
5G

F5 Telco Gateway
for Red Hat OpenShift
Creating a scalable, resilient, and secure 5G architecture.

WHITE PAPER

F5 Telco Gateway for Red Hat OpenShift 2

Introduction
Kubernetes is designed to provide services for web-oriented workloads, but its native
constructs fall short of meeting the needs of Telco cloud-native network functions (CNFs) in
some applications, such as:

• 5G core (5GC)

• Multi-access edge computing (MEC)

To meet the performance, access, and granular security requirements of these and similarly
complex use cases, Telco-specific L4-L7 protocol support is needed to handle unsolicited
traffic sent from addresses in the public Internet to private networks using various
communications and network protocols, including:

• General packet radio service tunneling protocol-control (GTP-C)

• Stream control transmission protocol (SCTP)

• Diameter protocol

• User datagram protocol (UDP)

• Serial interface protocol (SIP)

• Advanced hypertext transfer protocol (HTTP/2) message routing

• Domain name system (DNS)/network address translation from IPv4 to IPv6 (NAT46)

To provide the consistent IP addressing needed for granular security risk management, these
controls need to be applied on a per-namespace basis. Telcos also require these capabilities
be delivered with low latency at wire speed.

F5 BIG-IP Next Service Proxy for Kubernetes (F5 SPK) is a containerized ingress and egress
gateway and load balancer that delivers these functionalities. With Red Hat OpenShift’s open
virtual network (OVN) and Kubernetes carrier network infrastructure (CNI), they can be applied
on a per-namespace basis to support use cases that provide:

• Signal traffic management and security

• Cluster level topology that hides ingress and egress

• CNF scalability, statistics, visibility, and analytics

• Transition to 5G.

Ultimately providing a CNF vendor agnostic solution. Thus, allowing multi-vendor CNFs in the
same cluster rather than having dedicated Kubernetes clusters for each CNF-vendor.

Next it is described how this solution has been deployed in multi-node bare metal clusters for
a major telco operator.

F5 Telco Gateway for Red Hat OpenShift 3

Overall Architecture

D ATA P L A N E A R C H I T E C T U R E

Figure 1 shows a general view of F5 SPK’s data plane. Its main features are:

• OpenShift multiple external gateways. This capability is an OVN-Kubernetes feature
that uses external gateways for ingress and egress traffic for all the pods in an
annotated namespace. This allows a namespace, or a group of namespaces, to be
associated with a unique external gateway for ingress and egress traffic to and from
outside the cluster.

• Support for multiple external virtual LANs (VLANs) and virtual routing and
forwarding (VRF) systems. This solution applies these techniques to accomplish this:

• Border gateway protocol (BGP) routing

• Per-cloud native network function (CNF) secure network address translation
(SNAT) pools

• SNATs on a per VLAN basis

• External BGP equal-cost multi-path (ECMP) ingress and egress scaling. It doesn’t
require an outside solution to distribute the load across the Kubernetes nodes. F5 SPK
is a single-tier solution that directly peers with the external routers.

• Multi-node scale-out. Each F5 SPK deployment can be dynamically scaled from one
to multiple nodes, where the only limiting factor is the maximum number of ECMP paths
supported by the BGP peerings. F5’s SPK egress maximum ECMP paths is 64 paths.

• Single-node scale-up. Each node where F5 SPK is deployed can be configured to use
1-24 cores for data plane processing.

• Single-root input/output virtualization (SR-IOV) network interfaces. These interfaces
allow low latency, wire-speed throughput and can be used for either external (to the
upstream routers) or internal (to the pods) cluster connections. External and internal
interfaces are configured using separate SR-IOV virtual functions (VFs). These
interfaces are managed in OpenShift using the OpenShift SR-IOV Operator.

• Advanced computing resource management. To achieve high performance
networking, F5 SPK uses the OpenShift Performance Add-on Operator to allocate
CPU resources and memory for huge pages, and maintains non-uniform memory
access (NUMA) alignment using the SR-IOV network interfaces.

F5 Telco Gateway for Red Hat OpenShift 4

Figure 1. General data plane architecture

F5 SPK’s core makes use of the widely trusted F5 BIG-IP’s Traffic Management Microkernel
(TMM) data plane. This allows for a high performance, dependable product from the start.

Figure 1 shows a high-level view of the solution’s traffic handling. Figure 2 details traffic flows,
based on the setup used in the reference customer.

Some notes about Figure 2:

• F5 SPK pods are instantiated in specific OpenShift nodes. This achieves a high level of
resource isolation and guarantees NUMA alignment between the F5 SPK’s used cores
and the SR-IOV VFs.

• All the F5 SPK pods in a deployment run in active-active mode, no matter the number
of replicas deployed.

• Symmetric ECMP traffic flows are used for stateful services. Stateful services require
that each component handling the traffic manages both ingress and egress packets for
a specific connections. To accomplish symmetric traffic flows, the following techniques
are used:

• F5 SPK is connection-oriented and uses the auto-last hop1 feature to achieve symmetric
path returns to the external routers.

• OpenShift’s OVN-Kubernetes CNI provides an ECMP symmetric flow between the
nodes and the F5 SPK external gateways.

• BGP peerings between the F5 SPK external gateways and the upstream routers
support bidirectional forwarding detection (BFD) for maximum Telco-grade reliability.

• F5 SPK gives full pod visibility by integrating OpenShift’s OVN with Kubernetes CNI.
It communicates with pods through the OVN-Kubernetes router without any address
translation in the process.

RED HAT OPENSHIFT

Telco
Protocols

SR-10V
wire speed

Upstream
Tra�c

Multi-namespace
Ingress and egress

NODE

Namespace

F5 SPK

Containerized
Apps

Namespace

F5 SPK

Containerized
Apps

NODE

Namespace

F5 SPK

Containerized
Apps

Namespace

F5 SPK

Containerized
Apps

NODE

Namespace

F5 SPK

Containerized
Apps

Namespace

Ingress & Egress
multi-path scalability
for Telco workloads

Use cases

• Signalling Tra c Management & Security
• Topology hiding
• Statistics, visibility & analytics
• Revenue assurance

F5 SPK

Containerized
Apps

SCTP, GTP-C, DIAMETER, UDP, TELCO HTTP/2 MESSAGE ROUTIHNG IPV4/IPV6 & DNS GATEWAY

KEY FEATURES

Multi-node scaling
1-24 cores per node

F5 Telco Gateway for Red Hat OpenShift 5

Figure 3 shows the physical layer architecture used for the nodes.

NODE

App Orange 1
Namespace

Containerized
Apps

App Green 2
Namespace

Containerized
Apps

OVNKubernetes
Router

NODE

App Orange 1
Namespace

Containerized
Apps

App Green 2
Namespace

Containerized
Apps

OVNKubernetes
Router

NODE

App Orange 1
Namespace

Containerized
Apps

App Green 2
Namespace

Containerized
Apps

OVNKubernetes
Router

NODE

App Orange 1
Namespace

Containerized
Apps

App Green 2
Namespace

Containerized
Apps

OVNKubernetes
Router

NODE

SPK Orange
Namespace

F5 SPK

SPK Green
Namespace

F5 SPK

NODE

SPK Orange
Namespace

F5 SPK

SPK Green
Namespace

F5 SPK

BGP+BFD - ECMP capable for ingress and egress
SPK’s auto-lasthop guarantees symmetric tra­c

Orange flows hidden for clarity

OVNKubernetes guarantees symmetric
ECMP between Apps and SPK PODs

BFD is run between SPK instances and
OVNKubernetes routers to guarantee
communication with an available SPK

Several app namespaces can
be handled by the same SPK

Several app namespaces can
be handled by the same SPK

Application’s PODs
and SPK PODs
are in seperate

namespaces

Application’s PODs
and SPK PODs
are in seperate

namespaces

SR-10V

App
PODs

Node’s
Network

External
Network

App
PODs

OVNKubernetes
CNI

Seperate SPK instances
per namespace groups

F5 SPK

NODE

NODE

NODE

Each SPK instance is configured as
OVNKubernetes CNI’s external gateway

Upstream ECMP BGP peering
with BFD support

Line rate performance by using
physical CNI interfaces instead of

logical CNI interfaces

In external and node’s network

Each logical link is setup with
bonded NICs (SR-IOV VFs)

In the node LACP is configured
in the SR-IOV PF

OVNKubernetes
CNI

Figure 2. Data plane flow

Figure 3. Physical architecture with
dedicated interfaces

F5 Telco Gateway for Red Hat OpenShift 6

Traditional external gateway solutions use CNI interfaces for communication with the pods.
In these arrangements, the external gateway shares the node’s bandwidth with all other pods
in the node. A potential problem is that sufficient throughput and latency needed to serve all
pods in the cluster is not guaranteed.

SPK supports the traditional external gateway arrangement and, to assure low latency and
sufficient throughput, it uses SR-IOV VF interfaces coupled with OpenShift’s Multiple External
Gateway capability. By bypassing software virtualization layers, this combination streamlines
latency and boosts throughput, while maintaining networking isolation.

To achieve high resiliency in the SR-IOV interfaces, the F5 SPK uses link aggregation. When
several F5 SPKs use the same physical network interface controller (NIC), OpenShift’s nodes
configuration provides link aggregation control protocol (LACP) functionality. This is done at
the SR-IOV packet filter (PF) level.

C O N T R O L P L A N E A N D A N A LY T I C S A R C H I T E C T U R E

F5 SPK data plane configuration

An F5 SPK controller is in charge of watching the Kubernetes API for any changes in workload
pods (such as pods added or removed). The controller also watches F5 SPK’s Custom
Resources (CRs) for service configuration updates and applies them when necessary.

Persistent session state

A resilient and scaled-out architecture for a control plane requires session state sharing
across all participant nodes. A session state includes:

• Pod persistence for Diameter protocol

• Load balancing

• NAT/NAT46 mappings

The F5 distributed Session State Manager (dSSM) component does this using Redis data
stores backed by Kubernetes Persistent Volumes.

Analytics and log management

Fluentd and fluentbit, open source log and metrics tools commonly used by cloud-native
applications, are used to handle the logs from the data plane, the dSSM database (DB) and
the F5 SPK controller.

F5 Telco Gateway for Red Hat OpenShift 7

F5 SPK and OpenShift Integration
F5 SPK supports OpenShift 4.6 and later. This solution leverages these OpenShift features:

• CPU Manager: Using the CPU Manager with policy set to static2 allows F5 SPK pods
to be granted increased CPU affinity and exclusivity on the node.

• Topology Manager:3 This component collects hints from the CPU Manager, Device
Manager, and other Hint Providers to align pod resources, such as CPU, SR-IOV VFs,
and other device resources, for all Quality of Service (QoS) classes on the same NUMA
node. To select CPU cores that are in the same NUMA domain as the SR-IOV VFs,
configure F5 SPK with a single-numa-node policy.

• HugePages: For maximum process efficiency, nodes running F5 SPK should be
configured with Huge Pages allocated.

• OVN-Kubernetes:4 To establish F5 SPK as the gateway for a given namespace, the
following annotations are added in F5.

SPK’s TMM (data plane) pods:

8s.ovn.org/routing-namespaces

Defines the namespaces for which SPK is in charge.

k8s.ovn.org/routing-network

Defines the internal F5 SPK VLAN used as the gateway. When using multiple SPK pods,
symmetric ECMP paths are set up between the OVN-Kubernetes router and the F5
SPK pods.

k8s.ovn.org/bfd-enabled

When defined, this annotation indicates that BFD is configured between F5 SPK and
OpenShift nodes.

Installation and Configuration
Helm charts are the easiest and most cost-effective way to install Kubernetes containerized
applications. installation uses two Helm charts:

5-dssm
Used to install the Distributed Session State Manager. It is shared among all the F5 SPK
deployments, thus it is installed in a separate namespace.

f5ingress
Used to install the F5 SPK components that handle the traffic, the remaining control plane
components, and the logging and analytics components. In an OpenShift cluster sharing a
DSSM database, several instances of this are typical.

F5 Telco Gateway for Red Hat OpenShift 8

The following example shows an installation with an DSSM helm chart installed in the
namespace spk-utilities and two F5 SPKs handling different namespaces. In the example,
these two are deployed in namespaces spk-data and spk-dns46 namespaces.

Before installing these Helm charts, perform the following steps in preparation:

OpenShift platform

• Set up the CPU and Topology manager.

• Configure Node’s HugePage5 allocation.

• Allocate SR-IOV VFs for the internal and external interfaces.

• Label the nodes which have the required hardware resources to facilitate Kubernetes
scheduling.

IP infrastructure

• Set up IP pre-allocation addresses for F5 SPK. These are internal IP addresses towards
the cluster and external IP addresses towards the upstream BGP routers. Each F5
SPK deployment instantiates new pods (typically in different nodes) for scaling out.
Each new pod needs, at minimum, one dedicated internal and one dedicated external
address. If SNAT pools are required, these are also set up per F5 SPK pod.

• Set up BGP and BFD configuration for the upstream routers. The upstream routers have
pre-configured BGP peerings, which place peering in an idle state until the F5 SPKs
become active when scaled-out.

Helm installation

• Upload the images to a registry repository.

• Generate Google remote procedure calls (gRPC) to set up secure sockets layer (SSL)
or transport layer security (TLS) keys and certificates, which will be used to secure
communications between F5 SPK components.

Once an F5 SPK is deployed in a namespace, the remaining configuration is done dynamically
through CRs, as shown next.

$ helm 1s-A | grep spk
spk-data spk-data 1 2021-11-05 04:25:55.331022339-0500 CDT deployed f5ingress-2.0.12 v2.0.12
spk-dns46 spk-dns46 1 2021-11-05 04:24:26.272528847-0500 CDT deployed f5ingress-2.0.12 v2.0.12
spk-utilities spk-utilities 1 2021-11-05 04:15:41.471003547-0500 CDT deployed f5-dssm-0.11.0 v0.11.0
$

F5 Telco Gateway for Red Hat OpenShift 9

Using F5 SPK

N E T W O R K A N D S E R V I C E S C O N F I G U R AT I O N

After Helm chart installation, F5 SPK is not yet connected to cluster networking. To set this up,
use the following network management control registers (CRs).

• F5SPKVlan
Configures TMM interface: VLANs, its own IP addresses, maximum transmission unit
(MTU) size, and so on.

• F5SPKStaticRoute
Manages the TMM static routing table.

Next, you deploy services and either expose them or provide them with egress using
these CRs.

• F5SPKIngressTCP
Manages ingress layer 4 TCP application traffic.

• F5SPKIngressUDP
Manages ingress layer 4 UDP application traffic.

• F5SPKIngressDiameter
Manages Diameter traffic unifying ingress and egress traffic using either TCP or SCTP
and keeps sessions persistent using the SESSION-ID attribute value pair (AVP) by default.

• F5SPKIngressNGAP
Balances ingress datagram loads for SCTP or NG application protocol (NGAP) signaling.

• F5SPKEgress
Enables egress traffic for pods using SNAT or DNS/NAT46. DNS cache and rate limiting
parameters can be configured.

• F5SPKSnatpool
Allocates IP addresses for egress pod connections.

• F5SPKDNSCache
Provides high-performance, transparent DNS resolution and caching for the F5SPKEgress
resources.

• F5SPKPortList and F5SPKAddressList
Creates sets of ports and addresses, respectively, to make creating and updating
services easier.

https://clouddocs.f5.com/service-proxy/latest/spk-vlan-crd.html
https://clouddocs.f5.com/service-proxy/latest/spk-static-route-crd.html
https://clouddocs.f5.com/service-proxy/latest/spk-tcp-crd.html
https://clouddocs.f5.com/service-proxy/latest/spk-udp-crd.html
https://clouddocs.f5.com/service-proxy/latest/spk-diameter-crd.html
https://clouddocs.f5.com/service-proxy/latest/spk-ngap-crd.html
https://clouddocs.f5.com/service-proxy/latest/spk-egress-crd.html
https://clouddocs.f5.com/service-proxy/latest/spk-snatpool-crd.html

F5 Telco Gateway for Red Hat OpenShift 10

These CRs are available with SPK v1.4. These features will be expanded, so check the latest
documentation in https://clouddocs.f5.com/service-proxy/latest/.

An F5 SPK controller component watches for Kubernetes events such as changes in the
setup of these CRs and configures the F5 SPK accordingly.

Application hairpinning
The F5 SPK application hairpinning feature is used to differentiate between internal and
external clients. A selected set of internal clients accesses an F5 SPK Service with the
same domain name or IP address as that of another F5 SPK Service, which is used by
external clients using different configurations. The key difference between the two types of
connections is that internal clients are connected using SNAT and external clients are not.
This is done by installing two F5 SPK CRs of the same type, for example F5SPKIngressTCP,
with each CR enabled on a selected VLAN or VLAN list.

I P V 6 S U P P O R T

F5 SPK fully supports IPv4/IPv6 dual-stack networking as implemented in Kubernetes v1.21
or later. F5 SPK’s DNS46/NAT46 feature, however, does not rely on Kubernetes IPv4/IPv6
dual-stack and therefore, it can be used with earlier versions of Kubernetes.

D N S 4 6 / N AT4 6 T R A N S L AT I O N

The adoption of IPv6 in new 5G deployments has created a need to interact with older IPv4
single stack components and services. F5 SPK’s DNS46/NAT46 provides this interoperability,
easing the adoption and transition between IPv4 and IPv6 services. This solution allows IPv4
applications to access any IPv6 application on demand, without requiring reconfiguration.

Here’s how it works: Applications use DNS to locate services. F5 SPK, acting as an egress
gateway, monitors these requests and detects DNS replies for which only IPv6 AAAA records
return. When this happens, F5 SPK dynamically appends an A record for IPv4 applications
to use.

The dynamically created IPv4 A record is stored in the F5 SPK dSMM in-memory database
with the IPv6 AAAA record mapping. This information is used by the F5 SPK NAT46
functionality to automatically create a NAT mapping between the actual service’s IPv6
address and the dynamically allocated IPv4 address.

https://clouddocs.f5.com/service-proxy/latest/

F5 Telco Gateway for Red Hat OpenShift 11

Figure 4 shows how the solution is configured for a selection of namespaces.

Figure 4. This solution applied to a selection of namespaces

To apply the DNS46/NAT46 functionality to a subset of namespaces, a dedicated instance
of CoreDNS is deployed, using the CoreDNS image bundled with OpenShift. This instance
is deployed into the spk-coredns namespace, as shown in Figure 4. In this arrangement,
only DNS requests originating from an F5 SPK-deployed coreDNS are handled by F5 SPK’s
DNS46/NAT46 functionality.

For an application’s pods to automatically use the spk-coredns, the pod’s DNS resolver
configuration (/etc/resolv.conf) must be updated with the spk-coredns service address.
This is then handled transparently by a webhook when an application’s namespace has the
label dns-spk=enabled applied.

The steps an IPv4 service follows to access an IPv6 service are:

1. When a pod is created in a namespace labeled dns-spk=enabled, the resolver
configuration is updated to point to a separate DNS service, which goes through an
F5 SPK gateway with the DNS46/NAT46 functionality enabled.

2. The pod makes a DNS IPv4 request that is routed to the spk-coredns service.

3. When the reply to the DNS request is not found in the spk-coredns cache, the request
is forwarded to the external DNS resolver, which goes through the F5 SPK with DNS46/
NAT46 enabled.

SPK-NAT46

External
DNS

SPK

SPK-UTILITIES

DSSM

SPK-DNS46

SPK

SPK-TEST

SPK-COREDNS

CORE
DNS

IPv4

IPv4

IPv4 IPv6

IPv4

External
IPv6 Service

0

1

2 3

4 5

webhook

©2022 F5, Inc. All rights reserved. F5, and the F5 logo are trademarks of F5, Inc. in the U.S. and in certain other countries. Other F5 trademarks are identified at f5.com.
Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or affiliation, expressed or implied, claimed by F5, Inc.
DC0322 | WP-123456789

4. When the DNS reply includes only IPv6 AAAA records, F5 SPK dynamically appends
an A record for IPv4 applications to use. The DNS response with the attached IPv4
A record is returned that backtracks through the previous steps. The new A record is
stored in the dSMM database and will be used in future DNS46/NAT46 translations.
At this point, the pod has an IPv4 address of an IPv6 service. Also, the F5 SPK is
configured as the external gateway for the pod’s namespace and has the DNS46/NAT46
feature enabled.

5. The client then connects to the service—as with any IPv4 native service—and OVN
routes the connection to the F5 SPK external gateway. Figure 4 shows an example in
the spk-nat46 namespace.

6. F5 SPK applies the DNS46/NAT46 translation indicated in the dSMM database.

This completes the end-to-end flow.

Conclusion
This white paper introduces a scalable and dependable high performance gateway solution
that delivers the granular ingress and egress controls in Kubernetes-based deployments that
Telcos need. It builds on the unique potential of OpenShift external gateways by making full
use of OpenShift capabilities—an industry first. Use cases that particularly benefit include
5GC and MEC. Plus, the F5 SPK solution can dynamically translate IPv4 to IPv6 network
addresses, which solves the problem of mixed IPv4 and IPv6 deployments. The result is a
gateway solution flexible enough to adapt to new and evolving Telco needs while offering
interoperability with pre-5G services.

1 F5, Overview of the Auto Last Hop setting, found at
https://support.f5.com/csp/article/K13876

2 Kubernetes, CPU Management Policies Configuration, found at
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/#configuration

3 Kubernetes, How Topology Manager Works, found at
https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#how-topology-manager-works

4 Red Hat OpenShift, About the OVN-Kubernetes default Container Network Interface (CNI) network provider, found at
https://docs.openshift.com/container-platform/4.9/networking/ovn_kubernetes_network_provider/about-ovn-kubernetes.html

5 Kubernetes, Manage HugePages, found at
https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/

https://support.f5.com/csp/article/K13876
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/#configuration
https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#how-topology-manager-works
https://docs.openshift.com/container-platform/4.9/networking/ovn_kubernetes_network_provider/about-ovn-kubernetes.html
https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/

