APIs. REST evolved throughout the 2000s
and 2010s with the emergence of Web 2.0 as a better means to implement service-oriented
architecture (SOA) over other technologies like Common Object Request Broker Architecture
(CORBA).

THE ROLE AND IMPACT OF GRAPHQL 4

As the number of clients grew due to mobile adoption, the demand for precise data
increased. However, REST-based APIs often resulted in over- or under-fetching of data,
leading to inefficiencies. This approach, exemplified by apps like Facebook, often required
numerous REST API calls for a single update, increasing network traffic and compromising
performance and user experience.

GraphQL was specifically designed to address these limitations by offering a strongly-typed
schema and a more efficient way to query data. This makes it well-suited for use cases where
specific data is required to optimize network bandwidth. Additionally, GraphQL's ability to
introspect the schema enables better documentation and tooling. While a more standardized
implementation of REST could have provided some competition, GraphQL's unique features
and benefits make it a compelling choice for modern application architectures that are
distributed and data-intensive.

Figure 1 shows a topological difference between how REST and GraphQL are implemented.
As stated in REST API vs GraphQL1, “the key difference between GraphQL and REST APIs is
that GraphQL is a query language, while REST is an architectural concept for network-based
software.”

M E TA’S M O T I VAT I O N F O R G R A P H Q L

Meta created GraphQL in 2012 (open-sourced 2015) to improve the performance and
flexibility of their mobile apps. Prior to GraphQL, Meta's mobile apps were built using a
combination of RESTful APIs and native code, making it difficult to handle the wide range
of devices, screen sizes, and network conditions the apps needed to support.

GQL RUNTIME

Client

Data App IOT

{/app1, /app2, /app3}

Client

/app2 /app3/app1

REST API GRAPHQL API

Data App IOT

Figure 1: REST vs. GraphQL.
Adapted from Rest API vs. GraphQL1

THE ROLE AND IMPACT OF GRAPHQL 5

One of the main challenges they faced was that RESTful APIs would often return the wrong
amount of data—sometimes too much and sometimes too little. When the API returned
a large amount of data the mobile apps didn't need it led to slow loading times and poor
performance. When the API returned too little data, mobile apps needed to make multiple
requests to different endpoints to fetch all the data they required, adding latency and
complexity to the process.

Meta developed GraphQL so any app could request only the data it needed in a single
request. This made it possible to optimize data transfer between the mobile apps and the
backend services, leading to faster load times and better performance. Moreover, GraphQL's
strong typing and self-documenting features made it easier for developers to understand and
consume the API.

G R A P H Q L A D VA N TA G E S

GraphQL offers powerful capabilities for data retrieval and manipulation, providing significant
benefits over traditional API approaches.

Strongly-Typed Schemas

GraphQL features a strongly-typed schema that ensures clarity and accuracy in defining the
structure and types of data that can be queried from an API. Let's say we have an API for a
library that contains books, authors, and publishers.

a) GraphQL Schema: In GraphQL a strongly typed schema would look like Figure 2 below:

type Book {
 id: ID!
 title: String!
 author: Author!
 publisher: Publisher!
}

type Author {
 id: ID!
 name: String!
 books: [Book!]!
}

type Publisher {
 id: ID!
 name: String!
 books: [Book!]!
}Figure 2: GraphQL schema example

THE ROLE AND IMPACT OF GRAPHQL 6

type Query {
 books: [Book!]!
 book(id: ID!): Book
 authors: [Author!]!
 author(id: ID!): Author
 publishers: [Publisher!]!
 publisher(id: ID!): Publisher
}

Strongly-typed schemas in GraphQL offer security-related benefits by enabling input
validation, preventing over-fetching and under-fetching of data, providing clear
documentation-and-tooling support, facilitating version control, and aiding in authorization
and access control. These features enhance API security by reducing the risk of common
vulnerabilities and ensuring proper data handling and access management.

In the example shown (Figure 2), the schema defines the data types for books, authors, and
publishers, and their relationships to one another. The schema is strongly-typed, which means
every field has a specific data type, and clients can easily introspect the schema to discover
available fields and their types.

b) REST Schema: In REST the schema definition would be loosely-typed as shown in
Figure 3 below:

GET /books
GET /books/{id}
GET /authors
GET /authors/{id}
GET /publishers
GET /publishers/{id}

These endpoints return JSON objects representing the books, authors, and publishers,
but the schema itself is not explicitly defined and is left to the skill and interpretation of
the programmer. Clients will have to rely on documentation to understand the structure
of the data.

Beyond REST

GraphQL has evolved beyond being a better alternative to REST and has the potential to be
a preferred approach for enterprises considering a better data strategy. In addition to solving
the limitations of REST, there are several other reasons why GraphQL has evolved into a new
approach to API design. While the table (Figure 4) can show advantages of GraphQL over
REST, GraphQL is best thought of as a response to the evolution of the internet and different
applications rather than a response to the identification of problems with REST itself.

Figure 3: REST schema example

Figure 2: GraphQL schema example
(cont.)

THE ROLE AND IMPACT OF GRAPHQL 7

ATTRIBUTES GRAPHQL REST

FLEXIBLE DATA MODELING GraphQL allows developers to easily define and
evolve APIs to match changing requirements.

Clients can precisely specify the data they need
using the query language, allowing for a more
flexible and efficient data retrieval process.

The server typically defines fixed endpoints that
return predefined data structures.

Clients have limited control over the shape and
structure of the response, often resulting in over-
fetching or under-fetching of data.

REST lacks the fine-grained control over data
retrieval and composition that GraphQL offers.

BATCHED QUERIES GraphQL allows multiple queries to be combined
into a single request, which can significantly reduce
the number of round trips between the client and
server and improve performance.

Rest has no built-in mechanism for batching
multiple queries into a single request. Each REST
request typically corresponds to a single resource
or endpoint. Some REST frameworks or extensions
may provide ways to bundle multiple requests
together but are not native or standardized as
in GraphQL.

TYPED QUERIES AND
RESPONSES

Clients can specify the exact data they need,
and servers can respond with only the requested
data, reducing over-fetching and under-fetching.
Additionally, GraphQL is strongly typed, which helps
prevent errors and improves tooling support.

Typing is not inherently enforced in queries and
responses. The structure and format of the data are
typically predefined by the server, and clients must
interpret and handle the data accordingly. This can
lead to less type-safety.

INTEGRATION WITH FRONT-END
FRAMEWORKS

GraphQL is designed to work well with front-end
frameworks like React and Vue, making it easier
to build modern, interactive web applications.
GraphQL has dedicated libraries and tooling for
seamless integration.

While REST can be used with front-end frameworks,
the integration may require more manual effort and
custom implementations. While there are third-party
libraries, REST does not provide a standardized way
of integrating with specific front-end frameworks
like React or Vue.

GRAPH BASED QUERYING GraphQL allows for complex queries that span
multiple resources and relationships in a single
request, making it easier to get the data needed to
build complex user interfaces.

REST typically follows a resource-centric approach,
where each endpoint represents a specific
resource or entity. It does not inherently provide
a mechanism for querying data across multiple
resources or relationships in a single request.

PERFORMANCE GraphQL's ability to precisely request only the
required data can lead to more efficient data
retrieval and improved performance.

REST APIs may suffer from over-fetching or
under-fetching of data, as clients have limited
control over the response structure. This can
impact performance, particularly if the API returns
excessive or unnecessary data.

DEVELOPER PRODUCTIVITY GraphQL's self-documenting nature, with
introspection capabilities, reduces the need
for extensive documentation and fosters better
understanding of the data model. Strongly-typed
schema and query validation promote shared
understanding and catch errors early. GraphQL has
an intuitive query language and easier learning
curve, facilitating better onboarding and knowledge
transfer within dev teams.

Due to the lack of a standardized contract
between the client and server, tribal knowledge
suffers. REST APIs typically rely on informal
documentation or conventions varying across
different implementations. The lack of a shared
understanding leads to inconsistencies and
knowledge gaps within teams. This puts the onus
on developers who have been on the team longer
to spend precious cycles educating team members
rather than focusing on the business problem. This
reliance on individuals for documentation results
in fragmented tribal knowledge, making it difficult
for all team members to have a comprehensive
understanding of the API's capabilities and data
structures.

THE ROLE AND IMPACT OF GRAPHQL 8

API VERSIONING GraphQL’s inherent advantage when it comes to
versioning is in the ability to deprecate fields that
are going to be removed, giving the developers on
the client side time to adjust. Versioning similar to
REST APIs is still possible.

Deprecating fields is something not inherently
available in REST. It is left up to the client-side
developers to ensure they are using the correct
version of the API.

Figure 4: GraphQL advantages over REST

C H A L L E N G E S W I T H G R A P H Q L

While GraphQL provides many advantages over traditional RESTful APIs, there are also some
challenges to using it. Common challenges include:

1. Learning curve: Because most developers are more familiar with REST, organizations
that plan to adopt GraphQL will need to budget time for their teams to learn how to
use it effectively. GraphQL requires a different way of thinking about building and
consuming APIs and adopting it could require changes to the underlying application
architecture. Developers may need to learn new concepts such as schemas, resolvers,
and types, as well as new tools and libraries. With GraphQL, clients have more
control over the data they can access, which can make it more difficult to secure APIs.
Techniques such as input validation, authentication, and authorization may need to be
applied differently than with RESTful APIs.

2. Caching: Caching can be more complex with GraphQL, as clients can request different
data with each query, making it harder to cache and reuse responses.

3. Performance: While GraphQL allows clients to request only the data they need, it can
also enable more complex and resource-intensive queries. GraphQL APIs can have
performance issues, particularly when querying large datasets or when a high number
of concurrent requests are made. Developers need to implement strategies like limiting
the query depth or ensuring clients are authorized to access only the specific data
needed.

4. Error Handling: GraphQL can make error handling more complex as errors may be
returned as part of the response rather than as a separate HTTP status code.

5. Testing: Testing with GraphQL presents challenges due to the complexity of queries,
lack of standardized testing approaches, schema evolution, and query validation during
runtime. Developers need to invest time in finding suitable testing frameworks and tools
to address these challenges. Developers need to ensure comprehensive test coverage
by selecting appropriate tools and considering schema evolution to effectively test
GraphQL APIs and ensure their functionality and stability.

THE ROLE AND IMPACT OF GRAPHQL 9

6. Monitoring: Monitoring GraphQL APIs can be challenging due to the complexity of
queries, lack of standardized logging and metrics, and the potential for performance
issues. The dynamic nature of GraphQL queries makes it harder to predict and monitor
the structure and size of requested data. The absence of standardized monitoring
tools specific to GraphQL APIs makes it difficult to gain insights into GraphQL query
performance, error tracking, and API health. Developers need to adopt specialized
monitoring tools and practices that can handle the unique characteristics of GraphQL,
ensuring efficient performance and reliable operation.

GraphQL Usage Patterns
GraphQL is a powerful tool that can be used in a wide range of applications, from building
APIs to powering mobile apps. Its flexibility and ability to unify data sources makes it well-
suited for a variety of different usage patterns.

1. Building efficient APIs: One of the primary uses of GraphQL is to build APIs that can be
consumed by web and mobile applications. GraphQL provides a flexible and powerful
way to define and access data, making it well-suited for building APIs that need to
support a wide range of clients and use cases.

2. Data fetching and manipulation: GraphQL can be used to fetch and manipulate data
from a variety of sources, including databases, cloud services, and other APIs. By
providing a unified way to access data, GraphQL can help to simplify the process of
building and maintaining data-driven applications.

3. Real-time Use Cases: GraphQL is well-suited for real-time use cases, as clients can
subscribe to updates to specific data and receive notifications when the data changes.
This can be used in applications like chat, live streaming, real-time dashboards, and
more.

4. Microservices: GraphQL can be used to build a flexible, loosely coupled architecture
that allows different microservices to communicate with one another in a consistent and
well-defined way.

5. Back end to Front end: GraphQL can be used to build a back-end-for-front-end (BFF)
architecture, which allows different front-end clients to access data and services in a
consistent and efficient way.

6. Mobile Development: GraphQL can be used to power mobile apps, by providing a way
to access data and services in a consistent and efficient way, regardless of the platform
or device.

THE ROLE AND IMPACT OF GRAPHQL 10

Industry GraphQL Adoption Experience (Case
Studies)
There are obvious motivations for why we need GraphQL, as seen in the following industry
deployments:

N E T F L I X

Netflix summarized their GraphQL journey in 2020 with a two-part blog series that is a must
read for any GraphQL practitioner.2 The case study they presented was the Studio Edge
system taking their studio APIs and rearchitecting for GraphQL. Netflix's Studio API is used by
their content teams to manage and monitor the production, post-production, and distribution
of TV shows and movies. The API provides access to a vast amount of data, including
metadata about titles, talent information, and more.

Initially, the Studio API was built using a traditional RESTful architecture, with endpoints that
returned data in JSON format. However, as the API grew and the number of clients accessing
it increased, it became clear a more efficient solution was needed.

Netflix began exploring GraphQL as a potential solution for the Studio API. They started by
building a curated graph for the Studio API. They identified several key benefits, including the
ability to reduce network usage, simplify data access, and improve performance by allowing
clients to request only the data they need.

Netflix also faced some unique challenges when adopting GraphQL for the Studio API,
particularly around managing the complexity of the schema, and ensuring clients could only
access the data they were authorized to see.

To address these challenges, Netflix developed a custom solution called "Netflix GraphQL
Federation," which uses the Apollo Federation specification to split the Studio API schema
into smaller, more manageable pieces. They also implemented a system for managing
permissions and access control, which allows them to restrict client access to certain parts of
the schema.

In the blog they also published the evolution of their API architecture, from a Monolith to
Federated Gateway. Figure 5 is an adaptation of the picture from their blog.

https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://miro.medium.com/v2/resize:fit:1100/0*tF6eYngRkxpxmVus
https://miro.medium.com/v2/resize:fit:1100/0*tF6eYngRkxpxmVus

THE ROLE AND IMPACT OF GRAPHQL 11

We believe there is another approach missing which may be prevalent in the industry but not
formalized.

One could combine the gateway aggregated layer and federated gateway from Figure 5 as
shown below:

MONOLITHS1

GATEWAY AGGREGATED LAYER3

SERVICE ORIENTED ARCHITECTURE2

FEDERATED GATEWAY

Monolithic
Application

Application
Services

Microservices

Federated Layer

GW

Microservices

GW

GW GW GW

4

Figure 5: Evolution of API
architecture (Adapted from Netflix)2

GATEWAY AGGREGATED LAYER5

Distributed GraphQL Gateway Actors

FEDERATOR

API Transport

Microservices

Figure 6: F5’s evolved API
architecture including ephemeral
GraphQL gateway actors

THE ROLE AND IMPACT OF GRAPHQL 12

Each gear icon essentially represents an ephemeral and federated GraphQL instance
(a.k.a. gateway actor) that may be instantiated in real time (even on a per transaction basis)
at the edge, i.e., topologically close to the clients and connect to the microservices over a
secure API transport. This combination in essence replaces the gateway aggregation layer,
or the federated layer, with distributed gateway actors which combine the best of both
functionalities. We call this distributed GraphQL gateway actors’ architecture as shown in
Figure 7.

O T H E R E A R LY A D O P T E R S

PayPal

PayPal has been on the GraphQL journey since 2018 when they made it part of their
Checkout app.3 Their primary concern with REST, similar to Meta’s, was the design principles
are not optimized for web and mobile apps and their users. Client applications were making
many round trips from the client to the server, taking approximately 700ms to fetch data.
This resulted in slower rendering time, user frustration, and lower conversion rates. For the
checkout app PayPal discovered that user interface (UI) developers were spending less than
one third of their time building UI while the remaining time was spent figuring how to fetch
and process data.

The other technologies the PayPal engineering team considered were orchestration APIs
and Bulk REST. Building an orchestration API would lead to over fetching and clients being

Figure 7: Distributed GraphQL
gateway actors

GRAPHQL ENABLED SERVICES

+

Simple API
Gateway

Firewall Transport

Gateway Actor

Gateway Actor

Gateway Actor

API Workload

API Workload

API Workload

API Management
functions

Control
Plane Functions

APPLICATION API TRANSPORT

• Service Orchestration

• Service Composition

• Service Aggregation

• Service Transformation

• Service Mediation

https://www.f5.com/resources/reports/distributed-gateway-actors-evolving-api-management
https://medium.com/paypal-tech/graphql-a-success-story-for-paypal-checkout-3482f724fb53

THE ROLE AND IMPACT OF GRAPHQL 13

coupled to the server. PayPal concluded that over time this approach can cause the
API to become heavy, kludgy, and serve more than a single purpose. Their Bulk REST
experiment also proved unsuccessful. While it freed the engineering team from having to
tweak the orchestration APIs, it required their clients to have intimate knowledge of how
the APIs worked.

PayPal’s first experience using GraphQL for building a new product was a mobile SDK for
integrating PayPal Checkout into apps. Within a week of evaluating GraphQL, the engineering
team decided to use it for their new product. Despite the API not being ready, they were still
able to complete the product ahead of schedule with almost no PayPal-specific knowledge
necessary. Developers were able to quickly build an efficient and user-friendly app convincing
the engineering team to fully adopt GraphQL in their technology stack.

Starbucks

Starbuck’s employed a third-party to develop their Progressive Web App (PWA).4

The team was tasked with creating an ordering system that would efficiently and effectively
accommodate complex business logic. As customers are able to personalize their orders,
the development team had to ensure the system could accommodate multiple instances of
unique business logic, sending the right data to the right place at the right time.

GraphQL made it possible for the team to make an efficient API with server-side caching and
rendering to improve offline functionality. The team also used React to incorporate animation
creating a dynamic and compelling user experience.

GraphQL at F5
The objective of the F5 Office of the CTO was to understand how we could use GraphQL
within the F5 ecosystem. We have two projects underway exploring the use of GraphQL.

I M P R O V I N G D ATA M O D E L S A N D V I S I B I L I T Y

The test management suite (TMS) offered by F5 provides customers with the ability to test
endpoints or clients of their own systems and see if they are human or bots.

This was an internal facing project to help streamline the TMS software development and
testing. The primary goal was to extract JSON data trapped in the existing SQL database,
convert to graph data, and implement a GraphQL API for querying.

This was necessary because the current database poses challenges, including the "JSON-
blob problem" which results from storing meta-data as JSON objects in a tabular database.
Parsing and handling these objects is inherently expensive and inefficient. Moreover, the
JSON-blobs, due to their graph nature, contain valuable data that can further improve F5's

https://formidable.com/work/starbucks-progressive-web-app/

THE ROLE AND IMPACT OF GRAPHQL 14

products and security. By transitioning to a directed graph database, the JSON-blobs can
be efficiently parsed and managed with directed relationships, optimizing data transfer and
utilization.

The results are encouraging. By identifying which tables in the TMS relational database have
JSON blobs, we determined that moving to a GraphDB and using GraphQL could increase our
visibility into the system multi-fold.

Figure 9 shows the possible evolutions or implementation choices for this project. Each
choice has its own implications.

Option 1 has the least impact on the UI as the client does not have to change. A hybrid mode,
as in options 1 or 2, may work well depending on the situation, especially if there are a smaller
number of columns with JSON objects. In addition to this, the derived schema for each JSON
would also be small.

But when planning this we realized the JSON objects required context which was stored in
other columns in the SQL database. The size of the schema stored in each JSON object was
also quite large. This would have created more work maintaining the codebase. So, after
careful consideration, we decided to rearchitect the application to support GraphQL and
Neo4J as shown in option 3.

JSON, MYSQL

JSON blobs “hidden” in SQL
database

Developers: access blobs
(ine�cient, di�cult)

JSON blob duplication

GRAPHQL, NEO4J

Migrate JSON:
SQL to Neo4j

GraphQL API for Neo4j

Explore GraphQL
possibilitiesFigure 8: F5 TMS GraphQL Project

Scope

Figure 9: Implementation choices

1 2 3

GRAPHQL

Field 3.1:

UUID

Field 3.2:

String

ER Old

Field 1
Field 2

Field 3:
ID

MYSQL NEO4J

UI

Field 1: int
Field 2: int

Field 3.1: UUID
Field 3.2: String

Field 4: Str

NEO4J

GRAPHQL

UI

GO Gateway API

Field 3.1:

UUID

Field 3.2:

String

REST API

ER Old

Field 1
Field 2

Field 3:
ID

MYSQL NEO4J

GRAPHQL

UI

THE ROLE AND IMPACT OF GRAPHQL 15

C L O U D G R A P H I N T E G R AT I O N

CloudGraph is a free open-source universal GraphQL API and Cloud Security Posture
Management (CSPM) tool for AWS, Azure, GCP, and Kubernetes (K8s). The objective of the
project is to use CloudGraph to build a ‘CloudGraph plugin’ (Figure 10) for the F5 Distributed
Cloud (F5XC) data to appear on it, allowing for better visibility to cloud resources connected
using F5 Distributed Cloud.

Our goal is to integrate with CloudGraph to gain a deep understanding of the technology and
to build future CloudGraph integrations, insights, and GraphQL APIs for F5XC data.

After integrating the custom F5XC provider into the CloudGraph platform and using the
create relationships capability of the platform we will have better visibility of cloud resources
connected using F5XC and their relationships across other clouds. We can then generate
complex queries on resources across multiple clouds for the same tenant. This will enable
us to provide stakeholders with a comprehensive F5XC overview and explore a deeper
integration of CloudGraph for additional GraphQL plugins and custom insights for cloud
operations relevant to F5 and its customers.

Based on the above initiatives, our initial exploration has been in line with the experiences
outlined by the case studies presented earlier.

STANDARDIZE TYPE CREATE RELATIONSHIPS ENRICH

Stored Locally
with DGRAPH

CloudGraph

Query with
GraphQL

AWS Azure GCP K8S

CLOUDGRAPH

Provider
AWS

Provider
Azure

Provider
GCP

Provider
F5 XC

AWS
APIs

Azure
APIs

GCP
APIs

F5 XC
APIsFigure 10: CloudGraph integration

with F5 Distributed Cloud

THE ROLE AND IMPACT OF GRAPHQL 16

GraphQL Security Concerns
Initial perceptions regarding GraphQL's superiority over REST in terms of security have been
debunked, as GraphQL, like any other technology, carries its own risks if not implemented
correctly. It is important to recognize GraphQL is not inherently more secure than other
technologies. Proper implementation and adherence to best practices are crucial to ensure
the security of GraphQL APIs. By dispelling this myth, we can approach GraphQL with a
realistic understanding of its security considerations and take appropriate measures to
mitigate any potential risks.

I N T R O S P E C T I O N AT TA C K

GraphQL provides developers with a powerful tool called introspection, which allows them
to request information about the schema used by a GraphQL service. This tool enables
developers to learn about the service and its structure. However, there are risks associated
with introspection. Enabling introspection in a production GraphQL service means sensitive
information within the schema can also be accessed. This poses a significant risk, as
malicious users can exploit introspection to obtain sensitive data and potentially cause harm.
Furthermore, introspection grants these users the ability to easily identify potentially harmful
operations, as they can view the entire schema and determine which queries to execute. The
consequences of such a leak can be disastrous, depending on the nature of the schema and
the data it contains.

Mitigation: A solution to mitigate the risks of introspection is to disable it in production APIs
using various frameworks. By disabling introspection, developers lose some of the convenient
functionality it offers. However, to regain its usability, developers can register the GraphQL
schema of the production API with tools like GraphOS. This allows them to retain controlled
access to the schema and its information.

S Q L I N J E C T I O N

SQL injection is a widely recognized and prevalent attack that poses risks ranging from data
manipulation to complete database deletion. This straightforward attack takes advantage of
string concatenation, allowing an attacker to insert executable code within input, granting
unauthorized access to the database and enabling malicious alterations. Interestingly, this
attack vector is not limited to SQL databases alone but can also affect graphical databases
like Neo4j. Neo4j employs the Cypher query language, which resembles SQL and inherits its
vulnerabilities. This type of attack, known as Cypher injection, exploits the similarities but also
benefits from existing solutions without the need for new inventions.

THE ROLE AND IMPACT OF GRAPHQL 17

Mitigation: Countermeasures include sanitizing user input to detect and prevent exploitation
and using parameterization to abstract user input from direct query creation. These measures
effectively mitigate the risk of injection attacks. It is crucial to address this security issue in
GraphQL implementations, but fortunately, well-known and easily implementable solutions
are available.

R E S T P R OX Y A P I AT TA C K

Layering a GraphQL API on top of a REST API can lead to server-side request forgery (SSRF)
vulnerabilities. Attackers can exploit this by modifying parameters sent to the REST API
through the GraphQL proxy. If neither API validates parameters for specific calls, attackers
gain control over the backend system. For example, appending "/delete" to a user ID in a
GraphQL query can result in unintended deletion of data when passed to the REST API.

Mitigation: While this vulnerability is a valid concern, it can be effectively addressed by
defining types in the GraphQL schema and thoroughly validating parameters before sending
them to external APIs or services. It's important to note that this vulnerability, along with others
associated with GraphQL, stems from implementation issues rather than being inherent
problems with GraphQL itself. Such problems arise when GraphQL is misused due to a short-
term mentality, despite the technology holding great promise.

B AT C H I N G AT TA C KS

Authentication vulnerabilities are a prevalent attack vector across various systems, including
GraphQL. GraphQL's ability to send multiple queries or mutations in a single request exposes
it to batching attacks, which involve brute force methods.

The first type of attack involves brute forcing login passwords. Attackers send a request with
numerous mutations containing login credential pairs. Since GraphQL allows many mutations
in one request, this attack bypasses rate limiting checks and enables the creation of a session
by brute-forcing passwords.

The second type of attack operates similarly but targets a popular form of two-factor
authentication (2FA) called one time password (OTP). A single request is sent with multiple
mutations, each containing a valid login credential paired with a different OTP variation. If any
of the mutations include the correct OTP, the request will be authenticated, and a session will
be established.

Mitigation: Addressing these vulnerabilities requires a comprehensive approach, as there
is no foolproof solution. Developers play a crucial role by adopting secure coding practices
and emphasizing the perspective of business logic. On the web server side, it is essential to
implement measures such as limiting login attempts and validating user input. Additionally,
specific attention should be given to scanning requests for multiple mutations, as a legitimate
login attempt typically does not involve more than one mutation.

THE ROLE AND IMPACT OF GRAPHQL 18

D E N I A L- O F - S E R V I C E AT TA C K

These attacks involve overwhelming the GraphQL service with excessive traffic, rendering it
incapable of handling requests from legitimate users and potentially causing server crashes.
DoS attacks can be executed through recursive GraphQL queries or by sending large query
requests.

In the recursive query scenario, attackers exploit the cyclical nature of GraphQL schema
definitions. For instance, if the schema includes author and book types, an attacker can
repeatedly query the author and book in a loop, overwhelming the server with recursive calls
and disrupting its operation.

Alternatively, attackers can issue queries that request an extensive amount of data from the
database. For example, a query may retrieve many authors and all their associated books.
Such a massive data request can significantly slow down or crash the system.

Mitigation: There are several solutions to mitigate this problem. The first approach is to
set a timeout on queries, preventing users from making requests that exceed a specified
duration. However, this may not fully address the issue, as damage can still occur within the
allotted time. Another solution is to enforce limits on query depth and complexity. Queries
that surpass the designated depth or complexity, which deviates from the schema's definition,
can be rejected. Lastly, implementing user throttling can be effective. If a user sends a large
or consecutive set of requests, their access to the server can be temporarily denied until the
server is prepared to handle additional requests.

GraphQL Deployment Patterns
There are several deployment patterns for GraphQL as shown, each with their own set of
trade-offs and considerations.5 Some of the most common patterns include:

M O N O L I T H I C D E P L OY M E N T

This is the simplest and most common pattern for deploying a GraphQL API. In a monolithic
deployment, the GraphQL server, the database, and any other necessary services are all
deployed together as a single unit. This can make it easy to get started with GraphQL but can
become difficult to scale and maintain as the application grows.

SIMPLE MONOLITH

GRAPHQL REST API
Figure 11: Simple Monolith

https://www.howtographql.com/advanced/4-security/
https://www.apollographql.com/blog/graphql/security/9-ways-to-secure-your-graphql-api-security-checklist/
https://www.solo.io/blog/announcing-graphql-for-gloo-gateway/

THE ROLE AND IMPACT OF GRAPHQL 19

C O M P O S E D M O N O L I T H S

Composed monoliths refer to the architecture where a monolithic application is built using a
combination of monolithic and microservices with GraphQL acting as the API layer (Figure 12).
In this pattern, instead of breaking down the entire system into separate microservices, the
application is initially developed as separate monoliths, which encapsulate all the business
logic and data access layers.

Within this monolithic structure, GraphQL is implemented as the API layer, allowing clients
to request and retrieve data from different underlying microservices. This means while the
application remains monolithic from a deployment perspective, it utilizes GraphQL as a means
to compose data from various services and present it to clients in a flexible and efficient
manner.

This pattern offers benefits such as simplified development and deployment, as well as
the ability to leverage GraphQL's powerful querying and data-fetching capabilities. It allows
developers to progressively adopt microservices architecture while still benefiting from the
flexibility and ease of use provided by GraphQL.

F E D E R AT E D S U B - G R A P H S

Federated graphs in GraphQL deployment patterns involve combining multiple GraphQL
services, called subgraphs, into a single unified GraphQL schema. Each subgraph represents
a separate domain or microservice with its own data and functionality. This architecture
uses a central gateway that routes client queries to the appropriate subgraph based on the
requested fields. By federating these subgraphs, developers can create a cohesive graph
where clients can seamlessly query and traverse across different services.

COMPOSED MONOLITH

GRAPHQL

REST API

gRPC

REST API

gRPC

Figure 12: Composed Monolith

THE ROLE AND IMPACT OF GRAPHQL 20

REST API

gRPC

REST API

gRPC

GRAPHQL

GRAPHQL

GRAPHQL

GRAPHQL

FEDERATED SUB-GRAPHS

Figure 13: Federated sub-graphs

Figure 14: Hybrid graphs

This approach promotes modularity, scalability, and independent development of services,
resulting in improved performance and flexibility for building GraphQL APIs. Federated
subgraphs (Figure 13) provide a powerful way to compose data from various services and
create a distributed and scalable architecture.

H Y B R I D G R A P H S

Hybrid graphs (Figure 14) in GraphQL deployment patterns combine federated subgraphs and
non-federated schemas through stitching techniques. This approach enables organizations to
integrate existing GraphQL APIs or legacy systems with federated microservices, resulting in a
unified GraphQL API that benefits from both approaches. By merging schemas and resolving
relationships between types and fields, the hybrid graph architecture offers flexibility,
modularity, and scalability.

The hybrid graph pattern provides organizations with the ability to gradually adopt federation
while leveraging their existing resources. It allows for the seamless integration of federated

GraphQL
Graph QL

Rest API
Rest API

gRPC
gRPC

GraphQL
Graph QL
GraphQL

Rest API

gRPC

GraphQL

Rest API
Rest API
Rest API

gRPC

HYBRID GRAPH

GRAPHQL

THE ROLE AND IMPACT OF GRAPHQL 21

subgraphs and non-federated schemas, accommodating diverse requirements and promoting
interoperability. This approach empowers organizations to build comprehensive GraphQL
APIs that can scale and adapt to evolving needs. By combining the strengths of both
federated and non-federated services, hybrid graphs offer a flexible and powerful solution for
building GraphQL deployments.

Challenges with hybrid graphs in GraphQL deployments include managing the complexity of
merged schemas, addressing potential performance overhead, ensuring data consistency
and integrity, handling system evolution and versioning, and navigating the complexities of
monitoring and debugging in a distributed architecture. These challenges require careful
planning, optimization, and robust development practices to overcome and ensure the
smooth operation of hybrid graph deployments.

S E R V E R L E S S R O U T I N G

This pattern involves deploying the GraphQL API as a set of serverless functions, such as
AWS Lambda or Google Cloud Functions. This can be a cost-effective and scalable way to
deploy a GraphQL API but can also introduce additional latency and increase the complexity
of the architecture.

There are many challenges with serverless routing. One issue is in seamlessly connecting
distributed subgraphs as the application expands. Coordinating multiple teams and
deployments can become complex, making it challenging to manage and scale the subgraphs
effectively. Ensuring data consistency and synchronization between these subgraphs is
another hurdle. Monitoring and debugging in a distributed serverless environment can
be more difficult, requiring proper logging and error handling mechanisms. Additionally,
managing access control and authorization across multiple serverless functions and
subgraphs poses challenges. Addressing these challenges is essential for the smooth
operation and scalability of a serverless-based GraphQL deployment.

E D G E - D E P L OY M E N T

In an edge deployment pattern for GraphQL APIs, the API is placed closer to clients using
a CDN service. This brings several benefits, including lower latency for faster responses,
reduced load on the origin server, and protection against DDoS attacks.

By distributing the API infrastructure across edge servers worldwide, it can handle traffic more
efficiently and provide a better user experience globally. The CDN's caching and filtering
capabilities help improve scalability and ensure the API's availability, even in the face of
heavy traffic or malicious attacks. Edge deployments have the potential to optimize an API's
performance and reliability by leveraging CDNs' network of servers.

©2023 F5, Inc. All rights reserved. F5, and the F5 logo are trademarks of F5, Inc. in the U.S. and in certain other countries. Other F5 trademarks are identified at f5.com.
Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or affiliation, expressed or implied, claimed by F5, Inc.
DC0623| REPORT-CORP-1110257067-distributed-gateway-actors-evolving-api-management

Conclusion
GraphQL technologies have matured enough to be embraced by traditional enterprise
companies. Although Gartner’s Hype Cycle for APIs 2022 indicates we are still several years
away from widespread adoption, we have now reached a critical turning point where the
necessary tools are already in place. While GraphQL is still relatively new, it has evolved to
the point where it can meet the needs of established, large-scale enterprises.

The maturity of GraphAPI technologies is rooted in the growing number of enterprises
embracing GraphQL and other graph database technologies. As more and more companies
adopt these technologies, the tools and resources necessary to support them are becoming
increasingly available making it easier for other enterprises to follow suit. Additionally,
the benefits of GraphAPI technologies—such as improved data querying and reduced
complexity—are becoming more widely recognized, further fueling their adoption among
enterprise companies.

As an industry, we must recognize the importance of GraphAPI technologies such as GraphQL
and their potential to overcome the limitations of REST. Enterprises must not overlook the
urgent need to invest in and comprehend GraphQL, particularly in terms of data modeling,
diversity, and opaqueness. While it's easy to become enamored with the features and
potential of GraphQL, we must also acknowledge the potential trough of disillusionment after
peaking at inflated expectations. Vendors must prioritize enhancing their products to fully
support GraphQL, while enterprise IT—including vendors—should identify which data would
benefit from GraphQL's exposure to improve productivity.

Customers must prioritize understanding their data and recognize an average enterprise
operates differently than the hyperscalers that originally introduced GraphQL. Let us work
together to embrace GraphQL as an effective software architecture pattern and drive the
industry forward towards better productivity and innovation.

References
1. Rest API vs GraphQL, Bentil Shadrack, published November 28, 2022, https://dev.to/documatic/rest-api-vs-graphql-1a0n
2. How Netflix Scales its API with GraphQL Federation, published November 9, 2020, https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-
federation-part-1-ae3557c187e2
3. GraphQL, a Success Story for PayPal Checkout, Mark Stuart, published October 16, 2018, https://medium.com/paypal-tech/graphql-a-success-story-for-
paypal-checkout-3482f724fb53
4. Case Study: Starbucks Progressive Web App, customer story retrieved from chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.
mixedmediaventures.com/wp-content/uploads/2018/04/Starbucks.pdf on September 8, 2023
5. Announcing GraphQL for Gloo Gateway, Brian Gracely, September 15, 2022, https://www.solo.io/blog/announcing-graphql-for-gloo-gateway/

https://terem.tech/wp-content/uploads/2023/05/Innovations-such-as-API-management-PaaS-and-mediated-API-pattern-are-plotted-on-the-Hype-Cycle-for-APIs-based-on-market-interest-and-time-to-commerci-1024x675.webp
https://dev.to/documatic/rest-api-vs-graphql-1a0n
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://medium.com/paypal-tech/graphql-a-success-story-for-paypal-checkout-3482f724fb53
https://medium.com/paypal-tech/graphql-a-success-story-for-paypal-checkout-3482f724fb53
https://www.mixedmediaventures.com/wp-content/uploads/2018/04/Starbucks.pdf
https://www.mixedmediaventures.com/wp-content/uploads/2018/04/Starbucks.pdf
https://www.solo.io/blog/announcing-graphql-for-gloo-gateway/

