
EBOOK

 Taking Kubernetes
 from Test to Production
 Improving Resilience, Visibility, and Security
 with Traffic Management Tools
 By Jenn Gile
 Manager of Product Marketing
 NGINX Microservices and Kubernetes Solutions, F5, Inc.

https://www.nginx.com

TAKING KUBERNETES FROM TEST TO PRODUCTION 2

Table of Contents

 Foreword . 4

Part One:
Overcome Kubernetes Challenges with Kubernetes Traffic Management Tools 5

1. Reduce Complexity with Production-Grade Kubernetes . 5

Modern Shifts and Trends . 5

The Solution: Production-Grade Kubernetes . 8

Kubernetes Priorities: Resilience, Visibility, and Security . 11

2. Six Ways to Improve Resilience . 12

Advanced Traffic Management Use Cases . 13

1 . Protect Services from Getting Too Many Requests .15

2 . Avoid Cascading Failures .15

3 . Test a New Version in Production .16

4 . Ensure a New Version is Stable . 17

5 . Find Out if Customers Like a New Version Better than the Current Version 18

6 . Move Users to a New Version Without Downtime .19

Using NGINX for Advanced Kubernetes Traffic Management . 20

More Sophisticated Traffic Control and Splitting with Advanced Customizations 22

3. Two Problems You Can Solve with Better Visibility . 23

How to Attain Insights Through Visibility . 23

Troubleshooting Two Kubernetes Problems . 24

Kubernetes Problem #1: Slow Apps . 25

Kubernetes Problem #2: Resource Exhaustion . 26

4. Six Methods to Enhance Security . 28

Security and Identity Terminology . 28

Make Security Everyone’s Responsibility . 30

1 . Resolve CVEs Quickly to Avoid Cyberattacks . 30

2 . Stop OWASP Top 10 and DoS Attacks . 32

3 . Offload Authentication and Authorization from the Apps . 35

4 . Set Up Self-Service with Guardrails . 36

5 . Implement End-To-End Encryption . 37

6 . Ensure Clients Are Using a Strong Cipher with a Trusted Implementation 38

TAKING KUBERNETES FROM TEST TO PRODUCTION 3

Part Two:
Choose the Best Kubernetes Traffic Managment Tools for Your Needs . 41

5. How to Choose an Ingress Controller – Identify Your Requirements 41

What’s an Ingress Controller? . 42

Why Do You Need an Ingress Controller? . 42

What Do Ingress Controllers Do? . 42

What Problems Do You Want the Ingress Controller to Solve? . 44

How Are You Going to Resource the Ingress Controller? . 45

6. How to Choose an Ingress Controller – Risks and Future-Proofing . 48

Ingress Controller Risks . 48

Future-Proof Your Ingress Controller .51

7. How to Choose an Ingress Controller – Open Source vs. Default vs. Commercial 54

Open Source Ingress Controllers . 54

Default Ingress Controllers . 56

Commercial Ingress Controllers . 57

8. How to Choose an Ingress Controller – NGINX Ingress Controller Options 59

NGINX vs . Kubernetes Community Ingress Controller . 59

NGINX Open Source vs . NGINX Plus – Why Upgrade to Our Commercial Edition? 61

9. How to Choose a Service Mesh .65

Are You Ready for a Service Mesh? . 67

How to Choose the Service Mesh That’s Right for Your Apps . 69

F5 NGINX Service Mesh . 71

Not Ready for a Service Mesh? . 75

Appendix:
Performance Testing Three Different NGINX Ingress Controller Options 76

Latency Results for the Static Deployment . 77

Latency Results for the Dynamic Deployment . 78

Timeout and Error Results for the Dynamic Deployment . 79

Conclusion . 80

Glossary . 81

44

 Foreword
Since launching in 2014, the open source project Kubernetes has taken the cloud infrastructure
world by storm, rapidly becoming one of the most popular and widely deployed infrastructure
management solutions in history . Kubernetes spawned an entire industry of tools and platforms
designed to make deployment easier, more turnkey, and more approachable – from popular
managed platforms like Red Hat OpenShift and SUSE Rancher to cloud provider platforms
like Amazon Elastic Kubernetes Service, Azure Kubernetes Service, and Google Kubernetes
Service . But even with these enterprise-grade platforms smoothing the way, getting value
out of Kubernetes requires a steep learning curve .

With Kubernetes came many new concepts, particularly around networking and traffic
management . Alongside these new concepts were entirely new classes of tools, designed
for ephemeral, containerized, and distributed application deployments . In particular, Ingress
controllers and service meshes did not exist prior to the Kubernetes era . Nor were Layer 4 and
Layer 7 protocols and traffic typically managed from the same control plane . At a granular level,
Kubernetes introduces new complexities around security and management . Simple tasks like
load balancing are very different in a realm where infrastructure is 100% ephemeral and often
moving constantly – both in terms of setting up new instances with fresh IP addresses and
geographically moving around the globe .

These new traffic management concepts and tools have the power to vastly improve developer
experience and accelerate app development and delivery cycles through greater resilience,
higher performance, and better security . But when traffic management is overlooked or under-
valued, organizations experience problems that make it challenging to attain that value and can
even put the organization at risk . To achieve the Kubernetes dream, teams must understand
and manage the traffic in a Kubernetes-native way .

This eBook prepares readers for a journey – from test to production – in the land of Kubernetes .
Each chapter offers clear and lucid explanations that can inform a Kubernetes strategy and
serve as a reference point for managing the flow of traffic proactively and effectively – from
POC to canary, and from blue-green to full production . Insight on useful decision frameworks
also help in deciding which traffic management solutions work best (or don’t) for specific
applications and situations . Complete with reference architectures and instantly usable code
examples, this eBook can help readers at any Kubernetes skill level expand their knowledge
of Kubernetes traffic management tools and concepts .

With its wealth of quick and clear foundational knowledge, this eBook deserves a place on
your cloud infrastructure bookshelf and should become a trusted companion in your quest to
master Kubernetes .

Jenn Gile
Manager of Product Marketing
NGINX Microservices and Kubernetes Solutions, F5, Inc .

FOREWORD

5CHAPTER 1 – REDUCE COMPLEXITY WITH PRODUCTION-GRADE KUBERNETES 5

 Overcome Kubernetes
 Challenges with Kubernetes
 Traffic Management Tools

1. Reduce Complexity with
Production-Grade Kubernetes

M O D E R N S H I F T S A N D T R E N D S

2020 was a year that few of us will ever forget . The abrupt shuttering of
schools, businesses, and public services left us suddenly isolated from our
communities and thrown into uncertainty about our safety and financial
stability . Now imagine for a moment that this had happened in 2000, or
even 2010 . What would be different? Technology . Without the high-quality
digital services that we take for granted – healthcare, streaming video,
remote collaboration tools – a pandemic would be a very different experience .
What made the technology of 2020 so different from past decades?
Containers and microservices .

Microservices architectures – which generally make use of containers and Kubernetes –
fuel business growth and innovation by reducing time to market for digital experiences .
Whether deployed alongside traditional architectures or on their own, these modern app
technologies enable superior scalability and flexibility, faster deployments, and even
cost savings .

PA R T O N E

https://www.nginx.com/resources/glossary/microservices/
https://www.nginx.com/resources/glossary/container/
https://www.nginx.com/resources/glossary/kubernetes

6CHAPTER 1 – REDUCE COMPLEXITY WITH PRODUCTION-GRADE KUBERNETES 6

40% 60%

Microservices in Production
According to the NGINX 2020 survey

Kubernetes Users
According to the CNCF 2020 survey

2019 2020

of respondents
use Kubernetes
in production

 83%
of respondents
use Kubernetes

 91%

Prior to 2020, we found that most of our customers had already started adopting microservices
as part of their digital transformation strategy, but the pandemic truly accelerated app
modernization . Our 2020 survey of NGINX users found that 60% of respondents are using
microservices in production, up from 40% in 2019, and containers are more than twice as
popular as other modern app technologies .

Kubernetes is the de facto standard for managing containerized apps, as evidenced by the
Cloud Native Computing Foundation (CNCF)’s 2020 survey, which found that 91% of
respondents are using Kubernetes – 83% of them in production . When adopting Kubernetes,
many organizations are prepared for substantial architectural changes but are surprised by
the organizational impacts of running modern app technologies at scale .

https://www.nginx.com/resources/datasheets/state-of-modern-app-delivery-2020-nginx-open-source-community/
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf

7CHAPTER 1 – REDUCE COMPLEXITY WITH PRODUCTION-GRADE KUBERNETES 7

If you’re running Kubernetes, you’ve likely encountered all three of these business-
critical barriers:

• Culture
Even as app teams adopt modern approaches like agile development and DevOps,
they usually remain subject to Conway’s Law, which states that “organizations design
systems that mirror their own communication structure” . In other words, distributed
applications are developed by distributed teams that operate independently but share
resources . While this structure is ideal for enabling teams to run fast, it also encourages
the establishment of siloes . Consequences include poor communication (which has
its own consequences), security vulnerabilities, tool sprawl, inconsistent automation
practices, and clashes between teams .

• Complexity
To implement enterprise-grade microservices technologies, organizations must piece
together a suite of critical components that provide visibility, security, and traffic
management . Typically, teams use infrastructure platforms, cloud-native services, and
open source tools to fill this need . While there is a place for each of these strategies,
each has drawbacks that can contribute to complexity . And all too often different teams
within a single organization choose different strategies to satisfy the same requirements,
resulting in “operational debt” . Further, teams choose processes and tools at a point
in time, and continue to use them regardless of the changing requirements around
deploying and running modern microservices-driven applications using containers .

The CNCF Cloud Native Interactive Landscape is a good illustration of the complexity of
the infrastructure necessary to support microservices-based applications . Organizations
need to become proficient in a wide range of disparate technologies, with consequences
that include infrastructure lock-in, shadow IT, tool sprawl, and a steep learning curve for
those tasked with maintaining the infrastructure .

• Security
Security requirements differ significantly for cloud-native and traditional apps, because
strategies such as ringfenced security aren’t viable in Kubernetes . The large ecosystem
and the distributed nature of containerized apps means the attack surface is much larger,
and the reliance on external SaaS applications means that employees and outsiders have
many more opportunities to inject malicious code or exfiltrate information . Further, the
consequences outlined in the culture and complexity areas – tool sprawl, in particular – have
a direct impact on the security and resilience of your modern apps . Using different tools
around your ecosystem to solve the same problem is not just inefficient – it creates a huge
challenge for SecOps teams who must learn how to properly configure each component .

ORGANIZATIONS DESIGN
SYSTEMS THAT MIRROR
THEIR OWN COMMUNICATION
STRUCTURE

DIFFERENT TEAMS
CHOOSE DIFFERENT
STRATEGIES TO SATISFY
THE SAME REQUIREMENTS

THE DISTRIBUTED NATURE
OF CONTAINERIZED APPS
MEANS THE ATTACK SURFACE
IS MUCH LARGER

https://medium.com/swlh/what-is-conways-law-1c8e4d53beba
https://landscape.cncf.io
https://www.nginx.com/blog/secure-cloud-native-apps-without-losing-speed/

8CHAPTER 1 – REDUCE COMPLEXITY WITH PRODUCTION-GRADE KUBERNETES 8

T H E S O L U T I O N : P R O D U C T I O N - G R A D E K U B E R N E T E S

As with most organizational problems, the answer to overcoming the challenges of Kubernetes
is a combination of technology and processes . This eBook focuses on how you can use traffic
management tools to solve these problems – all the way from test to production .

Because Kubernetes is an open source technology, there are numerous ways to implement it .
While some organizations prefer to roll their own vanilla Kubernetes, many find value in the
combination of flexibility, prescriptiveness, and support provided by managed platforms .

Kubernetes platforms can make it easy to get up and running; however, they focus on breadth
of services rather than depth . So, while you may get all the services you need in one place,
they’re unlikely to offer the feature sets you need for true production readiness at scale .
Namely, they don’t focus on advanced networking and security, which is where we see
Kubernetes disappointing many customers .

To make Kubernetes production-grade, you need to add three more components in this order:

1. A scalable ingress-egress tier to get traffic in and out of the cluster
This is accomplished with an Ingress controller, which is a specialized load balancer
that abstracts away the complexity of Kubernetes networking and bridges between
services in a Kubernetes cluster and those outside it . This component becomes
production-grade when it includes features that increase resilience (for example,
advanced health checks and Prometheus metrics), enable rapid scalability (dynamic
reconfiguration), and support self-service (role-based access control [RBAC]) .

Kubernetes
Environment

Ingress
Controller

Service A

Pod

Pod

Service B

Pod

Pod

Figure 1: Part 1 of a Production-Grade
Kubernetes Deployment Is a Scalable
Ingress-Egress Tier

https://www.nginx.com/resources/glossary/kubernetes-ingress-controller

9CHAPTER 1 – REDUCE COMPLEXITY WITH PRODUCTION-GRADE KUBERNETES 9

2. Built-in security to protect against threats throughout the cluster
While “coarse-grained” security might be sufficient outside the cluster, “fine-grained”
security is required inside it . Depending on the complexity of your cluster, there are
three locations where you may need to deploy a flexible web application firewall (WAF):
on the Ingress controller, as a per service proxy, and as a per pod proxy . This flexibility
lets you apply stricter controls to sensitive apps – such as billing – and looser controls
where risk is lower .

Kubernetes
Environment

Ingress
Controller

Per-Service Proxy

Pod

Pod

Pod

Per-Pod Proxy

Pod

Pod

Pod

Figure 2: Part 2 of a Production-Grade
Kubernetes Deployment Is Built-In
Security, Such as a Flexible WAF

https://www.nginx.com/resources/glossary/what-is-a-waf/

10CHAPTER 1 – REDUCE COMPLEXITY WITH PRODUCTION-GRADE KUBERNETES 10

3. A scalable east-west traffic tier to optimize traffic within the cluster
This third component is needed once your Kubernetes applications have grown beyond
the level of complexity and scale that basic tools can handle . At this stage, you need
a service mesh, which is an orchestration tool that provides even finer-grained traffic
management and security to application services within the cluster . A service mesh is
typically responsible for managing application routing between containerized applications,
providing and enforcing autonomous service-to-service mutual TLS (mTLS) policies, and
providing visibility into application availability and security . To learn more about when
it’s time to consider a service mesh, see chapter 9 .

Kubernetes
Environment

Ingress
Controller

Service Mesh

Service APages

Service BPages

Service CPages

Figure 3: Part 3 of a Production-Grade
Kubernetes Deployment Is a Scalable
East-West Traffic Tier

https://www.nginx.com/resources/glossary/service-mesh/

11CHAPTER 1 – REDUCE COMPLEXITY WITH PRODUCTION-GRADE KUBERNETES 11

K U B E R N E T E S P R I O R I T I E S :
R E S I L I E N C E , V I S I B I L I T Y, A N D S E C U R I T Y

For the remainder of Part One of this eBook, we address the three big Kubernetes problems
you can solve with production-grade traffic management tools:

• Resilience
Uptime is a standard SLA for a good reason: customers are fickle and will abandon
products that are unreliable or unavailable . In chapter 2, we share six advanced
traffic management methods for improving the resilience of your Kubernetes apps
and infrastructure .

• Visibility
The importance of visibility is hard to overstate . Without it, your teams simply can’t
gain the insights necessary to detect or prevent problems before they’re discovered
by customers . In chapter 3, we demonstrate how to use insights gained from traffic
management tools and integrations to troubleshoot two common Kubernetes problems .

• Security
Failure to secure Kubernetes environments and apps prevents organizations from
achieving Kubernetes goals . Security vulnerabilities can result in the loss of customers,
slowed agility, and stalled digital transformation . In chapter 4, we cover six use cases
that will make your Kubernetes environments and apps more secure – all without slowing
down your developers .

12CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

2. Six Ways to Improve Resilience
There’s a very easy way to tell that a company isn’t successfully using modern app development
technologies – its customers are quick to complain on social media . They complain when
they can’t stream the latest bingeworthy release . Or can’t access online banking . Or can’t make
a purchase because the cart is timing out .

Even if customers don’t complain publicly, that doesn’t mean their bad experience doesn’t
have consequences . One of our customers – a large insurance company – told us that they
lose customers when their homepage doesn’t load within 3 seconds .

All those user complaints of poor performance or outages point to a common culprit:
resilience . . . or the lack of it . The beauty of microservices technologies – including containers
and Kubernetes – is that they can significantly improve the customer experience by improving
the resilience of your apps . How? It’s all about the architecture .

13CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

I like to explain the core difference between monolithic and microservices architectures by
using the analogy of a string of holiday lights . When a bulb goes out on an older-style strand,
the entire strand goes dark . If you can’t replace the bulb, the only thing worth decorating
with that strand is the inside of your garbage can . This old style of lights is like a monolithic
app, which also has tightly coupled components and fails if one component breaks .

But the lighting industry, like the software industry, detected this pain point . When a bulb
breaks on a modern strand of lights, the others keep shining brightly, just as a well designed
microservices app keeps working even when a service instance fails .

A D VA N C E D T R A F F I C M A N A G E M E N T U S E C A S E S

Containers are a popular choice in microservices architectures because they are ideally
suited for building an application using smaller, discrete components – they are light weight,
portable, and easy to scale . Kubernetes is the de facto standard for container orchestration,
but there are a lot of challenges around making Kubernetes production-ready . One element
that improves both your control over Kubernetes apps and their resilience is a mature traffic
management strategy that allows you to control services rather than packets, and to adapt
traffic management rules dynamically or with the Kubernetes API . While traffic management
is important in any architecture, for high performance apps two traffic management tools are
essential: traffic control and traffic splitting .

https://www.nginx.com/resources/glossary/container/
https://www.nginx.com/resources/glossary/kubernetes
https://www.nginx.com/blog/reduce-complexity-with-production-grade-kubernetes/
https://www.nginx.com/blog/improve-kubernetes-resilience-with-advanced-traffic-management/#traffic-control
https://www.nginx.com/blog/improve-kubernetes-resilience-with-advanced-traffic-management/#traffic-splitting

14CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

• Traffic control (sometimes called traffic routing or traffic shaping) refers to the act of
controlling where traffic goes and how it gets there . It’s a necessity when running
Kubernetes in production because it allows you to protect your infrastructure and apps
from attacks and traffic spikes . Two techniques to incorporate into your app development
cycle are rate limiting and circuit breaking .

• Traffic splitting (sometimes called traffic testing) is a subcategory of traffic control and
refers to the act of controlling the proportion of incoming traffic directed to different
versions of a backend app running simultaneously in an environment (usually the current
production version and an updated version) . It’s an essential part of the app development
cycle because it allows teams to test the functionality and stability of new features and
versions without negatively impacting customers . Useful deployment scenarios include
debug routing, canary deployments, A/B testing, and blue-green deployments . (There
is a fair amount of inconsistency in the use of these four terms across the industry . Here
we use them as we understand their definitions .)

In this chapter, we first explore use cases you can resolve using traffic control and traffic shaping
techniques . We then explain how to implement several techniques with NGINX solutions .
The six use cases are:

1. Protect services from getting too many requests

2. Avoid cascading failures

3. Test a new version in production

4. Ensure a new version is stable

5. Find out if customers like a new version better than the current version

6. Move users to a new version without downtime

15CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

RESILIENCE USE CASE #1:
Protect Services from Getting Too Many Requests
Solution: Rate limiting

Whether malicious (for example, brute force password guessing and DDoS attacks) or benign
(such as customers flocking to a sale), a high volume of HTTP requests can overwhelm your
services and cause your apps to crash . Rate limiting restricts the number of requests a user
can make in a given time period . Requests can include something as simple as a GET request
for the homepage of a website or a POST request on a login form . When under DDoS attack,
for example, you can use rate limiting to limit the incoming request rate to a value typical for
real users .

RESILIENCE USE CASE #2:
Avoid Cascading Failures
Solution: Circuit breaking

When a service is unavailable or experiencing high latency, it can take a long time for incoming
requests to time out and clients to receive an error response . The long timeouts can potentially
cause a cascading failure, in which the outage of one service leads to timeouts at other
services and the ultimate failure of the application as a whole .

Circuit breakers prevent cascading failure by monitoring for service failures . When the number
of failed requests to a service exceeds a preset threshold, the circuit breaker trips and starts
returning an error response to clients as soon as the requests arrive, effectively throttling
traffic away from the service .

The circuit breaker continues to intercept and reject requests for a defined amount of time
before allowing a limited number of requests to pass through as a test . If those requests are
successful, the circuit breaker stops throttling traffic . Otherwise, the clock resets and the
circuit breaker again rejects requests for the defined time .

RATE LIMITING RESTRICTS
THE NUMBER OF REQUESTS A
USER CAN MAKE IN A GIVEN
TIME PERIOD

CIRCUIT BREAKERS
PREVENT CASCADING
FAILURE BY MONITORING
FOR SERVICE FAILURES

16CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

RESILIENCE USE CASE #3:
Test a New Version in Production
Solution: Debug routing

Let’s say you have a banking app and you’re going to add a credit score feature . Before testing
with customers, you probably want to see how it performs in production . Debug routing
(also known as conditional routing) lets you deploy it publicly yet “hide” it from actual users
by allowing only certain users to access it, based on Layer 7 attributes such as a session
cookie, session ID, or group ID . For example, you can allow access only to users who have
an admin session cookie – their requests are routed to the new version with the credit score
feature while everyone else continues on the stable version

Kubernetes
Environment

Debug Routing

Ingress
Controller

Admin
Cookie

Banking App V 1.7

Pod

Pod

Pod

Banking App V 1.8

Pod

Pod

Pod

Figure 4: Debug Routing in a
Kubernetes Environment

DEBUG ROUTING LETS YOU
DEPLOY AN APP PUBLICLY YET
“HIDE” IT FROM MOST USERS.

17CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

RESILIENCE USE CASE #4:
Ensure a New Version is Stable
Solution: Canary deployment

Kubernetes
Environment

Canary Deployment

Ingress
Controller

Banking App V 1.7

Pod

Pod

Pod

Banking App V 1.8

Pod

Pod

Pod

99%

1%

The concept of canary deployment is taken from an historic mining
practice, where miners took a caged canary into a coal mine to serve
as an early warning of toxic gases . The gas killed the canary before
killing the miners, allowing them to quickly escape danger . In the
world of apps, no birds are harmed! Canary deployments provide
a safe and agile way to test the stability of a new feature or version .
A typical canary deployment starts with a high share (say, 99%)
of your users on the stable version and moves a tiny group (the
other 1%) to the new version . If the new version fails, for example
crashing or returning errors to clients, you can immediately move
the test group back to the stable version . If it succeeds, you can
switch users from the stable version to the new one, either all at
once or (as is more common) in a gradual, controlled migration .

Figure 5: Canary Deployment in a
Kubernetes Environment

CANARY DEPLOYMENTS
PROVIDE A SAFE AND
AGILE WAY TO TEST THE
STABILITY OF A NEW
FEATURE OR VERSION

18CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

RESILIENCE USE CASE #5:
Find Out if Customers Like a New Version Better than the Current Version
Solution: A/B testing

Now that you’ve confirmed your new feature works in production, you might want to
get customer feedback about the success of the feature, based on key performance
indicators (KPIs) such as number of clicks, repeat users, or explicit ratings . A/B testing is a
process used across many industries to measure and compare user behavior for the purpose
of determining the relative success of different product or app versions across the customer
base . In a typical A/B test, 50% of users get Version A (the current app version) while the
remaining 50% gets Version B (the version with the new, but stable, feature) . The winner is
the one with the overall better set of KPIs .

Kubernetes
Environment

A/B Testing

Ingress
Controller

Banking App V 1.7

Pod

Pod

Pod

Banking App V 1.8

Pod

Pod

Pod

50%

50%

Figure 6: A/B Testing in a
Kubernetes Environment

A/B TESTING IS A
PROCESS USED ACROSS
MANY INDUSTRIES TO
MEASURE AND COMPARE
USER BEHAVIOR

19CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

RESILIENCE USE CASE #6:
Move Users to a New Version Without Downtime
Solution: Blue-green deployment

Now let’s say your banking app is due for a major version change . . . congratulations! In the
past, upgrading versions usually meant downtime for users because you had to take down
the old version before moving the new version into production . But in today’s competitive
environment, downtime for upgrades is unacceptable to most users . Blue-green deployments
greatly reduce, or even eliminate, downtime for upgrades . Simply keep the old version (blue)
in production while simultaneously deploying the new version (green) alongside in the same
production environment .

Most organizations don’t want to move 100% of users from blue to green at once – after all,
what if the green version fails?! The solution is to use a canary deployment to move users in
whatever increments best meet your risk mitigation-strategy . If the new version is a disaster,
you can easily revert everyone back to the stable version in just a couple of keystrokes .

Kubernetes
Environment

Blue-Green Deployment

Ingress
Controller

Banking App V 1.7

Pod

Pod

Pod

Banking App V 1.8

Pod

Pod

Pod

100%

0%

Figure 7: Blue-Green Deployment in a
Kubernetes Environment

BLUE-GREEN DEPLOYMENTS
GREATLY REDUCE, OR EVEN
ELIMINATE, DOWNTIME
FOR UPGRADES

20CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

U S I N G N G I N X F O R A D VA N C E D K U B E R N E T E S
T R A F F I C M A N A G E M E N T

You can accomplish advanced traffic control and splitting with most Ingress controllers and
service meshes . Which technology to use depends on your app architecture and use cases .
For example, using an Ingress controller makes sense in these three scenarios:

• Your apps have just one endpoint, as with simple apps or monolithic apps that you have
“lifted and shifted” into Kubernetes .

• There’s no service-to-service communication in your cluster .

• There is service-to-service communication but you aren’t yet using a service mesh .

If your deployment is complex enough to need a service mesh, a common use case is splitting
traffic between services for testing or upgrade of individual microservices . For example, you
might want to do a canary deployment behind your mobile front-end, between two different
versions of your geolocation microservice API .

However, setting up traffic splitting with some Ingress controllers and service meshes can
be time-consuming and error-prone, for a variety of reasons:

• Ingress controllers and service meshes from various vendors implement
Kubernetes features in different ways .

• Kubernetes isn’t really designed to manage and understand Layer 7 traffic .

• Some Ingress controllers and service meshes don’t support sophisticated
traffic management .

With F5 NGINX Ingress Controller and F5 NGINX Service Mesh, you can easily configure
robust traffic routing and splitting policies in seconds with easier configs, advanced
customizations, and improved visibility .

How to Do
Traffic Splitting
in Kubernetes

L I V E S T R E A M D E M O
W I T H O U R E X P E R T S :

EASILY CONFIGURE
ROBUST TRAFFIC ROUTING
AND SPLITTING POLICIES
IN SECONDS

https://www.nginx.com/resources/glossary/kubernetes-ingress-controller
https://www.nginx.com/resources/glossary/service-mesh/
https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-service-mesh/
https://www.youtube.com/watch?v=cAF6-RDACAY

21CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

Easier Configuration with NGINX Ingress Resources
and the SMI Specification

These NGINX features make configuration easier:

• NGINX Ingress resources for NGINX Ingress Controller – While the standard Kubernetes
Ingress resource makes it easy to configure SSL/TLS termination, HTTP load balancing,
and Layer 7 routing, it doesn’t include the kind of customization features required for
circuit breaking, A/B testing, and blue-green deployment . Instead, non-NGINX users
have to use annotations, ConfigMaps, and custom templates which all lack fine-grained
control, are insecure, and are error prone and difficult to use .

NGINX Ingress Controller comes with NGINX Ingress resources as an alternative to
the standard Ingress resource (which it also supports) . They provide a native, type-safe,
and indented configuration style which simplifies implementation of Ingress load
balancing . NGINX Ingress resources have an added benefit for existing NGINX users:
they make it easier to repurpose load balancing configurations from non-Kubernetes
environments, so all your NGINX load balancers can use the same configurations .

• NGINX Service Mesh with SMI – NGINX Service Mesh implements the Service Mesh
Interface (SMI), a specification that defines a standard interface for service meshes
on Kubernetes, with typed resources such as TrafficSplit, TrafficTarget, and
HTTPRouteGroup . Using standard Kubernetes configuration methods, NGINX Service Mesh
and the NGINX SMI extensions make traffic-splitting policies, like canary deployment,
simple to deploy with minimal interruption to production traffic . For example, here’s how
to define a canary deployment with NGINX Service Mesh:

apiVersion: split.smi-spec.io/v1alpha2
kind: TrafficSplit
metadata:
name: target-ts
spec:
service: target-svc
backends:
- service: target-v1-0
 weight: 90
- service: target-v2-0
 weight: 10

Our tutorial How to Use NGINX Service Mesh for Traffic Splitting walks through sample deploy-
ment patterns that leverage traffic splitting, including canary and blue-green deployments .

ANNOTATIONS, CONFIGMAPS,
AND CUSTOM TEMPLATES LACK
FINE-GRAINED CONTROL, ARE
INSECURE, AND ARE ERROR
PRONE AND DIFFICULT TO USE

https://www.nginx.com/products/nginx-ingress-controller/nginx-ingress-resources/
https://github.com/servicemeshinterface/smi-spec/blob/main/SPEC_LATEST_STABLE.md
https://mesh-public-docs.netlify.app/nginx-service-mesh/guides/traffic-policies/#smi-specification
https://www.nginx.com/blog/how-to-use-nginx-service-mesh-for-traffic-splitting/

22CHAPTER 2 – SIX WAYS TO IMPROVE RESILIENCE

M O R E S O P H I S T I C AT E D T R A F F I C C O N T R O L A N D S P L I T T I N G
W I T H A D VA N C E D C U S T O M I Z AT I O N S

These NGINX features make it easy to control and split traffic in sophisticated ways:

• The key-value store for canary deployments – When you’re performing A/B testing or
blue-green deployments, you might want to transition traffic to the new version at specific
increments, for example 0%, 5%, 10%, 25%, 50%, and 100% . With most tools, this is a
very manual process because you have to edit the percentage and reload the configuration
file for each increment . With that amount of overhead, you might decide to take the risk
of going straight from 5% to 100% . However, with the NGINX Plus-based version of
NGINX Ingress Controller, you can leverage the key-value store to change the percentages
without the need for a reload .

• Circuit breaking with NGINX Ingress Controller – Sophisticated circuit breakers save
time and improve resilience by more quickly detecting failures and failing over, and even
activating custom, formatted error pages for upstreams that are unhealthy . For example,
a circuit breaker for a search service might be configured to return a correctly formatted
but empty set of search results . To get this level of sophistication, the NGINX Plus-based
version of NGINX Ingress Controller uses active health checks which proactively monitor
the health of your TCP and UDP upstream servers . Because it’s monitoring in real time,
your clients will be less likely to experience apps that return errors .

• Circuit breaking with NGINX Service Mesh – The NGINX Service Mesh circuit breaker
spec has three custom fields:

 – errors – Number of errors before the circuit trips

 – timeoutSeconds – Window for errors to occur within before tripping the circuit,
as well as the amount of time to wait before closing the circuit

 – fallback – Name and port of the Kubernetes service to which traffic is rerouted
after the circuit has been tripped

While errors and timeoutSeconds are standard circuit breaker features, fallback
boosts resilience further by enabling you to define a backup server . If your backup
server responses are unique, they can be an early indicator of trouble in your cluster,
allowing you to start troubleshooting right away .

Interpreting Traffic Splitting Results

You’ve implemented traffic splitting . . . now what? It’s time to analyze the result . This can
be the hardest part because many organizations are missing key insights into how their
Kubernetes traffic and apps are performing . For more on improving visibility to gain insight,
continue to chapter 3 .

SOPHISTICATED CIRCUIT
BREAKERS SAVE TIME AND
IMPROVE RESILIENCE
BY MORE QUICKLY
DETECTING FAILURES
AND FAILING OVER

https://www.nginx.com/blog/dynamic-a-b-testing-with-nginx-plus/#Using-the-Key-Value-Store-with-Split-Clients
https://www.nginx.com/blog/dynamic-a-b-testing-with-nginx-plus/#Using-the-Key-Value-Store-with-Split-Clients
https://docs.nginx.com/nginx-ingress-controller/configuration/virtualserver-and-virtualserverroute-resources/#upstreamhealthcheck
https://docs.nginx.com/nginx-service-mesh/guides/traffic-policies/#circuit-breaking
https://docs.nginx.com/nginx-service-mesh/guides/traffic-policies/#circuit-breaking

23CHAPTER 3 – TWO PROBLEMS YOU CAN SOLVE WITH BETTER VISIBILITY 23

3. Two Problems You Can Solve with
Better Visibility

Adoption of microservices accelerates digital experiences, but microservices architectures can
also make those experiences more fragile . While your developers are running fast to get new
apps out the door, your architecture may be putting you at increased risk for outages, security
exposures, and time wasted on inefficient troubleshooting or fixing preventable problems .
In this chapter we examine how components that provide traffic visibility can reduce complexity
and improve security in your microservices environments .

H O W T O AT TA I N I N S I G H T S T H R O U G H V I S I B I L I T Y

First, let’s look at a couple of definitions:

• Visibility – The state of being able to see or be seen

• Insight – A deep understanding of a person or thing

In a 2021 survey from Splunk, 81% of respondents identified data as “very” or “extremely”
valuable . We agree that data is key, especially in Kubernetes where it can be especially difficult
to know what is deployed . And yet 95% of respondents to F5’s The State of Application
Strategy in 2021 reported that although they have a wealth of data, they’re missing the insights
into app performance, security, and availability that they need to protect and evolve their
infrastructure and business . So why is insight important and how do you get it?

With Insight, You Can:

 Strengthen security and compliance
by detecting vulnerabilities and possible
attack vectors

 Reduce outages and downtime by
discovering problems before your
customers do

 Improve the efficiency of trouble-
shooting by finding the root cause
of app issues

 Confirm that your traffic is going
only where you want it to go

 Know exactly what’s running in your
Kubernetes environments and whether
it’s properly configured and secured

 Figure out whether you’re using the
right amount of resources based on
latency and performance history

 Predict seasonal needs based on
past traffic patterns

 Measure response time to track
performance against SLAs and serve
as an early warning system before
problems affect the user experience

YOUR ARCHITECTURE
MAY BE PUTTING YOU
AT INCREASED RISK

https://www.nginx.com/learn/microservices-architecture/
https://www.splunk.com/en_us/campaigns/dark-data.html
https://www.f5.com/state-of-application-strategy-report
https://www.f5.com/state-of-application-strategy-report

24CHAPTER 3 – TWO PROBLEMS YOU CAN SOLVE WITH BETTER VISIBILITY 24

To gain insight, you need two types of visibility data: real-time and historical . Real-time data
enables you to diagnose the source of a problem that’s happening right now, while historical
data supplies perspective on what is “normal” versus what is an outlier . Combined, these two
types of visibility sources can provide crucial insights into app and Kubernetes performance .

As with other technology investments, you also need a strategy for how to reap the benefits .
The F5 report also indicates that people fail to attain valuable insights due to organizational
factors related to hiring and employee development, strategy and processes, and consensus
on what the data should be used for, when, and by whom . Those findings include:

T R O U B L E S H O O T I N G T W O K U B E R N E T E S P R O B L E M S

Most Kubernetes deployments are already using a monitoring tool and don’t need yet
another one . But did you know you can use your production-grade traffic management
tools – specifically an Ingress controller and service mesh – to gain insights? Because they
touch every bit of traffic in your Kubernetes clusters, the Ingress controller and service mesh
have the potential to provide data that can help you improve your uptime SLAs .

• Insight into ingress-egress (north-south) traffic
The Ingress controller provides insight into the traffic entering and exiting your
Kubernetes clusters .

• Insight into service-to-service (east-west) traffic
A service mesh provides insight into the traffic flowing among containerized apps .

To make this level of visibility possible with NGINX tools, we instrumented the F5 NGINX Plus API
for easy export of metrics and provide integrations with popular tools like OpenTracing and
Grafana and Prometheus, so you can get a full picture of performance inside your clusters .
You get targeted insights into app performance and availability with deep traces so you can
understand how requests are processed across your microservices apps .

Related Skillsets

It’s no secret that there’s a
shortage of skilled technology
professionals, as confirmed by
47% of respondents reporting
that they struggle to find the
talent they need.

Data Sharing Initiatives

Only 12% of respondents have
processes and strategies in
place for reporting data back
to business decision makers
to make them aware of the
business impacts of resilient
technology (or lack thereof).

The Purpose of Visibility

Most respondents use tele-
metry reactively (that is, for
troubleshooting) while only
24% of respondents proactively
use data and insights to watch
for potential performance
degradations and 16% to track
SLA performance.

PEOPLE FAIL TO ATTAIN
VALUABLE INSIGHTS DUE TO
ORGANIZATIONAL FACTORS

https://www.f5.com/state-of-application-strategy-report
https://docs.nginx.com/nginx/admin-guide/monitoring/live-activity-monitoring/
https://www.nginx.com/blog/opentracing-with-nginx-ingress-controller-for-kubernetes/
https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/prometheus/

25CHAPTER 3 – TWO PROBLEMS YOU CAN SOLVE WITH BETTER VISIBILITY 25

In the remainder of this chapter, we demonstrate six ways to use F5 NGINX Ingress Controller
and F5 NGINX Service Mesh for troubleshooting two common Kubernetes problems:

1. Slow apps

2. Resource exhaustion

Kubernetes Problem #1: Slow Apps

Is your app running slow . . . or even completely down? Do you suspect a DDoS attack?
Are users reporting errors from your website? You can’t begin to solve the problem until you
figure out exactly where it lies . Depending on the complexity of your apps and which NGINX
tools you’re using, you have three options for getting real-time metrics so you can diagnose
what’s happening “right now” .

• Option 1: Live monitoring with NGINX Ingress Controller
With NGINX Plus, the live activity monitoring dashboard (powered by the NGINX Plus API)
displays hundreds of key load and performance metrics . Get fine-grained detail down to
the level of a single pod so you can quickly and easily measure response times to apps and
diagnose the source of an issue . As your Kubernetes environment grows, you automatically
get dashboards for each additional NGINX Ingress Controller instance .

As an example, two columns on the HTTP Upstreams tab give you an instant read on
application and infrastructure status:

 – Requests – If the number of requests per second (Req/s) is dipping below the norm
for the given application (for example, 5 requests per second when 40 is normal), the
NGINX Ingress Controller or application might be misconfigured .

 – Response time – If response times are 10 milliseconds (ms) or less, you’re in great shape .
Latency upwards of 30–40ms is a sign of trouble with your upstream applications .

Figure 8: NGINX Ingress Controller
Live Monitoring Dashboard

YOU CAN’T BEGIN TO
SOLVE THE PROBLEM UNTIL
YOU FIGURE OUT EXACTLY
WHERE IT LIES

https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-service-mesh/
https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/status-page/#accessing-live-activity-monitoring-dashboard

26CHAPTER 3 – TWO PROBLEMS YOU CAN SOLVE WITH BETTER VISIBILITY 26

• Option 2: Stub status for NGINX Ingress Controller
With NGINX Open Source, NGINX Ingress Controller includes a status page that reports
eight basic metrics .

• Option 3: OpenTracing with NGINX Service Mesh
NGINX Service Mesh supports OpenTracing with the NGINX OpenTracing module .
As of this writing, the module supports Datadog, LightStep, Jaeger, and Zipkin .

Kubernetes Problem #2: Resource Exhaustion

Got HTTP errors? 503 and 40x errors indicate that there’s a problem with your resources,
while 502s mean that a config change didn’t work . To diagnose where you might be running
out of resources, you need to be able to export metrics to visibility tools that plot values
over time . In addition to discovering the source of your problems, historical data can also
help you predict when a traffic surge will happen so you’ll be ready to scale .

• Option 1: Logging with NGINX Ingress Controller
The first step in diagnosing network issues is to check out the NGINX Ingress Controller
logs, in which every log entry (including those about errors) identifies the associated
Kubernetes service . The logs include detailed information about all the traffic that has come
through NGINX Ingress Controller, including a timestamp, source IP address, and response
status code . You can also export logs to popular aggregators such as Datadog, Grafana,
and Splunk .

• Option 2: Prometheus metrics
One of NGINX Ingress Controller’s most popular features is its ever-expanding list
of Prometheus metrics, which include metrics on network performance and Ingress
controller traffic . The NGINX Plus-based NGINX Ingress Controller exports metrics about
connections, caching, HTTP and TCP/UDP traffic handled by groups of NGINX workers
that share data in a memory zone, HTTP and TCP/UDP traffic handled by groups of
backend servers, and more .

NGINX Service Mesh uses the NGINX Plus API to scrape metrics from NGINX Service Mesh
sidecars and NGINX Ingress Controller pods . Prometheus scrape configurations are
included so you can customize the metrics needed in your Prometheus configuration file .

• Option 3: Grafana dashboards
We provide official Grafana dashboards for NGINX Ingress Controller and
NGINX Service Mesh that visualize metrics exposed by the Prometheus Exporter .
Users value the granularity of the data, which includes detail down to the millisecond,
day-over-day overlays, and traffic spikes . For example, the NGINX Service Mesh
dashboard can indicate your pods are at capacity by displaying the amount of traffic
on any one service or pod and the number of active pods being monitored .

503 AND 40X ERRORS
INDICATE THAT THERE’S
A PROBLEM WITH YOUR
RESOURCES, WHILE 502s
MEAN THAT A CONFIG
CHANGE DIDN’T WORK

https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/status-page/#accessing-stub-status
https://github.com/opentracing-contrib/nginx-opentracing
https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/logging/
https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/logging/
https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/prometheus/
https://github.com/nginxinc/nginx-prometheus-exporter#exported-metrics
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#sharing-data-with-multiple-worker-processes
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#proxying-http-traffic-to-a-group-of-servers
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#proxying-http-traffic-to-a-group-of-servers
https://github.com/nginxinc/nginx-service-mesh/tree/main/examples/prometheus
https://github.com/nginxinc/kubernetes-ingress/tree/master/grafana
https://github.com/nginxinc/nginx-service-mesh/tree/main/examples/grafana

27CHAPTER 3 – TWO PROBLEMS YOU CAN SOLVE WITH BETTER VISIBILITY 27

If you’re ready to see the technology in action, check out this livestream demo and AMA
with NGINX and Grafana experts, How to Improve Visibility in Kubernetes with Prometheus,
Grafana, and NGINX . You’ll see them demonstrate how to get live monitoring of key load
balancing and performance metrics, export the metrics to Prometheus, and create Grafana
dashboards for a view of cumulative performance .

How to Improve
Visibility in Kubernetes
with Prometheus,
Grafana, and NGINX

L I V E S T R E A M D E M O
W I T H O U R E X P E R T S :

https://www.youtube.com/watch?v=hJoH7J0un5U
https://www.youtube.com/watch?v=hJoH7J0un5U
https://www.youtube.com/watch?v=hJoH7J0un5U

28CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 28

4. Six Methods to Enhance Security
As discussed in Secure Cloud-Native Apps Without Losing Speed on our blog, we have
observed three factors that make cloud-native apps more difficult to secure than traditional apps:

1. Cloud-native app delivery causes tool sprawl and offers inconsistent
enterprise-grade services

2. Cloud-native app delivery costs can be unpredictable and high

3. SecOps struggles to protect cloud-native apps and is at odds with DevOps

While all three factors can equally impact security, the third factor can be the most difficult
problem to solve, perhaps because it’s the most “human” . When SecOps isn’t able or
empowered to protect cloud-native apps, some of the consequences are obvious (vulnerabilities
and breaches), but others are hidden, including slowed agility and stalled digital transformation .

Let’s dig deeper into those hidden costs . Organizations choose Kubernetes for its promise
of agility and cost savings . But when there are security incidents in a Kubernetes environment,
most organizations pull their Kubernetes deployments out of production . That slows down
digital transformation initiatives that are essential for the future of the organization – never mind
the wasted engineering efforts and money . The logical conclusion is: if you’re going to try to get
Kubernetes from test to production, then security must be considered a strategic component
that is owned by everyone in the organization .

The security tool ecosystem is a huge (and growing) industry with both tech giants and
start-ups jumping to address Kubernetes-specific problems . But even with the adoption of
security tools, such as vulnerability scanners and WAFs, organizations still find themselves
vulnerable . Just like with your visibility and troubleshooting strategies, you can leverage
Kubernetes traffic management tools to improve and simplify your security strategy .

S E C U R I T Y A N D I D E N T I T Y T E R M I N O L O GY

Before we jump into the use cases, here’s an overview of the security and identity terms you’ll
encounter throughout this chapter . Already a security pro? Click here to jump to the use cases .

• Authentication and authorization – Functions required to ensure only the “right” users
and services can gain access to backends or application components:

 – Authentication – Verification of identity to ensure that clients making requests
are who they claim to be . Accomplished through ID tokens, such as passwords or
JSON Web Tokens (JWTs) .

 – Authorization – Verification of permission to access a resource or function . Accomplished
through access tokens, such as Layer 7 attributes like session cookies, session IDs,
group IDs, or token contents .

WHEN THERE ARE SECURITY
INCIDENTS IN A KUBERNETES
ENVIRONMENT, MOST
ORGANIZATIONS PULL THEIR
KUBERNETES DEPLOYMENTS
OUT OF PRODUCTION

https://www.nginx.com/blog/secure-cloud-native-apps-without-losing-speed/
https://www.nginx.com/resources/glossary/cloud-native-app-delivery/
https://www.nginx.com/resources/glossary/kubernetes
https://www.redhat.com/rhdc/managed-files/cl-state-kubernetes-security-report-ebook-f29117-202106-en.pdf

29CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 29

• Critical Vulnerabilities and Exposures (CVEs) – A database of publicly disclosed flaws
“in a software, firmware, hardware, or service component resulting from a weakness that
can be exploited, causing a negative impact to the confidentiality, integrity, or availability
of an impacted component or components” .1 CVEs may be discovered by the developers
who manage the tool, a penetration tester, a user or customer, or someone from the
community (such as a “bug hunter”) . It’s common practice to give the software owner time
to develop a patch before the vulnerability is publicly disclosed, so as not to give bad
actors an advantage .

• Denial-of-service (DoS) attack – An attack in which a bad actor floods a website with
requests (TCP/UDP or HTTP/HTTPS) with the goal of making the site crash . Because DoS
attacks impact availability, their primary outcome is damage to the target’s reputation .
A distributed denial-of-service (DDoS) attack, in which multiple sources target the
same network or service, is more difficult to defend against due to the potentially large
network of attackers . DoS protection requires a tool that adaptively identifies and
prevents attacks . Learn more in What is Distributed Denial of Service (DDoS)?

• End-to-end encryption (E2EE) – The practice of fully encrypting data as it passes from
the user to the app and back . E2EE requires SSL/TLS certificates and potentially mTLS .

• Mutual TLS (mTLS) – The practice of requiring authentication (via SSL/TLS certificate) for
both the client and the host . Use of mTLS also protects the confidentiality and integrity
of the data passing between the client and the host . mTLS can be accomplished all the
way down to the Kubernetes pod level, between two services in the same cluster . For
and excellent introduction to SSL/TLS and mTLS, see What is mTLS? at F5 Labs .

• Single sign-on (SSO) – SSO technologies (including SAML, OAuth, and OIDC) make it
easier to manage authentication and authorization .

 – Simplified authentication – SSO eliminates the need for a user to have a unique ID
token for each different resource or function .

 – Standardized authorization – SSO facilitates setting of user access rights based on
role, department, and level of seniority, eliminating the need to configure permissions
for each user individually .

• SSL (Secure Sockets Layer)/TLS (Transport Layer Security) – A protocol for establishing
authenticated and encrypted links between networked computers . SSL/TLS certificates
authenticate a website’s identity and establish an encrypted connection . Although the
SSL protocol was deprecated in 1999 and replaced with the TLS protocol, it is still common
to refer to these related technologies as “SSL” or “SSL/TLS” – for the sake of consistency,
we use SSL/TLS in this chapter .

• Web application firewall (WAF) – A reverse proxy that detects and blocks sophisticated
attacks against apps and APIs (including OWASP Top 10 and other advanced threats)
while letting “safe” traffic through . WAFs defend against attacks that try to harm the target
by stealing sensitive data or hijacking the system . Some vendors consolidate WAF and
DoS protection in the same tool, whereas others offer separate WAF and DoS tools .

1 . Source: CVE Program .

https://www.nginx.com/resources/glossary/distributed-denial-of-service/
https://www.f5.com/labs/articles/education/what-is-mtls
https://www.nginx.com/resources/glossary/reverse-proxy-server
https://owasp.org/www-project-top-ten/
https://www.cve.org/ResourcesSupport/Glossary?activeTerm=glossaryVulnerability

30CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 30

• Zero trust – A security concept that is frequently used in higher security organizations,
but is relevant to everyone, in which data must be secured at all stages of data storage
and transport . This means that the organization has decided not to “trust” any users or
devices by default, but rather require that all traffic is thoroughly vetted . A zero-trust
architecture typically includes a combination of authentication, authorization, and mTLS
with a high probability that the organization implements end-to-end encryption .

M A K E S E C U R I T Y E V E RYO N E ’S R E S P O N S I B I L I T Y

In this chapter, we cover six security use cases that you can solve with Kubernetes traffic
management tools, enabling SecOps to collaborate with DevOps and NetOps to better
protect your cloud-native apps and APIs . A combination of these techniques is often used
to create a comprehensive security strategy designed to keep apps and APIs safe while
minimizing the impact to customers .

1. Resolve CVEs quickly to avoid cyberattacks

2. Stop OWASP Top Ten and DoS attacks

3. Offload authentication and authorization from apps

4. Set up self-service with guardrails

5. Implement end-to-end encryption

6. Ensure clients are using a strong cipher with a trusted implementation

SECURITY USE CASE #1:
Resolve CVEs Quickly to Avoid Cyberattacks
Solution: Use tools with timely and proactive patch notifications

According to a study by the Ponemon
Institute, in 2019 there was an average
“grace period” of 43 days between the
release of a patch for a critical or high-priority
vulnerability and organizations seeing
attacks that tried to exploit the vulnerability .
At F5 NGINX, we’ve seen that window
narrow significantly in the following years
(even down to day zero in the case of
Apple iOS 15 in 2021), which is why we
recommend patching as soon as possible .
But what if patches for your traffic manage-
ment tools aren’t available for weeks, or
even months, after a CVE is announced?

https://media.bitpipe.com/io_15x/io_152272/item_2184126/ponemon-state-of-vulnerability-response-.pdf
https://media.bitpipe.com/io_15x/io_152272/item_2184126/ponemon-state-of-vulnerability-response-.pdf
https://therecord.media/researcher-discloses-iphone-lock-screen-bypass-on-ios-15-launch-day/
https://therecord.media/researcher-discloses-iphone-lock-screen-bypass-on-ios-15-launch-day/

31CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 31

Tools that are developed and maintained by community contributors (rather than a dedicated
engineering team) have the potential to lag weeks to months behind CVE announcements,
making it unlikely that organizations can patch within that 43-day window . In one case, it took
OpenResty four months to apply an NGINX-related security patch . That left anyone using an
OpenResty-based Ingress controller vulnerable for at least four months . However, realistically
there’s usually additional delay before patches are available for software that depends on
an open source project .

Time (t)
t + ~ 4 months t + ???

NGINX
Applies

Security Patch

OpenResty
Applies

 Security Patch

Other Open
Source Projects

Apply
Security Patch

To get the fastest CVE patching, look for two characteristics when selecting traffic
management tools:

• A dedicated engineering team – When tool development is managed by an engineering
team instead of community volunteers, you can be confident a group of people are
dedicated to the health of the tool and will prioritize release of a patch as soon as possible .

• An integrated code base – Without any external dependencies (like we discussed with
OpenResty), patches are just an agile sprint away .

For more on CVE patching, read Mitigating Security Vulnerabilities Quickly and Easily with
NGINX Plus on our blog .

Figure 9: Example of Delay in
Implementing a Security Patch

IN ONE CASE, IT TOOK
OPENRESTY FOUR MONTHS
TO APPLY AN NGINX-RELATED
SECURITY PATCH

https://www.nginx.com/blog/mitigating-security-vulnerabilities-quickly-easily-nginx-plus/#immediate-patches
https://www.nginx.com/blog/mitigating-security-vulnerabilities-quickly-easily-nginx-plus/
https://www.nginx.com/blog/mitigating-security-vulnerabilities-quickly-easily-nginx-plus/

32CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 32

SECURITY USE CASE #2:
Stop OWASP Top 10 and DoS Attacks
Solution: Deploy flexible, Kubernetes-friendly WAF and DoS protection

Choosing the right WAF and DoS protection for Kubernetes apps depends on two factors
(in addition to features):

• Flexibility – There are scenarios when it’s best to deploy tools inside Kubernetes, so you
want infrastructure-agnostic tools that can run within or outside Kubernetes . Using the
same tool for all your deployments enables you to reuse policies and lowers the learning
curve for your SecOps teams .

• Footprint – The best Kubernetes tools have a small footprint, which allows for appropriate
resource consumption with minimal impact to throughput, requests per second, and
latency . Given that DevOps teams often resist security tools because of a perception
that they slow down apps, choosing a high-performance tool with a small footprint can
increase the probability of adoption .

While a tool that consolidates WAF and DoS protection may seem more efficient, it’s actually
expected to have issues around both CPU usage (due to a larger footprint) and flexibility .
You’re forced to deploy the WAF and DoS protection together, even when you don’t need
both . Ultimately, both issues can drive up the total cost of ownership for your Kubernetes
deployments while creating budget challenges for other essential tools and services .

2021 OWASP Top 10 Web Application Security Risks

 1 . Broken Access Control

 2. Cryptographic Failures

 3. Injection

 4. Insecure Design

 5. Security Misconfiguration

 6. Vulnerable and Outdated Components

 7. Identification and Authentication Failures

 8. Software and Data Integrity Failures

 9. Security Logging and Monitoring Failures

 10. Server-Side Request Forgery (SSRF)

Source: OWASP Foundation

USING THE SAME TOOL FOR
ALL YOUR DEPLOYMENTS
ENABLES YOU TO REUSE
POLICIES AND LOWERS
THE LEARNING CURVE
FOR YOUR SECOPS TEAMS

https://owasp.org/www-project-top-ten/

33CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 33

Load
Balancer

API
Gateway

Kubernetes
Environment

Pod
App

Per-Pod Proxy

Pod
App

Per-Pod Proxy

Pod
App

Pod
App

Pod
App

Four Locations for Deploying Application Services
• Front Door – External load balancers and proxies
• Ingress Controller – Entry point into Kubernetes
• Per-Service-Proxy – Interior service proxy tier
• Per-Pod Proxy – Sidecar-style proxy per pod

NGINX
Ingress

Controller

Front Door

Once you’ve chosen the right security tools for your organization, it’s time to decide where
to deploy those tools . There are four locations where application services can typically be
deployed to protect Kubernetes apps:

• At the front door (on an external load balancer such as F5 NGINX Plus or F5 BIG-IP) –
Good for “coarse-grained” global protection because it allows you to apply global policies
across multiple clusters

• At the edge (on an Ingress controller such as F5 NGINX Ingress Controller) – Ideal for
providing “fine-grained” protection that’s standard across a single cluster

• At the service (on a lightweight load balancer like NGINX Plus) – Can be a necessary
approach when there are a small number of services within a cluster that have a shared
need for unique policies

• At the pod (as part of the application) – A very custom approach that might be used
when the policy is specific to the app

Figure 10: Four Locations for Deploying Application Services

https://www.nginx.com/resources/glossary/load-balancing/
https://www.nginx.com/products/nginx/
https://www.f5.com/products/big-ip-services
https://www.nginx.com/resources/glossary/kubernetes-ingress-controller/

34CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 34

So, out of the four options, which is best? Well . . . that depends!

Where to Deploy a WAF

First, let’s look at WAF deployment options since that tends to be a more nuanced choice .

• Front door and edge – If your organization prefers a “defense in depth” security strategy,
then we recommend deploying a WAF at both the external load balancer and the Ingress
controller to deliver an efficient balance of global and custom protections .

• Front door or edge – In the absence of a “defense in depth” strategy, a single location
is acceptable, and the deployment location depends on ownership . When a traditional
NetOps team owns security, they may be more comfortable managing it on a traditional
proxy (the external load balancer) . However, DevSecOps teams that are comfortable with
Kubernetes (and prefer having their security configuration in the vicinity of their cluster
configs) may choose to deploy a WAF at the ingress level .

• Per service or pod – If your teams have specific requirements for their services or apps,
then they can deploy additional WAFs in an à la carte fashion . But be aware: costs are higher
for these locations . In addition to increased development time and a higher cloud budget,
this choice can also increase operational costs related to troubleshooting efforts, such as
when determining “Which of our WAFs is unintentionally blocking traffic?”

Where to Deploy DoS Protection

Protection against DoS attacks is more straightforward since it’s only needed at one location –
either at the front door or at the Ingress controller . If you deploy a WAF both at the front door
and the edge, then we recommend that you deploy DoS protection in front of the front-door
WAF, where it’s the most global . That way, unwanted traffic can be thinned out before hitting
the WAF, allowing you to make more efficient use of compute resources .

For more details on each of these scenarios, read Deploying Application Services in
Kubernetes, Part 2 on our blog .

https://www.nginx.com/blog/deploying-application-services-in-kubernetes-part-2/
https://www.nginx.com/blog/deploying-application-services-in-kubernetes-part-2/

35CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 35

SECURITY USE CASE #3:
Offload Authentication and Authorization from the Apps
Solution: Centralize authentication and authorization at the point of ingress

A common non-functional requirement that gets built into apps and services is authentication
and authorization . On a small scale, this practice adds a manageable amount of complexity
that’s acceptable when the app doesn’t require frequent updates . But with faster release
velocities at larger scale, integrating authentication and authorization into your apps
becomes untenable . Ensuring each app maintains the appropriate access protocols can
distract from the business logic of the app, or worse, can get overlooked and lead to an
information breach . While use of SSO technologies can improve security by eliminating
separate usernames and passwords in favor of one set of credentials, developers still have
to include code in their apps to interface with the SSO system .

There’s a better way: Offload authentication and authorization to an Ingress controller .

Engineering
App

Marketing
App

NGINX
Ingress

Controller

unit-demo.marketing.net

unit-demo.engineering.net

User

IdP

Kubernetes Cluster

Azure AD Okta Ping

Figure 11: Authenticating and Authorizing with an Ingress Controller

Because the Ingress controller is already scrutinizing all traffic entering the cluster and routing
it to the appropriate services, it’s an efficient choice for centralized authentication and
authorization . This removes the burden from developers of building, maintaining, and replicating
the logic in the application code . Instead, they can quickly leverage SSO technologies at the
ingress layer using the native Kubernetes API .

For more on this topic, read Implementing OpenID Connect Authentication for Kubernetes
with Okta and NGINX Ingress Controller on our blog .

https://www.nginx.com/blog/implementing-openid-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/
https://www.nginx.com/blog/implementing-openid-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/

36CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 36

SECURITY USE CASE #4:
Set Up Self-Service with Guardrails
Solution: Implement role-based access control (RBAC)

Kubernetes uses RBAC to control the resources and operations available to different types
of users . This is a valuable security measure as it allows an administrator or superuser to
determine how users, or groups of users, can interact with any Kubernetes object or specific
namespace in the cluster .

While Kubernetes RBAC is enabled by default, you need to take care that your Kubernetes
traffic management tools are also RBAC-enabled and can align with your organization’s
security needs . With RBAC in place, users get gated access to the functionality they need
to do their jobs without waiting around for a ticket to be fulfilled . But without RBAC configured,
users can gain permissions they don’t need or aren’t entitled to, which can lead to vulnerabilities
if the permissions are misused .

An Ingress controller is a prime example of a tool that can serve numerous people and teams
when configured with RBAC . When the Ingress controller allows for fine-grained access
management – even down to a single namespace – you can use RBAC to enable efficient
use of resources through multi-tenancy .

As an example, multiple teams might use the Ingress controller as follows:

• NetOps Team – Configures external entry point of the application (like the hostname
and TLS certificates) and delegates traffic control policies to various teams

• DevOps Team A – Provisions TCP/UDP load balancing and routing policies

• DevOps Team B – Configures rate-limiting policies to protect services from
excessive requests

• Identity Team – Manages authentication and authorization components while
configuring mTLS policies as part of an end-to-end encryption strategy

• DevSecOps Team – Sets WAF policies

NGINX Ingress Controller

NetOps
Team

DevOps
Team A

DevOps
Team B

DevSecOps
Team

Identity
Team

Figure 12: Example of Multiple Teams
Administering an Ingress Controller

USERS GET GATED ACCESS
TO THE FUNCTIONALITY
THEY NEED TO DO THEIR
JOBS WITHOUT WAITING
AROUND FOR A TICKET TO
BE FULFILLED

37CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 37

To learn more about RBAC in NGINX Ingress Controller, watch Advanced Kubernetes
Deployments with NGINX Ingress Controller . Starting at 13:50, our experts explain how to
leverage RBAC and resource allocation for security, self-service, and multi-tenancy .

SECURITY USE CASE #5:
Implement End-To-End Encryption
Solution: Use traffic management tools

End-to-end encryption (E2EE) is becoming an increasingly common requirement for
organizations that handle sensitive or personal information . Whether it’s financial data or
social media messaging, consumer privacy expectations combined with regulations like GDPR
and HIPAA are driving demand for this type of protection . The first step in achieving E2EE is
either to architect your backend apps to accept SSL/TLS traffic or to use a tool that offloads
SSL/TLS management from your apps (the preferred option for separation of security function,
performance, key management, etc .) . Then, you configure your traffic management tools
depending on the complexity of your environment .

Most Common Scenario: E2EE Using an Ingress Controller

When you have apps with just one endpoint (simple apps, or monolithic apps that you’ve “lifted
and shifted” into Kubernetes) or there’s no service-to-service communication, then you can use
an Ingress controller to implement E2EE within Kubernetes .

Step 1: Ensure your Ingress controller only allows encrypted SSL/TLS connections using
either service-side or mTLS certificates, ideally for both ingress and egress traffic .

Step 2: Address the typical default setting that requires the Ingress controller to decrypt
and re-encrypt traffic before sending it to the apps . This can be accomplished in a couple
of ways – the method you choose depends on your Ingress controller and requirements:

Leveraging RBAC
with NGINX Ingress
Resources

L I V E S T R E A M D E M O
W I T H O U R E X P E R T S :

https://www.devnetwork.com/online-learning/advanced-kubernetes-deployments-with-nginx-ingress-controller/
https://www.devnetwork.com/online-learning/advanced-kubernetes-deployments-with-nginx-ingress-controller/
https://www.devnetwork.com/online-learning/advanced-kubernetes-deployments-with-nginx-ingress-controller/

38CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 38

• If your Ingress controller supports SSL/TLS passthrough, it can route SSL/TLS-encrypted
connections based on the Service Name Indication (SNI) header, without decrypting
them or requiring access to the SSL/TLS certificates or keys .

• Alternately, you can set up SSL/TLS termination, where the Ingress controller terminates
the traffic, then proxies it to the backends or upstreams – either in clear-text or by
re-encrypting the traffic with mTLS or service-side SSL/TLS before forwarding it to your
Kubernetes services .

Less Common Scenario: E2EE Using an Ingress Controller
and Service Mesh

If there’s service-to-service communication within your cluster, you need to implement E2EE on two
planes: ingress-egress traffic with the Ingress controller and service-to-service traffic with a
service mesh . In E2EE, a service mesh’s role is to ensure that only specific services are allowed
to talk to each other and that they do so in a secure manner . When you’re setting up a service mesh
for E2EE, you need to enable a zero-trust environment through two factors: mTLS between services
(set to require a certificate) and traffic access control between services (dictating which services
are authorized to communicate) . Ideally, you also implement mTLS between the applications
(managed by a service mesh and the ingress-egress controller) for true E2EE security through-
out the Kubernetes cluster .

For more on encrypting data that’s been exposed on the wire, read The mTLS Architecture in
NGINX Service Mesh on our blog .

SECURITY USE CASE #6:
Ensure Clients Are Using a Strong Cipher with a Trusted Implementation
Solution: Comply with the Federal Information Processing Standards (FIPS)

In the software industry, FIPS usually refers to the publication specifically about cryptography,
FIPS 140-2 Security Requirements for Cryptographic Modules, which is a joint effort between
the United States and Canada . It standardizes the testing and certification of cryptographic
modules that are accepted by the federal agencies of both countries for the protection of
sensitive information . “But wait!” you say . “I don’t care about FIPS because I don’t work
with North American government entities.” Becoming FIPS-compliant can be a smart move
regardless of your industry or geography, because FIPS is also the de facto global crypto-
graphic baseline .

Complying with FIPS doesn’t have to be difficult, but it does require that both your operating
system and relevant traffic management tools can operate in FIPS mode . There’s a common
misconception that FIPS compliance is achieved simply by running the operating system in FIPS
mode . Even with the operating system in FIPS mode, it’s still possible that clients communicating
with your Ingress controller aren’t using a strong cipher . When operating in FIPS mode, your
operating system and Ingress controller may use only a subset of the typical SSL/TLS ciphers .

BECOMING FIPS-COMPLIANT
CAN BE A SMART MOVE
REGARDLESS OF YOUR
INDUSTRY OR GEOGRAPHY,
BECAUSE FIPS IS ALSO THE
DE FACTO GLOBAL CRYPTO-
GRAPHIC BASELINE

IN E2EE, A SERVICE MESH’S
ROLE IS TO ENSURE THAT
ONLY SPECIFIC SERVICES
ARE ALLOWED TO TALK TO
EACH OTHER AND THAT THEY
DO SO IN A SECURE MANNER

https://www.nginx.com/resources/glossary/service-mesh/
https://www.nginx.com/blog/mtls-architecture-nginx-service-mesh/
https://www.nginx.com/blog/mtls-architecture-nginx-service-mesh/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

39CHAPTER 4 – SIX METHODS TO ENHANCE SECURITY 39

Setting up FIPS for your Kubernetes deployments is a four-step process:

Step 1: Configure your operating system for FIPS mode

Step 2: Verify the operating system and OpenSSL are in FIPS mode

Step 3: Install the Ingress controller

Step 4: Verify compliance with FIPS 140-2 by performing a FIPS status check

In the example below, when FIPS mode is enabled for both the operating system and the
OpenSSL implementation used by NGINX Ingress Controller, all end-user traffic to and
from NGINX Ingress Controller is decrypted and encrypted using a validated, FIPS-enabled
crypto engine .

OpenSSL Crypto Engine
Initializes in FIPS Mode

NGINX App Protect
WAF Performs Layer 7 Inspection

Image Distribution • Kernel Boots into FIPS Mode

Kubernetes
Environment

NGINX Ingress
Controller

with NGINX
App Protect

NGINX Service Mesh

Service APages

Service BPages

Service CPages

Figure 13: FIPS in a Kubernetes Environment

Read more about FIPS in Achieving FIPS Compliance with NGINX Plus on our blog .

https://www.nginx.com/blog/achieving-fips-compliance-nginx-plus/

 Improve Kubernetes Resilience,
 Visibility, and Security with NGINX
If you’re ready to implement some (or all) of the methods discussed in this eBook, you need to make sure
your tools have the right features and capabilities to support your use cases. NGINX can help with our suite
of production-grade Kubernetes traffic management tools:

NGINX Ingress Controller – NGINX Plus-based Ingress controller for Kubernetes that handles advanced traffic
control and shaping, monitoring and visibility, authentication and SSO, and acts as an API gateway

NGINX App Protect – Holistic protection for modern apps and APIs, built on F5’s market-leading security
technologies, that integrates with NGINX Ingress Controller and NGINX Plus. Use a modular approach for
flexibility in deployment scenarios and optimal resource utilization:

• NGINX App Protect WAF – A strong, lightweight WAF that protects against OWASP Top 10 and beyond
with PCI DDS compliance

• NGINX App Protect DoS – Behavioral DoS detection and mitigation with consistent and adaptive
protection across clouds and architectures

NGINX Service Mesh – Lightweight, turnkey, and developer-friendly service mesh featuring NGINX Plus
as an enterprise sidecar

Kubernetes
Environment

NGINX Ingress
Controller

with NGINX
App Protect

NGINX Service Mesh

Service APages

Service BPages

Service CPages

Get started by requesting your free 30-day trial of NGINX Ingress Controller with NGINX App Protect WAF
and DoS, and download the always-free NGINX Service Mesh. Learn more today at nginx.com.

https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-app-protect/
https://www.nginx.com/products/nginx-app-protect/web-application-firewall/
https://www.nginx.com/products/nginx-app-protect/denial-of-service/
https://www.nginx.com/products/nginx-service-mesh/
https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-app-protect/
https://www.nginx.com/products/nginx-service-mesh/
https://www.nginx.com/free-trial-request-nginx-ingress-controller/
https://downloads.f5.com/
https://www.nginx.com/

414141CHAPTER 5 – HOW TO CHOOSE AN INGRESS CONTROLLER – IDENTIFY YOUR REQUIREMENTS

 Choose the Best Kubernetes
 Traffic Managment Tools for
 Your Needs

5. How to Choose an Ingress Controller –
Identify Your Requirements

When organizations first start experimenting with Kubernetes, they often don’t put a lot of
thought into the choice of Ingress controller . They might think that all Ingress controllers
are alike, and in the interests of getting up and running quickly it’s easiest to stick with the
default Ingress controller for the Kubernetes framework they did choose . And it’s true that
just about any Ingress controller is fine in testing or low-volume production environments .
But as you scale, your choice of Ingress controller becomes more important . That’s because
Ingress controllers can provide much more than the basic functionality of moving your traffic
from point A to point B .

From advanced traffic management to visibility to built-in security, an Ingress controller can be
one of the most powerful tools in your Kubernetes stack . In fact, at F5 NGINX we consider it to
be the foundation of any production-grade Kubernetes deployment . But many developers and
Platform Ops teams don’t realize the full power of an Ingress controller – or the consequences
of choosing one that can’t scale . Choosing an Ingress controller that doesn’t scale well or
protect complex environments can prevent you from getting Kubernetes out of testing and
into production . In this second part of the eBook, we aim to educate you on the basics of
Ingress controllers and how to make a wise choice that delivers the functionality and security
you need – today and tomorrow .

PA R T T WO

AS YOU SCALE, YOUR CHOICE
OF INGRESS CONTROLLER
BECOMES MORE IMPORTANT

https://www.nginx.com/resources/glossary/kubernetes-ingress-controller/
https://www.nginx.com/blog/reduce-complexity-with-production-grade-kubernetes/
https://www.nginx.com/blog/why-every-company-needs-platform-ops/

424242CHAPTER 5 – HOW TO CHOOSE AN INGRESS CONTROLLER – IDENTIFY YOUR REQUIREMENTS

W H AT ’S A N I N G R E S S C O N T R O L L E R ?

An Ingress controller is a specialized load balancer that manages the Layer 4 and Layer 7
traffic entering Kubernetes clusters, and potentially the traffic exiting them . So that we’re all
on the same page, here are the terms we use at NGINX (and they’re largely the same across
the industry):

• Ingress traffic – Traffic entering a Kubernetes cluster

• Egress traffic – Traffic exiting a Kubernetes cluster

• North-south traffic – Traffic entering and exiting a Kubernetes cluster (also called
ingress-egress traffic)

• East-west traffic – Traffic moving among services within a Kubernetes cluster (also
called service-to-service traffic)

• Service mesh – A traffic management tool for routing and securing service-to-service traffic

W H Y D O YO U N E E D A N I N G R E S S C O N T R O L L E R ?

By default, applications running in Kubernetes pods (containers) are not accessible from the
external network, but only from other pods within the Kubernetes cluster . Kubernetes has
a built-in configuration object for HTTP load balancing, called Ingress, which defines how
entities outside a Kubernetes cluster can connect to the pods represented by one or more
Kubernetes services .

When you need to provide external access to your Kubernetes services, you create an
Ingress resource to define the connectivity rules, including the URI path, backing service
name, and other information . On its own, however, the Ingress resource doesn’t do anything .
You must deploy and configure an Ingress controller application (using the Kubernetes API)
to implement the rules defined in Ingress resources .

W H AT D O I N G R E S S C O N T R O L L E R S D O ?

• Accept traffic from outside the Kubernetes environment, potentially modify (shape)
it, and distribute it to pods running inside the environment . The Ingress controller
replaces the default kube-proxy traffic distribution model, giving you additional
controls like those that application delivery controllers (ADCs) and reverse proxies
provide in non-Kubernetes environments .

• Monitor the individual pods of a service, guaranteeing intelligent routing and preventing
requests from being “black holed” .

• Implement egress rules to enhance security with mutual TLS (mTLS) or limit outgoing
traffic from certain pods to specific external services .

BY DEFAULT, APPLICATIONS
RUNNING IN KUBERNETES
PODS (CONTAINERS) ARE
NOT ACCESSIBLE FROM THE
EXTERNAL NETWORK

https://www.nginx.com/resources/glossary/layer-7-load-balancing/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/overview/components/#kube-proxy
https://en.wikipedia.org/wiki/Black_hole_(networking)

434343CHAPTER 5 – HOW TO CHOOSE AN INGRESS CONTROLLER – IDENTIFY YOUR REQUIREMENTS

What Does An Ingress Controller Do?

Service Mesh

Service
A

Service
B

Service
D

Service
C

Service
E

Ingress
Controller

Kubernetes
International

Airport

East-West
tra�c

Service Mesh

Ingress tra�c is tra�c entering a
Kubernetes cluster.

The Ingress controller accepts
ingress tra�c, potentially modifies
(shapes) it, and distributes it to pods
running inside the environment.

Service
D

Service
E

A service mesh routes and secures
east-west tra�c.

It is used to implement:

• End-to-end encryption and mTLS
• Orchestration
• Management of service tra�c
• Monitoring and visibility

East-west (service-to-service) tra�c is tra�c moving among
services within a Kubernetes cluster.

An Ingress controller cannot manage east-west tra�c.

When your app and infrastructure reach a level of maturity where
this tra�c needs to be managed, you need a service mesh.

Egress tra�c is tra�c exiting a
Kubernetes cluster.

The Ingress controller implements
egress rules to enhance security
with mTLS or limits outgoing tra�c
from certain pods to specific
external services.

The Ingress controller is a specialized load
balancer that manages Layer 4 and Layer 7
ingress and egress (“north-south”) tra�c.

It can also be used for:
• Tra�c control
• Tra�c shaping
• Monitoring and visibility
• Routing API tra�c as an API gateway
• Authentication and SSO
• WAF integration

Security

The Ingress controller can protect your
environment from unauthorized or
malicious tra�c via centralized
authentication, SSO, and as the ideal
point for a WAF.

Monitoring and Visibility

The Ingress controller can give you
insight into issues impacting app and
infrastructure performance, and help you
predict when tra�c surges will strike.

HACKER AIR

Egress Airlines
Ingress Airlines

The Ingress controller monitors the individual pods of a
service, guaranteeing intelligent routing and preventing
requests from being “black-holed.”

444444CHAPTER 5 – HOW TO CHOOSE AN INGRESS CONTROLLER – IDENTIFY YOUR REQUIREMENTS

When it’s time to select an Ingress controller, it can be tempting to start with a feature list,
but you might end up with an Ingress controller that has fantastic features but doesn’t satisfy
your business needs . Instead, make sure to explore two elements that impact how well the
Ingress controller will work for your team and your apps: use cases (what problems it will solve)
and resourcing (how you’re going to “pay” for it) . We cover these two topics in the remainder
of this chapter .

W H AT P R O B L E M S D O YO U WA N T T H E
I N G R E S S C O N T R O L L E R T O S O LV E ?

The core use case for an Ingress controller is traffic management, so you probably want the
Ingress controller to handle one or more of these common use cases:

• Load balancing (HTTP2, HTTP/HTTPS, SSL/TLS termination, TCP/UDP, WebSocket, gRPC)

• Traffic control (rate limiting, circuit breaking, active health checks)

• Traffic splitting (debug routing, A/B testing, canary deployments, blue-green deployments)

But there’s no reason to settle for a “one-trick pony” – most Ingress controllers can do more
than manage traffic . By using the Ingress controller to solve multiple problems, not only do
you reduce the size and complexity of your stack, but you can also offload non-functional
requirements from the apps to the Ingress controller . Let’s look at four non-traditional Ingress
controller use cases that can help make your Kubernetes deployments more secure, agile,
and scalable while making more efficient use of your resources .

Monitoring and Visibility
Lack of visibility into the Kubernetes cluster is one of the biggest challenges in production
environments, contributing to difficulty with troubleshooting and resilience . Because Ingress
controllers operate at the edge of your Kubernetes clusters and touch every bit of traffic, they’re
well situated to provide data that can help you troubleshoot (and even avoid) two common
problems: slow apps and resource exhaustion in the Kubernetes cluster or platform . For an
Ingress controller to improve visibility, it needs to:

• Provide metrics in real time so you can diagnose what’s happening “right now”

• Be able to export metrics to popular visibility tools, like Prometheus and Grafana, that
plot values over time to help you predict traffic surges and other trends

API Gateway
Unless you’re looking to perform request-response manipulation in Kubernetes, it’s very
likely that the Ingress controller can double as your API gateway . Depending on its feature
set, an Ingress controller might be able to provide core API gateway functions including
TLS termination, client authentication, rate limiting, fine-grained access control, and request
routing at Layers 4 through 7 .

THERE’S NO REASON TO
SETTLE FOR A “ONE-TRICK
PONY” – MOST INGRESS
CONTROLLERS CAN DO MORE
THAN MANAGE TRAFFIC

454545CHAPTER 5 – HOW TO CHOOSE AN INGRESS CONTROLLER – IDENTIFY YOUR REQUIREMENTS

Authentication and Single Sign-On
Offloading authentication of login credentials from your Kubernetes services to your Ingress
controller can solve two issues:

• Enable users to log into multiple apps with a single set of credentials by implementing
single sign-on (SSO) with OpenID Connect (OIDC)

• Eliminate the need to build authentication functionality into each application, allowing
your developers to focus on the business logic of their apps

Web Application Firewall Integration
It’s not that an Ingress controller can serve as a web application firewall (WAF), but rather that
the WAF can be consolidated with the Ingress controller . Although a WAF can be deployed
at many places outside and within Kubernetes, for most organizations the most efficient and
effective location is in the same pod as the Ingress controller . This use case is perfect when
security policies are under the direction of SecOps or DevSecOps and when a fine-grained
per-service or per-URI approach is needed . It means you can use the Kubernetes API to define
policies and associate them with services . Further, the Ingress controller’s role-based access
control (RBAC) functionality can enable SecOps to enforce policies per listener while DevOps
users set policies per Ingress resource .

H O W A R E YO U G O I N G T O R E S O U R C E T H E
I N G R E S S C O N T R O L L E R ?

Every Ingress controller comes at a cost . . . even those that are free and open source (perhaps
you’ve heard the phrase “free like a puppy”) . Some costs can be assigned predictable dollar
amounts as line items in your budget, while others depend on how much time your team has
to spend dealing with the consequences of which Ingress controller you choose (increased
complexity, lack of portability, and so on) . Let’s look at the primary costs to consider when
budgeting for an Ingress controller: time and money .

Budgeting for
Time Costs

Budgeting for
Capital Costs

How Are You Going
to Resource the
Ingress Controller?

PERHAPS YOU’VE HEARD THE
PHRASE “FREE LIKE A PUPPY”

464646CHAPTER 5 – HOW TO CHOOSE AN INGRESS CONTROLLER – IDENTIFY YOUR REQUIREMENTS

Budgeting for Time Costs
Budgeting for headcount can be far more challenging than for fixed-cost line items,
especially when you’re trying to resource a project in an unfamiliar space . You need to ask
questions like:

• Who will configure and administer the Ingress controller? Is it part of their full-time job
(for example, as members of your Platform Ops team) or are they taking it on as an extra
responsibility (as developers)?

• Can you make time for employees to take formal training? Or must the tool be simple
enough to learn quickly and easily on the job?

• Are you prepared to have employees tinker with it whenever a new feature is needed,
or spend extensive time troubleshooting when there’s a problem? Or do you need them
to deliver other business value?

A Note on Kubernetes Tool Ownership

We’ve observed a trend in the industry toward consolidating tools and ownership under the
domain of NetOps teams. While this can go a long way towards simplifying your stack and
improving security, we advocate for thoughtful duplication of tools based on team goals.
It makes sense to have NetOps team manage perimeter tools (like external load balancers)
because they focus on the broader platform, but DevOps teams care most about the services
deployed close to the app code and need more agility and finer-grained control than they get
from NetOps tools. Kubernetes tools, including the Ingress controller, have the best chance
of success when they’re selected by DevOps. That’s not to say you must grant developers
complete freedom of choice for tools! Some strict standardization of tooling within Kubernetes
is still a best practice.

Budgeting for Capital Costs
When organizations first experiment with Kubernetes, they often don’t budget much for
tools or support . If you have the people resources to truly support an Ingress controller
that needs more “hand holding,” then no monetary budget is okay . . . at first . But as your
Kubernetes investment increases, you may find yourself limited by the tool’s features, or
wanting to dedicate your team to other priorities . That’s when the scale tips towards paying
for an easier-to-use, more stable tool with enterprise features and support .

When you’re ready to pay for an Ingress controller, be aware that the licensing model matters .
Based on traditional pricing models outside of Kubernetes, pricing for Ingress controllers is
often “per instance” or “per Ingress proxy .” While there are use cases when this still makes
sense in Kubernetes, licensing an Ingress controller on a “per cluster” basis instead means
you pay based on application tenancy rather than “number of proxies” .

474747CHAPTER 5 – HOW TO CHOOSE AN INGRESS CONTROLLER – IDENTIFY YOUR REQUIREMENTS

Here are our recommendations for different scenarios:

• New to Kubernetes? Choose per-cluster licensing.
When you’re inexperienced with Kubernetes, it’s very difficult to accurately predict the
number of Ingress controller instances you need . If forced to choose a number of instances,
you may underestimate – making it difficult to achieve your goals – or overestimate and
waste money better spent on other parts of the Kubernetes project . Negotiating a relatively
low fixed price for a “small cluster” increases your chance for success .

• Scaling Kubernetes? Choose per-cluster licensing.
It’s nearly impossible to predict how much and how often you’ll need to scale Kubernetes
resources up and down (bursting and collapsing) . Per-instance pricing forces your team
to impose arbitrary thresholds to stay within licensing caps . With per-cluster licensing,
you don’t have to track individual Ingress containers and, depending on the vendor
(such as NGINX), bursting may be included at no additional cost .

• Advanced or static deployments? Choose per-instance licensing.
If you’re savvy enough with Kubernetes to know exactly how you’re going to use the
Ingress controller, and you plan to use a small number of Ingress proxies per cluster
(typically fewer than three), and you don’t need any bundled services that might come
along with the tool, then per-instance pricing can be a great choice .

N E X T S T E P : R I S K T O L E R A N C E A N D F U T U R E - P R O O F I N G

Now that you have a grasp on your requirements, the next step is to decide as a team what
your tolerance is for the risks an Ingress controller might introduce, and to figure out how you’ll
need the Ingress controller to scale as you grow your Kubernetes deployment . We take up
those topics in the next chapter .

48CHAPTER 6 – HOW TO CHOOSE AN INGRESS CONTROLLER – RISK AND FUTURE-PROOFING 48

6. How to Choose an Ingress Controller –
Risks and Future-Proofing

Welcome to the second step of choosing a Ingress controller . At this point, you’ve identified
your requirements – but it’s not yet time to test products! In this chapter, we explain how the
wrong Ingress controller (for your needs) can slow your release velocity and even cost you
customers . As with any tool, Ingress controllers can introduce risks and impact future scalability .
Let’s look at how to eliminate choices that might cause more harm than good .

I N G R E S S C O N T R O L L E R R I S KS

There are three specific risks you should consider when introducing a traffic management
tool for Kubernetes: complexity, latency, and security . These issues are often intertwined;
when one is present, it’s likely you’ll see the others . Each can be introduced by an Ingress
controller and it’s up to your organization to decide if the risk is tolerable . Today’s consumers
are fickle, and anything that causes a poor digital experience may be unacceptable despite
a compelling feature set .

TODAY’S CONSUMERS ARE
FICKLE, AND ANYTHING
THAT CAUSES A POOR
DIGITAL EXPERIENCE MAY
BE UNACCEPTABLE DESPITE
A COMPELLING FEATURE SET

Does it Defeat
the Purpose of
a Microservices
Architecture?

Complexity is one of the
top challenges in using
and deploying containers.1

The wrong Ingress
controller can add even
more complexity – limiting
your ability to scale the
deployment horizontally
and negatively impacting
app performance.

Does the Ingress
Controller Slow
Down Your Apps?

Organizations adopt
Kubernetes for the
ability to deploy new
apps more quickly.2

But an Ingress
controller that adds
latency through errors,
timeouts, and reloads can
slow down your apps.

Does the Ingress
Controller Open the
Door for Hackers?

More than half of
organizations have
delayed or slowed down
application deployment
into production due to
container or Kubernetes
security concerns.3

Watch out for Ingress
controllers with slow CVE
patching and beware of
relying on support from
public forums.

Ingress Controller Risks
New tools can introduce risks that might outweigh the rewards.
Here are the top three risks that can be introduced by an Ingress
controller that doesn’t align to your needs.

Latency SecurityComplexity

1. CNCF Survey 2020
2. 2021 Kubernetes Adoption Survey
3. Red Hat State of Kubernetes Security Report

49CHAPTER 6 – HOW TO CHOOSE AN INGRESS CONTROLLER – RISK AND FUTURE-PROOFING 49

Complexity
Does It Defeat the Purpose of a Microservices Architecture?
The best Kubernetes tools are those that meet the goals of microservices architecture:
lightweight and simple in design . It’s possible to develop a very feature-rich Ingress controller
that sticks to these principles, but that’s not always the norm . Some designers include too
many functions or use convoluted scripting to tack on capabilities that aren’t native to the
underlying engine, resulting in an Ingress controller that’s needlessly complex .

And why does that matter? In Kubernetes, an overly complex tool can negatively impact
app performance and limit your ability to scale your deployment horizontally . You can typically
spot an overly complex Ingress controller by its size: the larger the footprint, the more complex
the tool .

Latency
Does It Slow Down Your Apps?
Ingress controllers can add latency due to resource usage, errors, and timeouts . Look at
latency added in both static and dynamic deployments and eliminate options that
introduce unacceptable latency based on your internal requirements . For more details
on how reconfigurations can impact app speed, see Performance Testing Three Different
NGINX Ingress Controller Options in the appendix .

Security
Does It Open the Door for Hackers?
Common Vulnerabilities and Exposures (CVEs) are rampant on today’s Internet, and the time
it takes for your Ingress controller provider to furnish a CVE patch can be the difference
between safety and a breach . Based on your organization’s risk tolerance, you may want to
eliminate solutions that take more than a few days (or at most weeks) to provide patches .

Beyond CVEs, some Ingress controllers expose you to another potential vulnerability .
Consider this scenario: you work for an online retailer and need help troubleshooting the
configuration of your open source Ingress controller . Commercial support isn’t available, so you
post the issue to a forum like Stack Overflow . Someone offers to help and wants to look for
problems in the config and log files for the Ingress controller and other Kubernetes components .
Feeling the pressure to get the problem resolved quickly, you share the files .

The “good Samaritan” helps you solve your problem, but six months later you discover a
breach – credit card numbers have been stolen from your customer records . Oops . Turns out the
files you shared included information that was used to infiltrate your app . This scenario illustrates
one of the top reasons organizations choose to pay for support: it guarantees confidentiality .

YOU CAN TYPICALLY SPOT
AN OVERLY COMPLEX INGRESS
CONTROLLER BY ITS SIZE:
THE LARGER THE FOOTPRINT,
THE MORE COMPLEX THE TOOL

ONE OF THE TOP REASONS
ORGANIZATIONS CHOOSE
TO PAY FOR SUPPORT:
IT GUARANTEES
CONFIDENTIALITY

50CHAPTER 6 – HOW TO CHOOSE AN INGRESS CONTROLLER – RISK AND FUTURE-PROOFING 50

A Note on OpenResty-Based Ingress Controllers
OpenResty is a web platform built on NGINX Open Source that incorporates LuaJIT, Lua scripts,
and third-party NGINX modules to extend the functionality in NGINX Open Source . In turn, there
are several Ingress controllers built on OpenResty, which we believe could potentially add two
risks compared to our Ingress controllers based on NGINX Open Source and F5 NGINX Plus .

• Timeouts – As noted, OpenResty uses Lua scripting to implement advanced features
like those in our commercial NGINX Plus-based Ingress Controller . One such feature
is dynamic reconfiguration, which eliminates an NGINX Open Source requirement that
reduces availability – namely, that the NGINX configuration must be reloaded when
service endpoints change . To accomplish dynamic reconfiguration with OpenResty,
the Lua handler chooses which upstream service to route the request to, thereby
eliminating the need to reload the NGINX configuration .

However, Lua must continuously check for changes to the backends, which consumes
resources . Incoming requests take longer to process, causing some of the requests to
get stalled, which increases the likelihood of timeouts . As you scale to more users and
services, the gap between the number of incoming requests per second and the number
that Lua can handle widens exponentially . The consequence is latency, complexity, and
higher costs .

To find out how much latency Lua can add, see see Performance Testing Three
Different NGINX Ingress Controller Options in the appendix .

• CVE patching delays – Compared to the Ingress Controllers from NGINX, patches
for CVEs inevitably take longer to show up in Ingress controllers based on tools like
OpenResty that are in turn based on NGINX Open Source . As we outline in detail in
Mitigating Security Vulnerabilities Quickly and Easily with NGINX Plus on our blog,
when a CVE in NGINX is discovered, we as the vendor are generally informed before
the CVE is publicly disclosed . That enables us to release a patch for NGINX Open
Source and NGINX Plus as soon as the CVE is announced .

Technologies based on NGINX Open Source might not learn about the CVE until that
point, and in our experience OpenResty patches lag behind ours by a significant
amount – four months in one recent case . Patches for an Ingress controller based on
OpenResty inevitably take yet more time, giving a bad actor ample opportunity to
exploit the vulnerability .

LUA MUST CONTINUOUSLY
CHECK FOR CHANGES TO
THE BACKENDS, WHICH
CONSUMES RESOURCES

https://www.nginx.com/blog/mitigating-security-vulnerabilities-quickly-easily-nginx-plus/
https://www.nginx.com/blog/mitigating-security-vulnerabilities-quickly-easily-nginx-plus/#immediate-patches

51CHAPTER 6 – HOW TO CHOOSE AN INGRESS CONTROLLER – RISK AND FUTURE-PROOFING 51

F U T U R E - P R O O F YO U R I N G R E S S C O N T R O L L E R

Even if you’re just starting to dabble in Kubernetes, there’s a good chance you aspire to put it
into production someday . There are four main areas where your needs are likely to grow over
time: infrastructure, security, support, and multi-tenancy .

How Will You Secure
Kubernetes from the Inside?

Kubernetes apps are best
protected when security – including
authentication and authorization –
is close to the apps. Centralizing
security (authentication, authori-
zation, DoS protection, web application
firewall) at the point of Ingress makes
a lot of sense from the standpoint of
both cost and e�ciency.

Security

How Can Multiple Teams and Apps
Share a Container Environment
Safely and Securely?

When your services and teams grow in
size and complexity, you’ll probably turn
to multi-tenancy to achieve maximum
e�ciency. Some Ingress controllers can
help you carve up those clusters through
a number of features and concepts:
multiple ingresses, classes, namespaces,
and scoped resources that support RBAC.

Will You Use Kubernetes
in Hybrid- or Multi-Cloud
Environments?

It’s rare for an organization to be
fully and permanently committed
to one type of environment. Choose
an infrastructure-agnostic Ingress
controller from the start, allowing
you to use the same tool across all
your environments.

Infrastructure

There are four main areas
where your needs are likely
to grow over time.

Future-Proof Your Ingress Controller

How “On Your Own” Can You
A­ord to Be?

Using workarounds and waiting on
community support is okay when when
you’re running small deployments but
it’s not sustainable when you move to
production. Choose an Ingress controller
that allows you to add support in the
future – or has an inexpensive support
tier that can be upgraded as you scale.

Support

Multi-Tenancy

52CHAPTER 6 – HOW TO CHOOSE AN INGRESS CONTROLLER – RISK AND FUTURE-PROOFING 52

Infrastructure
Will You Use Kubernetes in Hybrid- or Multi-Cloud Environments?
It’s rare for an organization to be fully and permanently committed to one type of environment .
More commonly, organizations have a mix of on-premises and cloud, which can include private,
public, hybrid-cloud, and multi-cloud . (For a deeper dive into how these environments differ,
read What Is the Difference Between Multi-Cloud and Hybrid-Cloud?)

As we mentioned in chapter 5, it’s tempting to choose tools that come default with each
environment, but there are a host of problems specific to default Ingress controllers .
We cover all the cons in chapter 7, but the issue that’s most relevant to future-proofing is
vendor lock-in – you can’t use a cloud-specific Ingress controller across all your environments .
Use of default cloud-specific tooling impacts your ability to scale because you’re left with
just two unappealing alternatives:

1. Try to make the existing cloud work for all your needs

2. Rewrite all your configurations – not just load balancing but security as well! – for the
Ingress controller in each new environment

While the first alternative often isn’t viable for business reasons, the second is also tricky
because it causes tool sprawl, opens new security vulnerabilities, and requires your employees
to climb steep learning curves . The third, and most efficient, alternative is to choose an
infrastructure-agnostic Ingress controller from the start, allowing you to use the same tool
across all your environments .

When it comes to infrastructure, there’s another element to consider: certifications . Let’s use
the example of Red Hat OpenShift Container Platform (OCP) . If you’re an OCP user, then
you’re probably already aware that the Red Hat Marketplace offers certified operators for OCP,
including the NGINX Ingress Operator . Red Hat’s certification standards mean you get peace
of mind knowing that the tool works with your deployment and can even include joint support
from Red Hat and the vendor . Lots of organizations have requirements to use certified tools
for security and stability reasons, so even if you’re only in testing right now, it pays to keep
your company’s requirements for production environments in mind .

Security
How Will You Secure Kubernetes from the Inside?
Gone are the days when perimeter security alone was enough to keep apps and customers
safe . Kubernetes apps are best protected when security – including authentication and
authorization – is close to the apps . And with organizations increasingly mandating end-to-end
encryption and adopting a zero-trust network model within Kubernetes, a service mesh
might be in your future .

CHOOSE AN
INFRASTRUCTURE-
AGNOSTIC INGRESS
CONTROLLER FROM
THE START

KUBERNETES APPS ARE BEST
PROTECTED WHEN SECURITY
IS CLOSE TO THE APPS

https://www.nginx.com/resources/glossary/multi-hybrid-cloud-strategy/
https://catalog.redhat.com/software/operators/detail/5e9874913f398525a0ceb00d
https://redhat-connect.gitbook.io/catalog-help/product-details#certification-standards

53CHAPTER 6 – HOW TO CHOOSE AN INGRESS CONTROLLER – RISK AND FUTURE-PROOFING 53

What does all this have to do with your Ingress controller? A lot! Centralizing security
(authentication, authorization, DoS protection, web application firewall) at the point of Ingress
makes a lot of sense from the standpoint of both cost and efficiency . And while most service
meshes can be integrated with most Ingress controllers, how they integrate matters a lot .
An Ingress controller that aligns with your security strategy can prevent big headaches through-
out your app development journey .

Read Secure Cloud Native Apps Without Losing Speed for more details on the risks of
cloud-native app delivery and Deploying Application Services in Kubernetes, Part 2 to learn
more about the factors that determine the best location for security tools .

Support
How “On Your Own” Can You Afford to Be?
When teams are just experimenting with Kubernetes, support – whether from the community
or a company – often isn’t the highest priority . This is okay if your teams have a lot of time to
come up with their own solutions and workarounds, but it’s not sustainable when you move
to production . Even if you don’t need support today, it can be wise to choose an Ingress
controller that allows you to add support in the future – or has an inexpensive support tier
that can be upgraded as you scale .

Multi-Tenancy
How Can Multiple Teams and Apps Share a Container Environment Safely and Securely?
In the beginning, there was one team and one app . . . Isn’t that how every story starts?
The story often continues with that one team successfully developing its one Kubernetes
app, leading the organization to run more services on Kubernetes . And of course, more
services = more teams = more complexity .

To achieve maximum efficiency, organizations adopt multi-tenancy and embrace a Kubernetes
model that supports the access and isolation mandated by their business processes while also
providing the sanity and controls their operators need . Some Ingress controllers can help
you carve up those clusters through a number of features and concepts: multiple ingresses,
classes, namespaces, and scoped resources that support role-based access control (RBAC) .

Next Step: Narrow Down Options
Now that you’ve thought about your requirements, risk tolerance, and future-proofing, you
have enough information to start narrowing down the very wide field of Ingress controllers .
Breaking that field down by category can help you make quick work of this step . In chapter 7,
we explore three different categories of Ingress controllers, including the pros and cons
of each .

AN INGRESS CONTROLLER THAT
ALIGNS WITH YOUR SECURITY
STRATEGY CAN PREVENT BIG
HEADACHES THROUGHOUT YOUR
APP DEVELOPMENT JOURNEY

https://www.nginx.com/blog/secure-cloud-native-apps-without-losing-speed/
https://www.nginx.com/blog/deploying-application-services-in-kubernetes-part-2/

5454CHAPTER 7 – HOW TO CHOOSE AN INGRESS CONTROLLER – OPEN SOURCE VS. DEFAULT VS. COMMERCIAL

7. How to Choose an Ingress Controller –
Open Source vs. Default vs. Commercial

Congratulations! After reading chapters 5 and 6, you’re almost ready to select an
Ingress controller . Let’s recap where we’ve been so far:

• In chapter 5, we discussed how to identify your requirements, including performance,
budget, use cases, architecture, and ownership .

• In chapter 6, we shared some risks that you might introduce by selecting the wrong
Ingress controller for your needs, and outlined key areas where you can future-proof
your selection .

Ingress controllers fall into three categories: open source, default, and commercial . Each has
its use cases, and it’s important to be clear on your short- and long-term needs before making
a selection . In this chapter, we cover the pros and cons of each category .

O P E N S O U R C E I N G R E S S C O N T R O L L E R S

Many open source Ingress controllers are maintained by a community of users and volunteer
developers, though some also have dedicated engineering teams . Two of the most popular
open source Ingress controllers are based on NGINX – one is maintained by the Kubernetes
community and the other is led by the core NGINX engineering team and open sourced . For
further comparison of NGINX-based Ingress controllers, see chapter 8 .

Pros
Top reasons an open source Ingress
controller could be right for you.

▲ No monetary investment
(Free!)

▲ Community-driven
▲ High feature velocity

Ideal when . . .
You’re just getting started in
Kubernetes, in testing, or
low-volume production.

Cons
Top reasons an open source Ingress
controller could be wrong for you.

▼ Costs more of your time
▼ Risk of instability, insecurity,

and unreliability
▼ Minimal or no support

Consider “default” or “commercial”
options to mitigate these cons.

Open Source Ingress Controllers
Maintained by a community of users and volunteer developers, though some
also have dedicated engineering teams.

https://www.nginx.com/resources/glossary/kubernetes-ingress-controller/

5555CHAPTER 7 – HOW TO CHOOSE AN INGRESS CONTROLLER – OPEN SOURCE VS. DEFAULT VS. COMMERCIAL

Open Source Ingress Controllers: Pros and Cons

• Pros:

 – Free and community-driven – Many people and organizations choose open source
projects not only because of the unbeatable price (free!), but also because they prefer
community-developed tech .

 – Feature velocity – These Ingress controllers are more likely to be on the cutting edge
of feature innovation .

• Cons (shared with open source projects in general):

 – Cost (time) – They lack “out-of-the-box” tooling for easy setup and scalability, so you
end up spending time on customizations and workarounds for your specific needs .

 – Risky – There can be issues with stability, security, and reliability (due to the emphasis
on feature velocity and the volunteer nature of contributors) . Patches for Common
Vulnerabilities and Exposures (CVEs) may never come, or might arrive months after the
CVE is publicly disclosed, giving hackers plenty of time to attack your Ingress controller .

 – Minimal or no support – Most are “self solve” . . . it’s just you and the docs . If you run
into problems you can’t solve yourself, it can be difficult (or impossible) to get help –
just about your only choice is to post your problem on community forums and hope
other members of the community (a) bother to respond and (b) know of a solution .

• Summary: When organizations first start experimenting with Kubernetes, they often
choose an open source Ingress controller, for convenience or because the docs promise
you can get up and running quickly for free . This can work beautifully when you’re
getting started, in testing, or running low-volume production .

IT’S JUST YOU AND THE DOCS

https://www.nginx.com/blog/mitigating-security-vulnerabilities-quickly-easily-nginx-plus/#immediate-patches

5656CHAPTER 7 – HOW TO CHOOSE AN INGRESS CONTROLLER – OPEN SOURCE VS. DEFAULT VS. COMMERCIAL

D E FAU LT I N G R E S S C O N T R O L L E R S

Although many default Ingress controllers are based on open source technology, we categorize
them separately because they’re developed and maintained by a company that provides a
full Kubernetes platform (and often support in managing it) . Examples from this category include
public cloud Ingress controllers, Rancher, and Red Hat OpenShift router .

Pros
Top reasons a default Ingress
controller could be right for you.

▲ Free or low cost
▲ Reliable
▲ Supported

Ideal when . . .
You’re using a Kubernetes platform
and are just getting started, in
testing, or low-volume production.

Cons
Top reasons a default Ingress
controller could be wrong for you.

▼ Infrastructure lock-in
▼ Basic features
▼ Unpredictable time or

money costs as you scale

Consider “open source” or
“commercial” options to mitigate
these cons.

Default Ingress Controllers
Developed and maintained by a company that provides a full Kubernetes platform
(and often support in managing it).

Default Ingress Controllers: Pros and Cons

• Pros:

 – Free or low cost – The low price tag is a compelling reason to use these products .
They’re already integrated into the platform, a definite time-saver when you’re first
getting started .

 – Reliable and supported – Because they’re maintained by a dedicated engineering team,
they may be more reliable than community-maintained Ingress controllers . Commercial
support is typically included or available at an extra cost .

• Cons:

 – Infrastructure lock-in – Default ingress controllers are not infrastructure-agnostic, so
you can’t take them or your configurations from cloud to cloud . That means you need
different Ingress controllers for each deployment environment, which causes tool sprawl,
increases the learning curve for your teams, and makes the Ingress controller more
difficult to secure .

 – Basic features – They usually lack the advanced traffic management and security
capabilities necessary for large-scale deployments .

YOU CAN’T TAKE DEFAULT
INGRESS CONTROLLERS OR
YOUR CONFIGURATIONS
FROM CLOUD TO CLOUD

5757CHAPTER 7 – HOW TO CHOOSE AN INGRESS CONTROLLER – OPEN SOURCE VS. DEFAULT VS. COMMERCIAL

 – Unpredictable costs (time and money) – While initial costs are nil or low, they can
increase dramatically and unpredictably as your application grows . This can take
the form of time required to build functionality into your app that’s missing from the
Ingress controller’s minimal feature set – and of course you have to regression-test
that functionality every time you update the app . Another drawback of some default
tools is huge jumps in your cloud bill as your app becomes more popular, due to
throughput charges that seem innocuous at first .

• Summary: A default Ingress controller is a popular choice for teams that are newer to
Kubernetes and using a managed platform such as Amazon Elastic Kubernetes Service
(EKS), Google Kubernetes Engine (GKE), Microsoft Azure Kubernetes Service (AKS),
Rancher, and Red Hat OpenShift Container Platform . As their apps mature and teams
grow, organizations often choose to add an enterprise-grade Ingress controller to their
stack, rather than replacing the default tool .

C O M M E R C I A L I N G R E S S C O N T R O L L E R S

These Ingress controllers are licensed products that are designed to support large
production deployments . One example is the NGINX Plus-based version of F5 NGINX
Ingress Controller, which we discuss more in chapter 8 .

Pros
Top reasons a commercial Ingress
controller could be right for you.

▲ Large feature set
▲ Scalable time saver
▲ Reliable and supported

Ideal when . . .
You need to reduce management
complexity and accelerate time to
market for new product features.

Cons
Top reasons a commercial Ingress
controller could be wrong for you.

▼ Slower feature velocity
▼ Requires monetary investment
Consider “open source” or “default”
options to mitigate these cons.

Commercial Ingress Controllers
Licensed products that are designed to support large production deployments.

https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://rancher.com
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform
https://www.nginx.com/products/nginx-ingress-controller
https://www.nginx.com/products/nginx-ingress-controller

5858CHAPTER 7 – HOW TO CHOOSE AN INGRESS CONTROLLER – OPEN SOURCE VS. DEFAULT VS. COMMERCIAL

Commercial Ingress Controllers: Pros and Cons

• Pros:

 – Large feature set – Commercial Ingress controllers include robust feature sets that
support advanced traffic management and scalability for large deployments . There may
be integrations with other production-grade products, such as a WAF or service mesh .

 – Scalable – Organizations often find these options to be time savers since they tend to
have more “out-of-the-box” capabilities that don’t require customization or workarounds .
They can easily be added to automation pipelines to allow your infrastructure to grow
as needed .

 – Reliable and supported – One of the main benefits of commercial products is that
they’re stable, which means extensively tested at each release, with regular software
updates and security patches as needed . Full commercial support is typically available
in various tiers, so you can often get confidential help within minutes or hours of
encountering a critical problem .

• Cons:

 – Slower development – Because stability is important for commercial Ingress controllers,
their feature velocity might lag a little bit behind their open source counterparts .

 – Cost (money) – The reality of commercial products is they cost money . For organizations
that have more developer cycles than cash, the cost can be a deal breaker until that
situation changes .

• Summary: As organizations scale, the choice of Ingress controller becomes more important
based on the complexity of their teams and apps . Once an organization reaches a high
degree of complexity, a commercial Ingress controller makes sense because it can reduce
management complexity and accelerate time to market for new product features .

N E X T S T E P : E VA L UAT E T H E O P T I O N S

At this stage in your journey, you’re ready to home in on some Ingress controllers to try by
eliminating options that can’t meet your needs . One great place to start your high-level feature
comparison is learnk8s, which provides a free comparison table of the Ingress controllers
they’ve evaluated .

As you’re researching Ingress controllers, you’ll likely notice that many options are based
on NGINX . Read chapter 8 for an overview of the NGINX-based choices .

ONCE AN ORGANIZATION
REACHES A HIGH DEGREE OF
COMPLEXITY, A COMMERCIAL
INGRESS CONTROLLER
MAKES SENSE

https://learnk8s.io
https://docs.google.com/spreadsheets/d/191WWNpjJ2za6-nbG4ZoUMXMpUK8KlCIosvQB0f-oq3k/edit#gid=907731238

59CHAPTER 8 – HOW TO CHOOSE AN INGRESS CONTROLLER – NGINX INGRESS CONTROLLER OPTIONS 59

8. How to Choose an Ingress Controller –
NGINX Ingress Controller Options

According to the Cloud Native Computing Foundation’s (CNCF) Survey 2020, NGINX is the
most commonly used data plane in Ingress controllers for Kubernetes – but did you know
there’s more than one “NGINX Ingress Controller”?

When this chapter was originally published in 2018 as a blog titled Wait, Which NGINX
Ingress Controller for Kubernetes Am I Using?, it was prompted by a conversation with a
community member about the existence of two popular Ingress controllers that use NGINX .

It’s easy to see why there was (and still is) confusion . Both Ingress controllers are:

• Called “NGINX Ingress Controller”

• Open source

• Hosted on GitHub with very similar repo names

• The result of projects that started around the same time

And of course the biggest commonality is that they implement the same function .

N G I N X VS. K U B E R N E T E S C O M M U N I T Y I N G R E S S C O N T R O L L E R

For the sake of clarity, we differentiate the two versions like this:

• Community version: Found in kubernetes/ingress-nginx on GitHub, the community version
is based on NGINX Open Source with docs on Kubernetes .io . It is maintained by the
Kubernetes community with a commitment from F5 NGINX to help manage the project .

Replying to @pandom_ @nginx @LindsayofSF

... I kinda knew about the two different
ingress controllers based on the container
image locations I've seen but I don't think
I've seen someone from NGINX outright say
it before now

4:48 PM - 16 Nov 2018

https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.nginx.com/resources/glossary/kubernetes-ingress-controller/
https://github.com/kubernetes/ingress-nginx
https://kubernetes.github.io/ingress-nginx/
https://www.nginx.com/blog/nginx-sprint-2-0-clear-vision-fresh-code-new-commitments-to-open-source/#resources-for-kubernetes

60CHAPTER 8 – HOW TO CHOOSE AN INGRESS CONTROLLER – NGINX INGRESS CONTROLLER OPTIONS 60

• NGINX version: Found in nginxinc/kubernetes-ingress on GitHub, NGINX Ingress Controller
is developed and maintained by NGINX with docs on docs .nginx .com . It is available in
two editions:

 – NGINX Open Source-based (free and open source option)

 – F5 NGINX Plus-based (commercial option)

There are also a number of other Ingress controllers based on NGINX, such as Kong, but
fortunately their names are easily distinguished . If you’re not sure which NGINX Ingress
Controller you’re using, check the container image of the running Ingress controller, then
compare the Docker image name with the repos listed above .

NGINX Ingress Controller Goals and Priorities

A primary difference between NGINX Ingress Controller and the community Ingress controller
(along with other Ingress controllers based on NGINX Open Source) are their development
and deployment models, which are in turn based on differing goals and priorities .

• Development philosophy – Our top priority for all NGINX projects and products is to
deliver a fast, lightweight tool with long-term stability and consistency . We make every
possible effort to avoid changes in behavior between releases, particularly any that break
backward compatibility . We promise you won’t see any unexpected surprises when
you upgrade . We also believe in choice, so all our solutions can be deployed on any
platform including bare metal, containers, VMs, and public, private, and hybrid clouds .

• Integrated codebase – NGINX Ingress Controller uses a 100% pure NGINX Open Source
or NGINX Plus instance for load balancing, applying best-practice configuration using
native NGINX capabilities alone . It doesn’t rely on any third-party modules or Lua code
that have not benefited from our interoperability testing . We don’t assemble our Ingress
controller from lots of third-party repos; we develop and maintain the load balancer
(NGINX and NGINX Plus) and Ingress controller software (a Go application) ourselves .
We are the single authority for all components of our Ingress controller .

• Advanced traffic management – One of the limitations of the standard Kubernetes Ingress
resource is that you must use auxiliary features like annotations, ConfigMaps, and customer
templates to customize it with advanced features . NGINX Ingress Resources provide a
native, type-safe, and indented configuration style which simplifies implementation of
Ingress load balancing capabilities, including TCP/UDP, circuit breaking, A/B testing,
blue-green deployments, header manipulation, mTLS, and WAF .

• Continual production readiness – Every release is built and maintained to a supportable,
production standard . You benefit from this “enterprise-grade” focus equally whether
you’re using the NGINX Open Source-based or NGINX Plus-based edition . NGINX Open
Source users can get their questions answered on GitHub by our engineering team, while
NGINX Plus subscribers get best-in-class support . Either way it’s like having an NGINX
developer on your DevOps team!

OUR TOP PRIORITY FOR
ALL NGINX PROJECTS AND
PRODUCTS IS TO DELIVER
A FAST, LIGHTWEIGHT TOOL
WITH LONG-TERM STABILITY
AND CONSISTENCY

https://github.com/nginxinc/kubernetes-ingress
https://docs.nginx.com/nginx-ingress-controller/
https://www.nginx.com/products/nginx-ingress-controller/
https://kubernetes.io/docs/concepts/services-networking/ingress/#the-ingress-resource
https://kubernetes.io/docs/concepts/services-networking/ingress/#the-ingress-resource
https://www.nginx.com/products/nginx-ingress-controller/nginx-ingress-resources/
https://github.com/nginxinc/kubernetes-ingress/discussions
https://www.nginx.com/support

61CHAPTER 8 – HOW TO CHOOSE AN INGRESS CONTROLLER – NGINX INGRESS CONTROLLER OPTIONS 61

N G I N X O P E N S O U R C E VS . N G I N X P L U S –
W H Y U P G R A D E T O O U R C O M M E R C I A L E D I T I O N ?

And while we’re here, let’s review some of the key benefits you get from the NGINX
Plus-based NGINX Ingress Controller . As we discussed in chapter 7, there are substantial
differences between open source and commercial Ingress controllers . If you’re planning for
large Kubernetes deployments and complex apps in production, you’ll find our commercial
Ingress controller saves you time and money in some key areas .

Security and Compliance

One of the main reasons many organizations fail to deliver Kubernetes apps in production is
the difficulty of keeping them secure and compliant . The NGINX Plus-based NGINX Ingress
Controller unlocks five use cases that are critical for keeping your apps and customers safe
(see chapter 4 for a deep dive on these use cases and more) .

Implement end-to-end encryption

Centralize authentication
and authorization

Secure the edge

Get timely and proactive
patch notifications

Be FIPS compliant

Learn how German automotive giant Audi
secured their Red Hat OpenShift apps in
Audi Future-Proofs Tech Vision and App
Innovation with NGINX.

Improve Security and Compliance
with NGINX Ingress Controller

The NGINX Plus-based edition unlocks five use cases
that are critical for keeping your apps and customers safe.

https://www.nginx.com/success-stories/audi-future-proofs-tech-vision-app-innovation-with-nginx/

62CHAPTER 8 – HOW TO CHOOSE AN INGRESS CONTROLLER – NGINX INGRESS CONTROLLER OPTIONS 62

• Secure the edge – In a well-architected Kubernetes deployment, the Ingress
controller is the only point of entry for data-plane traffic flowing to services running
within Kubernetes, making it an ideal location for a WAF . F5 NGINX App Protect WAF
integrates with NGINX Ingress Controller to protect your Kubernetes apps against
the OWASP Top 10 and many other vulnerabilities, ensures PCI DSS compliance, and
outperforms ModSecurity .

• Centralize authentication and authorization – You can implement an authentication and
single sign-on (SSO) layer at the point of ingress with OpenID Connect (OIDC) – built on
top of the OAuth 2 .0 framework – and JSON Web Token (JWT) authentication .

• Implement end-to-end encryption – When you need to secure traffic between services,
you’re probably going to look for a service mesh . The always-free F5 NGINX Service Mesh
integrates seamlessly with NGINX Ingress Controller, letting you control both ingress and
egress mTLS traffic efficiently with less latency than other meshes .

• Get timely and proactive patch notifications – When CVEs are reported, subscribers
are proactively informed and get patches quickly . They can apply the patches right away
to reduce the risk of exploitation, rather than having to be on the lookout for updates in
GitHub or waiting weeks (even months) for a patch to be released .

• Be FIPS compliant – You can enable FIPS mode to ensure clients talking to NGINX Plus
are using a strong cipher with a trusted implementation .

Learn how German automotive giant Audi secured
their Red Hat OpenShift apps in Audi Future-Proofs
Tech Vision and App Innovation with NGINX

https://www.nginx.com/blog/securing-apps-in-kubernetes-nginx-app-protect/
https://www.nginx.com/products/nginx-app-protect/web-application-firewall
https://www.nginx.com/blog/achieving-pci-dss-compliance-with-nginx-app-protect/
https://www.nginx.com/resources/library/high-performance-app-security-testing/
https://www.nginx.com/blog/easy-robust-sso-openid-connect-nginx-ingress-controller/
https://www.nginx.com/blog/how-to-simplify-kubernetes-ingress-egress-traffic-management/
https://www.nginx.com/products/nginx-service-mesh/
https://www.nginx.com/blog/mitigating-security-vulnerabilities-quickly-easily-nginx-plus/
https://www.nginx.com/blog/achieving-fips-compliance-nginx-plus/
https://www.nginx.com/success-stories/audi-future-proofs-tech-vision-app-innovation-with-nginx/
https://www.nginx.com/success-stories/audi-future-proofs-tech-vision-app-innovation-with-nginx/
https://www.nginx.com/success-stories/audi-future-proofs-tech-vision-app-innovation-with-nginx/

63CHAPTER 8 – HOW TO CHOOSE AN INGRESS CONTROLLER – NGINX INGRESS CONTROLLER OPTIONS 63

Application Performance and Resilience

Uptime and app speed are often key performance indicators (KPIs) for developers and
Platform Ops teams . The NGINX Plus-based NGINX Ingress Controller unlocks five use
cases that help you deliver on the promises of Kubernetes (many of which are covered in
chapters 2 and 3) .

Reconfigure with zero restarts

Detect and resolve failures faster

Get live monitoring

Thoroughly test new
features and deployments

Resolve support needs quickly

Learn how business text messaging company
Zipwhip accomplished 99.99% uptime for their
SaaS apps in Strengthen Security and Tra�c
Visibility on Amazon EKS with NGINX.

Better Application Performance and
Resiliency with NGINX Ingress Controller

The NGINX Plus-based edition unlocks five use cases
that help you deliver on the promises of Kubernetes.

https://www.nginx.com/resources/webinars/strengthen-security-traffic-visibility-on-amazon-eks-with-nginx/

64CHAPTER 8 – HOW TO CHOOSE AN INGRESS CONTROLLER – NGINX INGRESS CONTROLLER OPTIONS 64

• Get live monitoring – The NGINX Plus dashboard displays hundreds of key load and
performance metrics so you can quickly troubleshoot the cause of slow (or down!) apps .

• Detect and resolve failures faster – Implement a circuit breaker with active health
checks that proactively monitors the health of your TCP and UDP upstream servers .

• Reconfigure with zero restarts – Faster, non-disruptive reconfiguration ensures you
can deliver applications with consistent performance and resource usage and lower
latency than the open source alternatives .

• Thoroughly test new features and deployments – Make A/B testing and blue-green
deployments easier to execute by leveraging the key-value store to change the
percentages without the need for reloads .

• Resolve support needs quickly – Confidential, commercial support is essential for
organizations that can’t wait for the community to answer questions or can’t risk
exposure of sensitive data . NGINX support is available in multiple tiers to fit your needs,
and covers assistance with installation, deployment, debugging, and error correction .
You can even get help when something just doesn’t seem “right” .

Learn how business text messaging company
Zipwhip accomplished 99.99% uptime for their
SaaS apps in Strengthen Security and Traffic
Visibility on Amazon EKS with NGINX

N E X T S T E P : T RY N G I N X I N G R E S S C O N T R O L L E R

If you’ve decided that an open source Ingress controller is the right choice for your apps,
then you can get started quickly at our GitHub repo .

For large production deployments, we hope you’ll try our commercial Ingress controller based
on NGINX Plus . It’s available for a 30-day free trial that includes NGINX App Protect .

https://www.nginx.com/products/nginx/live-activity-monitoring/
https://www.nginx.com/blog/improve-kubernetes-resilience-with-advanced-traffic-management/
https://www.nginx.com/blog/dynamic-reconfiguration-with-nginx-plus/
https://www.nginx.com/blog/performance-testing-nginx-ingress-controllers-dynamic-kubernetes-cloud-environment/
https://www.nginx.com/blog/performance-testing-nginx-ingress-controllers-dynamic-kubernetes-cloud-environment/
https://www.nginx.com/blog/improve-kubernetes-resilience-with-advanced-traffic-management/
https://www.nginx.com/support
https://www.nginx.com/resources/webinars/strengthen-security-traffic-visibility-on-amazon-eks-with-nginx/
https://www.nginx.com/resources/webinars/strengthen-security-traffic-visibility-on-amazon-eks-with-nginx/
https://github.com/nginxinc/kubernetes-ingress
https://www.nginx.com/free-trial-request-nginx-ingress-controller/

65CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 65

9. How to Choose a Service Mesh
In recent years, service mesh adoption has steadily moved from the bleeding edge to the
mainstream as organizations deepen investment in microservices and containerized apps .
The Cloud Native Computing Foundation’s 2020 survey about use of cloud native technologies
leads us to the following conclusions .

Takeaway #1: Service mesh adoption is rising rapidly .

Service Mesh Adoption

27% of respondents are using a service mesh
in production (up from 18% in 2019)

Current and Planned

Service mesh adoption is
rising about 50% each year.

27% of respondents are using a service mesh
in production. 23% of respondents are actively
evaluating service mesh, and another 19% plan
to evaluate within the next year

18%

27%

2019 2020

31%
No Plans

19%
Plans for
Next Year

23%
Actively

Evaluating

27%
Using
Now

 50%

According to the Cloud Native Computing Foundation’s 2020 survey

https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf

66CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 66

Takeaway #2: Increased use of containers indicates more organizations need advanced
traffic management and security tools, and can potentially benefit from a mesh .

Takeaway #3: Three of the top challenges in containers are interrelated .

Complexity

Security

Service Mesh

41%

32%

24%

Three of the top challenges in containers
are interrelated. 41% of respondents cited
“complexity” as a top challenge, 32% cited
“security”, and 24% cited “service mesh”.

Top Challenges in Containers

According to the Cloud Native Computing Foundation’s 2020 survey

of respondents typically
run more than 5,000
containers in production

of respondents currently
use, or have plans to use,
containers in production

 92% 23%

Indicates more organizations need advanced
tra�c management and security tools, and can
potentially benefit from a mesh.

Increased Use of Containers

According to the Cloud Native Computing Foundation’s 2020 survey

https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf

67CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 67

A R E YO U R E A DY F O R A S E R V I C E M E S H ?

At F5 NGINX, we think it’s no longer a binary question of “Do I have to use a service mesh?”
but rather “When will I be ready for a service mesh?” We believe that anyone deploying
containers in production and using Kubernetes to orchestrate them has the potential to reach
the level of app and infrastructure maturity where a service mesh adds value .

But as with any technology, implementing a service mesh before you need one just adds
risk and expense that outweigh the possible benefits to your business . We use this six-point
checklist with customers who are interested in adopting a service mesh, both to determine
readiness and to gain an understanding of the modernization journey . The more statements
are true for you, the more a service mesh will add value .

#1: You are fully invested in Kubernetes for your production environment.
Whether you’ve already moved production apps into Kubernetes or you’re just starting to test
app migration to container workloads, your long-term application management roadmap
includes Kubernetes .

#2: You require a zero-trust production environment and need mutual TLS (mTLS)
between services.
You either already rely on a zero-trust model for your production apps and need to maintain
that level of security in your containerized environment, or you’re using the migration as a
forcing function to increase your service-level security .

#3: Your app is complex in both number and depth of services.
You have a large, distributed app . It has multiple API dependencies and most likely requires
external dependencies .

#4: You have a mature, production CI/CD pipeline.
“Mature” depends on your organization . We apply the term to procedures that programmatically
deploy Kubernetes infrastructure and apps, likely using tools including Git, Jenkins, Artifactory,
or Selenium .

#5: You are deploying frequently to production – at least once per day.
This is where we find most people answer “no” – although they’ve moved apps into production
Kubernetes, they aren’t yet using Kubernetes for the dream goal of constant revisions .

#6: Your DevOps team is ready to rock and start using the right tools for
ultra-modern app deployment!
Even if the service mesh is going to be owned by your NetOps team, administration is often
handled within the cluster by DevOps teams and they need to be ready to handle the addition
of a mesh to their stack .

Didn’t answer “yes” to all six statements? That’s ok! Keep reading to get an idea of where your
journey will head once you’re ready, including what you can do to prepare your team for a
service mesh .

IT’S NO LONGER A BINARY
QUESTION OF “DO I HAVE
TO USE A SERVICE MESH?”

68CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 68

Are You Ready for
a Service Mesh?
Use our 6-point checklist to determine your readiness – the more
statements are true for you, the more a service mesh will add value.

You are fully invested in
Kubernetes for your
production environment.

Your app is complex in
both number and depth
of services.

You have a mature,
production CI/CD
pipeline.

You require a zero-trust
production environment
and need mutual TLS (mTLS)
between services.

You are deploying
frequently to production –
at least once per day.

Your DevOps team is ready to rock
and start using the right tools for
ultra-modern app deployment!

69CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 69

H O W T O C H O O S E T H E S E R V I C E M E S H
T H AT ’S R I G H T F O R YO U R A P P S

Once you’ve decided that you’re ready for a service mesh, there’s still a wide variety from which
to choose . Much like Kubernetes has become the de facto container orchestration standard,
Istio is often seen as the de facto service mesh standard . In fact, it’s easy to think that Istio
is the only choice, not just because of its prevalence but also because it aims to solve just
about every problem in the Kubernetes networking world . At the risk of sounding self-serving,
we’re here to tell you that Istio isn’t the only choice, nor is it the right choice for everyone or
every use case . Istio adds a lot of complexity to your environments, can require an entire team
of engineers to run it, and often ends up introducing more problems than it solves .

To get clear on which service mesh is best for your apps, we recommend a strategic planning
session with your team and stakeholders . Here’s a conversation guide to help you facilitate
these discussions .

Step 1: Why are you looking for a service mesh?
In other words, what problems do you need the service mesh to solve? For example, your organi-
zation might mandate mTLS between services or you need end-to-end encryption, including
both from the edge in (for ingress traffic) and from within the mesh (for egress traffic) . Or perhaps
you need enterprise-grade traffic management tools for your new Kubernetes services .

Step 2: How will you use the service mesh?
This depends on who you are .

• If you’re a developer:

 – Do you plan to add security to a legacy app that is moving into Kubernetes?

 – Are you going to incorporate security as you refactor an app into a native
Kubernetes app?

• If you’re responsible for platforms and infrastructure:

 – Are you going to add the service mesh into your CI/CD pipeline so that it’s
automatically deployed and configured with every new cluster and available
when a developer spins up a new instance?

Step 3: What factors influence your selection?
Does your service mesh need to be infrastructure-agnostic? Compatible with your visibility tools?
Kubernetes-native? Easy to use? Do you see a future when you’ll want to manage ingress and
egress (north-south) traffic at the edge with the same tool as service-to-service (east-west)
traffic within the mesh?

ISTIO ISN’T THE ONLY
CHOICE, NOR IS IT THE
RIGHT CHOICE FOR EVERYONE
OR EVERY USE CASE

70CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 70

Step 4: Evaluate service mesh options
Once you’ve worked through these questions, you’ll have a solid list of requirements to use as
you evaluate options . There are two additional areas to assess during this process: the service
mesh’s data plane and the hidden costs that may come with the service mesh .

Data plane – The data plane directly influences customer perceptions of performance
because a slow-to-respond data plane will slow the entire Kubernetes engine down and
affect system performance . Use these questions to assess whether your service mesh
candidate’s data plane can support your needs .

• How many years has the data plane been around?

• What is the capacity of the data plane?

• Does the data plane have the integrations you need and want in the future?

• How does your data plane instrument and provide observability?

• Can the data plane dynamically recover from catastrophic failures?

Read more in Your Data Plane Is Not A Commodity .

Hidden costs – Any costs for deploying and operating service meshes may not be readily
apparent and the bill can balloon once you are beyond rip-and-replace . Use these questions
to get an accurate picture of any hidden costs that may come with your service mesh choice .

• How many container images does it take to run your control plane? And how large does
each image have to be?

• What is the capacity of your Ingress controller for your service mesh?

• Can your sidecar keep up with your service demand?

• Will you be running multiple clusters or multi-tenancy?

• How many Kubernetes CustomResourceDefinitions (CRDs) does your service
mesh require?

• Do you need dedicated staff to run the service mesh? If so, how many?

• Does your service mesh choice lock you into a specific choice of software or cloud?

Read more in The Hidden Costs of Service Meshes .

A SLOW-TO-RESPOND
DATA PLANE WILL SLOW
THE ENTIRE KUBERNETES
ENGINE DOWN AND AFFECT
SYSTEM PERFORMANCE

ANY COSTS FOR DEPLOYING
AND OPERATING SERVICE
MESHES MAY NOT BE
READILY APPARENT

https://thenewstack.io/your-data-plane-is-not-a-commodity/
https://thenewstack.io/the-hidden-costs-of-service-meshes/

71CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 71

F 5 N G I N X S E R V I C E M E S H

NGINX Service Mesh – introduced as a development release in 2020 – is free, optimized for
developers, and the lightest, easiest way to implement mTLS and end-to-end encryption
in Kubernetes for both east-west (service-to-service) traffic and north-south (ingress and
egress) traffic . We built our own service mesh because we wanted to give you full control of
the application data plane in the way that’s least intrusive but still provides advanced
flexibility and critical insights .

We think you’ll like NGINX Service Mesh if you need a mesh that is:

Easy to Use

You’re going to manage the service
mesh and don’t want to mess around
with a complicated set of tools.

Lightweight

You want a component that won’t drain
your resources or negatively impact
performance.

Infrastructure-Agnostic

You’re planning to use the same
service mesh across all your Kubernetes
environments.

Compatible with Your Ecosystem

You need a Kubernetes-native service
mesh that integrates with your Ingress
controller and visibility tools without
adding latency.

NGINX Service Mesh

https://www.nginx.com/products/nginx-service-mesh/
https://www.nginx.com/blog/introducing-nginx-service-mesh/

72CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 72

About the Architecture

NGINX Service Mesh has two main components:

• Control plane
We built a lightweight control plane that provides dynamic support and management of
apps in partnership with the Kubernetes API server . It reacts to and updates apps as
they scale and deploy so that each workload instance automatically stays protected and
integrated with other app components – letting you “set it and forget it” and spend your
time on valuable business solutions .

• Data plane
The real star of NGINX Service Mesh is the fully integrated, high-performance data
plane . Leveraging the power of F5 NGINX Plus to operate highly available and scalable
containerized environments, our data plane brings a level of enterprise traffic management,
performance, and scalability to the market that no other sidecars can offer . It provides the
seamless and transparent load balancing, reverse proxy, traffic routing, identity, and
encryption features needed for production-grade service mesh deployments . When paired
with the NGINX Plus-based version of F5 NGINX Ingress Controller, it provides a unified
data plane that can be managed with a single configuration .

NGINX Service Mesh

Service APages

Service BPages

Control Plane

Data Plane

Kubernetes
Environment

NGINX Ingress
Controller

with NGINX
App Protect

Kubernetes
API Server

DevOps
Team

Users

Observability
Plane

Figure 14: NGINX Service Mesh Architecture

OUR DATA PLANE BRINGS
A LEVEL OF ENTERPRISE
TRAFFIC MANAGEMENT,
PERFORMANCE, AND
SCALABILITY TO THE
MARKET THAT NO OTHER
SIDECARS CAN OFFER

https://www.nginx.com/products/nginx/
https://www.nginx.com/products/nginx-ingress-controller/

73CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 73

N G I N X S E R V I C E M E S H B E N E F I T S

You can expect several benefits from NGINX Service Mesh:

• Less complexity
NGINX Service Mesh is easy to use and infrastructure-agnostic . It implements the Service
Mesh Interface (SMI) specification, which defines a standard interface for service meshes
on Kubernetes, and provides SMI extensions that make it possible to roll out a new app
version with minimal effort and interruption to production traffic . NGINX Service Mesh also
integrates natively with NGINX Ingress Controller, creating a unified data plane where
you can centralize and streamline configuration of ingress and egress (north-south)
traffic management at the edge with service-to-service (east-west) reverse proxy sidecar
traffic management . And unlike other meshes, NGINX Service Mesh doesn’t need to
inject a sidecar into NGINX Ingress Controller, so it doesn’t add latency and complexity
to your Kubernetes environments .

• Improved resilience
With our intelligent management of container traffic, you can specify policies that limit
traffic to newly deployed service instances and slowly increase it over time . Capabilities
like rate limiting and circuit breakers give you full control over the traffic flowing through
your services . You can leverage a robust range of traffic distribution models, including
rate shaping, quality of service (QoS), service throttling, blue-green deployments,
canary releases, circuit breaker pattern, A/B testing, and API gateway features .

Check out chapter 2 on improving resilience in Kubernetes and watch this demo,
How to Use NGINX Service Mesh for Traffic Splitting, by NGINX engineer Kate Osborn
to learn more .

How to Use
NGINX Service Mesh
for Traffic Splitting

L I V E S T R E A M D E M O
W I T H O U R E X P E R T:

https://github.com/servicemeshinterface/smi-spec/blob/main/SPEC_LATEST_STABLE.md
https://mesh-public-docs.netlify.app/nginx-service-mesh/guides/traffic-policies/#smi-specification
https://www.youtube.com/watch?v=eurCM8csJEw
https://www.youtube.com/watch?v=eurCM8csJEw

74CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 74

• Fine-grained traffic insights
NGINX Service Mesh is instrumented for metrics collection and analysis using OpenTracing
and Prometheus . The NGINX Plus API generates metrics from NGINX Service Mesh side-
cars and NGINX Ingress Controller pods . With pre-built Grafana dashboards you can
improve insight into app and API performance by visualizing metrics with detail down to
the milisecond, day-over-day overlays, and traffic spikes .

Learn more about ways to improve visibility in chapter 3 and check out this livestream:
How to Improve Visibility in Kubernetes with Prometheus, Grafana, and NGINX .

• Secure containerized apps
Extend mTLS encryption and Layer 7 protection all the way down to individual micro-
services and leverage access controls to define policies which describe the topology of
your application – giving you granular control over which services are authorized to talk
with each other . NGINX Service Mesh enables advanced security features including
configuration gating and governance, and allowlist support for ingress-egress and
service-to-service traffic . With the NGINX Plus-based version of NGINX Ingress Controller,
you also get default blocking of north-south traffic to internal services, and edge firewalling
with NGINX App Protect .

Check out this demo on using access control to manage a zero-trust environment with
end-to-end encryption, How to Use NGINX Service Mesh for Secure Access Control, by
NGINX engineer Aidan Carson .

How to Use
NGINX Service Mesh for
Secure Access Control

L I V E S T R E A M D E M O
W I T H O U R E X P E R T:

How to Improve
Visibility in Kubernetes
with Prometheus,
Grafana, and NGINX

L I V E S T R E A M D E M O
W I T H O U R E X P E R T S :

https://github.com/nginxinc/nginx-service-mesh/tree/main/examples/grafana
https://www.youtube.com/watch?v=hJoH7J0un5U
https://www.nginx.com/products/nginx-app-protect/
https://www.youtube.com/watch?v=KVjvTjCgEKw
https://www.youtube.com/watch?v=KVjvTjCgEKw
https://www.youtube.com/watch?v=hJoH7J0un5U

75CHAPTER 9 – HOW TO CHOOSE A SERVICE MESH 75

N O T R E A DY F O R A S E R V I C E M E S H ?

If you aren’t yet ready for a mesh, then you’re probably new to Kubernetes or you’re hitting
blockers that are preventing you from large production deployments . This is a great time to
work on employing a production-grade Ingress controller and built-in security to address
common Kubernetes challenges around complexity, security, visibility, and scalability .

Kubernetes
Environment

NGINX Ingress
Controller

with NGINX
App Protect

NGINX Service Mesh

Service APages

Service BPages

Service CPages

Figure 15: Production-Grade Kubernetes with NGINX

G E T S TA R T E D T O D AY

Watch our webinar, Are You Service Mesh Ready? Moving from Consideration to Implementation,
for a deeper dive into how to choose a service mesh!

NGINX Service Mesh is completely free and available for immediate download and can be
deployed in less than 10 minutes . To get started, check out our docs and watch this short
demo, Getting Started with NGINX Service Mesh, by Product Manager Alan Murphy . We’d
love to hear how it goes for you, so please give us your feedback on GitHub .

If it turns out that Istio is the best fit for your needs, check out F5’s Aspen Mesh . It’s an
enterprise-grade service mesh built on top of open source Istio . With a real-time traffic GUI,
it’s particularly great for service providers seeking to deliver 5G .

https://www.nginx.com/resources/webinars/are-you-service-mesh-ready-moving-from-consideration-to-implementation/
https://www.nginx.com/products/nginx-service-mesh/
https://docs.nginx.com/nginx-service-mesh/
https://www.youtube.com/watch?v=-uxqYSuEgT4
https://github.com/nginxinc/nginx-service-mesh/issues
https://aspenmesh.io/

76APPENDIX – PERFORMANCE TESTING THREE DIFFERENT NGINX INGRESS CONTROLLER OPTIONS 76

Performance Testing Three Different
NGINX Ingress Controller Options
The following test results were originally published in the blog Performance Testing
NGINX Ingress Controllers in a Dynamic Kubernetes Cloud Environment. Read the blog for
full details, including the testing methodology and specs.

One of the most important factors in selecting a traffic management tool – especially for
agile Kubernetes apps – is the amount of latency that the tool potentially adds . After all, a
slow app can quickly lead to loss of customers . We compared the performance of three
NGINX Ingress controllers in a realistic multi-cloud environment, measuring latency of client
connections across the Internet:

• The NGINX Ingress Controller maintained by the Kubernetes community and based on
NGINX Open Source . We refer to it here as the community version . We tested version 0 .34 .1
using an image pulled from the Google Container Registry .

• NGINX Open Source-based NGINX Ingress Controller version 1 .8 .0, maintained by NGINX .
We refer to it here as the NGINX Open Source version .

• F5 NGINX Plus-based NGINX Ingress Controller version 1 .8 .0, maintained by NGINX .
We refer to it here as the NGINX Plus version .

We generated a steady flow of client traffic to stress-test the Ingress controllers, and collected
the following performance metrics:

• Latency – The amount of time between the client generating a request and receiving
the response . We report the latencies in a percentile distribution . For example, if there are
100 samples from latency tests, the value at the 99th percentile is the next-to-slowest
latency of responses across the 100 test runs .

• Connection timeouts – TCP connections that are silently dropped or discarded because
the Ingress controller fails to respond to requests within a certain time .

• Read errors – Attempts to read on a connection that fail because a socket from the
Ingress controller is closed .

• Connection errors – TCP connections between the client and the Ingress controller
that are not established .

APPENDIX

A SLOW APP CAN QUICKLY
LEAD TO LOSS OF CUSTOMERS

https://www.nginx.com/blog/performance-testing-nginx-ingress-controllers-dynamic-kubernetes-cloud-environment/
https://www.nginx.com/blog/performance-testing-nginx-ingress-controllers-dynamic-kubernetes-cloud-environment/
https://kubernetes.github.io/ingress-nginx/
https://console.cloud.google.com/gcr/images/k8s-artifacts-prod/US/ingress-nginx/controller@sha256:0e072dddd1f7f8fc8909a2ca6f65e76c5f0d2fcfb8be47935ae3457e8bbceb20/details?tab=info
https://www.nginx.com/products/nginx-ingress-controller
https://www.nginx.com/products/nginx-ingress-controller

77APPENDIX – PERFORMANCE TESTING THREE DIFFERENT NGINX INGRESS CONTROLLER OPTIONS 77

We tested under two conditions . In the static deployment, the number of backend pod
replicas remained constant at five throughout the test run . In the dynamic deployment, we
used a script to periodically scale the number of replicas up to seven and back to five . As
the following findings illustrate, we found that only the NGINX Plus version doesn’t incur
high latencies when the number of pod replicas scales up and down .

L AT E N CY R E S U LT S F O R T H E S TAT I C D E P L OY M E N T

As indicated in the graph, all three NGINX Ingress Controllers achieved similar performance
with a static deployment of the backend application . This makes sense given that they are
all based on NGINX Open Source and the static deployment doesn’t require reconfiguration
from the Ingress controller .

Latency by Percentile Distribution (30,000 RPS)

La
te

nc
y (

m
illi

se
co

nd
s)

Percentile

NGINX OSS Ingress Controller NGINX Plus Ingress Controller Community Ingress Controller

300

250

200

150

100

50

0
0 90 99 99.9 99.99 99.999 99.9999

Figure 16: Latency Results for the
Static Deployment

78APPENDIX – PERFORMANCE TESTING THREE DIFFERENT NGINX INGRESS CONTROLLER OPTIONS 78

L AT E N CY R E S U LT S F O R T H E DY N A M I C D E P L OY M E N T

The graph shows the latency incurred by each NGINX Ingress Controller in a dynamic
deployment where we periodically scaled the backend application from five replica pods
up to seven and back .

It’s clear that only the NGINX Plus version performs well in this environment, suffering
virtually no latency all the way up to the 99 .99th percentile . Both the community and
NGINX Open Source versions experience noticeable latency at fairly low percentiles,
though in a rather different pattern .

• Community version: Latency climbs gently but steadily to the 99th percentile, where
it levels off at about 5000ms (5 seconds) .

• NGINX Open Source version: Latency spikes dramatically to about 32 seconds by the
99th percentile, and again to 60 seconds by the 99 .99th .

As we discuss further in Timeout and Error Results for the Dynamic Deployment, the latency
experienced with the community and NGINX Open Source versions is caused by errors and
timeouts that occur after the NGINX configuration is updated and reloaded in response to
the changing endpoints for the backend application .

Latency by Percentile Distribution (30,000 RPS)

La
te

nc
y (

m
illi

se
co

nd
s)

Percentile

NGINX OSS Ingress Controller NGINX Plus Ingress Controller Community Ingress Controller

0 90 99 99.9 99.99 99.999 99.9999

70,000

60,000

50,000

40,000

30,000

20,000

10,000

0

Figure 17: Latency Results for the
Dynamic Deployment

IT’S CLEAR THAT ONLY
THE NGINX PLUS VERSION
PERFORMS WELL IN
THIS ENVIRONMENT

79APPENDIX – PERFORMANCE TESTING THREE DIFFERENT NGINX INGRESS CONTROLLER OPTIONS 79

Here’s a finer-grained view of the results for the community and NGINX Plus versions in the
same test condition as the previous graph . The NGINX Plus introduces virtually no latency until
the the 99 .99th percentile, where it starts climbing towards 254ms at the 99 .9999th percentile .
The latency pattern for the community version steadily grows to 5000ms latency at the
99th percentile, at which point latency levels off .

Latency by Percentile Distribution (30,000 RPS)
La

te
nc

y (
m

illi
se

co
nd

s)

Percentile

NGINX OSS Ingress Controller Community Ingress Controller

0 90 99 99.9 99.99 99.999 99.9999

6,000

5,000

4,000

3,000

2,000

1,000

0

Figure 18: Finer-Grained View of
Latency Results for the Dynamic
Deployment

T I M E O U T A N D E R R O R R E S U LT S F O R T H E
DY N A M I C D E P L OY M E N T

This table shows the cause of the latency results in greater detail:

NGINX OPEN SOURCE COMMUNITY NGINX PLUS

Connection Errors 33,365 0 0

Connection Timeouts 309 8,809 0

Read Errors 4,650 0 0

With the NGINX Open Source version, the need to update and reload the NGINX configuration
for every change to the backend application’s endpoints causes many connection errors,
connection timeouts, and read errors . Connection/socket errors occur during the brief time
it takes NGINX to reload, when clients try to connect to a socket that is no longer allocated to
the NGINX process . Connection timeouts occur when clients have established a connection
to the Ingress controller, but the backend endpoint is no longer available . Both errors and
timeouts severely impact latency, with spikes to 32 seconds at the 99th percentile and again
to 60 seconds by the 99 .99th .

80APPENDIX – PERFORMANCE TESTING THREE DIFFERENT NGINX INGRESS CONTROLLER OPTIONS 80

With the community version, there were 8,809 connection timeouts due to the changes in
endpoints as the backend application scaled up and down . The community Ingress controller
uses Lua code to avoid configuration reloads when endpoints change . The results show that
running a Lua handler inside NGINX to detect endpoint changes addresses some of the
performance limitations of the NGINX Open Source version, which result from its requirement
to reload the configuration after each change to the endpoints . Nevertheless, connection
timeouts still occur and result in significant latency at higher percentiles . Also, as we discussed
in chapter 6, the use of Lua in OpenResty-based Ingress controllers (including the community
version) can introduce unexpected risks .

With the NGINX Plus version there were no errors or timeouts – the dynamic environment
had virtually no effect on performance . This is because NGINX Plus uses the NGINX Plus API
to dynamically update the NGINX configuration when endpoints change . As mentioned, the
highest latency was 254ms at the 99 .9999 percentile .

C O N C L U S I O N

The performance results show that to completely eliminate timeouts and errors in a dynamic
Kubernetes cloud environment, the Ingress controller must dynamically adjust to changes in
backend endpoints without event handlers or configuration reloads . Based on the results, we
can say that the NGINX Plus API is the optimal solution for reconfiguring NGINX in a dynamic
environment . In our tests, only the NGINX Plus-based NGINX Ingress Controller achieved the
flawless performance in highly dynamic Kubernetes environments that you need to keep
your users satisfied .

https://kubernetes.github.io/ingress-nginx/how-it-works/#avoiding-reloads

81GLOSSARY 81

 A A/B Testing: A process used to measure and compare user behavior for the purpose of
determining the relative success of different product or app versions across the customer base .
(Page 18)

 Application Layer: See Layer 7 .

 Authentication and Authorization: Functions required to ensure only the “right” users and
services can gain access to backends or application components:

• Authentication: Verification of identity to ensure that clients making requests are who
they claim to be .

• Authorization: Verification of permission to access a resource or function . Accomplished
through access tokens, such as Layer 7 attributes like session cookies, session IDs,
group IDs, or token contents .
(Page 35)

 B Blue-Green Deployment: A technique for reducing, or even eliminating, downtime for
upgrades by keeping the old version (blue) in production while simultaneously deploying the
new version (green) alongside in the same production environment .
(Page 19)

 C Canary Deployment: A safe and agile way to test the stability of a new feature or version .
Most users stay on the stable version while a minority of users are moved to the new version .
(Page 17)

 Circuit Breaker: A way to prevent cascading failure by monitoring for service failures .
(Page 15)

 Cloud-Native: An approach to application development and delivery that empowers organizations
to build and run scalable applications in modern, dynamic environments (such as public, private,
and hybrid clouds) with containers, service meshes, microservices, immutable infrastructure,
and declarative APIs .

 Conditional Routing: See Debug Routing .

 Containers: A virtualization technology designed to create and support a portable form factor
for applications, making it easy to deploy an application on a range of different platforms .
A container packages up all the requirements for the application – the application code itself,
dependencies such as libraries the application needs to run, and the run-time environment for
the application and its dependencies – into a form factor which can be transported and run
independently across platforms .

GLOSSARY

82GLOSSARY 82

 Critical Vulnerabilities and Exposures (CVEs): A database of publicly disclosed flaws “in a
software, firmware, hardware, or service component resulting from a weakness that can be
exploited, causing a negative impact to the confidentiality, integrity, or availability of an impacted
component or components” .1
(Pages 30, 49, 62)

 D Debug Routing (sometimes called Conditional Routing): A technique in which an app is
deployed publicly yet “hidden” except to users with permission to access it, based on Layer 7
attributes such as a session cookie, session ID, or group ID .
(Page 16)

 Denial-of-Service (DoS) Attack: An attack in which a bad actor floods a website with requests
(TCP/UDP or HTTP/HTTPS) with the goal of making the site crash .
(Page 32)

 Distributed Denial-of-Service (DDoS) Attack: A version of a DoS attack in which multiple
sources target the same network or service, making it more difficult to defend against than
a standard DoS attack, due to the potentially large network of attackers .

 E East-West Traffic: Traffic moving among services within a Kubernetes cluster (also called
service-to-service traffic) .

 Egress Traffic: Traffic exiting a Kubernetes cluster .

 End-to-End Encryption (E2EE): The practice of keeping data fully encrypted during transit
from the user to the app and back . E2EE requires SSL/TLS certificates and potentially mTLS,
and is a key component of a zero-trust policy and environment .
(Page 37)

 I Ingress Controller: A specialized load balancer for Kubernetes (and other
containerized) environments .
(Pages 8, 42)

 Ingress Traffic: Traffic entering a Kubernetes cluster .

 Insight: A deep understanding of a person or thing .
(Page 8)

 K Kubernetes: An open source container orchestration system, providing a complete
platform for managing and scaling applications that are deployed in containers . Often
abbreviated as K8s (pronounced “kates”) .

1 . Source: CVE Program .

https://www.cve.org/ResourcesSupport/Glossary?activeTerm=glossaryVulnerability

83GLOSSARY 83

 L Layer 4: The intermediate transport layer in the OSI model, which deals with delivery of
messages with no regard to the content of the messages .

 Layer 7: The high level application layer, which deals with the actual content of each message .

 M Microservices: An approach to software architecture that builds a large, complex application
from multiple small components which each perform a single function (such as authentication,
notification, or payment processing), and also the term for the small components themselves .
Each microservice is a distinct unit within the software development project, with its own
codebase, infrastructure, and database . The microservices work together, communicating
through web APIs or messaging queues to respond to incoming events . .

 Mutual TLS (mTLS): The practice of requiring authentication (via TLS certificate) for both the
client and the host . What is mTLS? by F5 Labs provides an excellent primer on TLS and mTLS .
(Pages 36, 74)

 N North-South Traffic: Traffic entering and exiting a Kubernetes cluster (also called ingress-egress
traffic) .

 R Rate Limiting: The practice of restricting the number of requests a user can make in a given
time period .
(Page 14)

 S Service Mesh: A traffic management tool for routing and securing service-to-service traffic .
(Pages 10, 65)

 Sidecar: A separate container that runs alongside an application container in a Kubernetes pod .
Typically, the sidecar is responsible for offloading functions required by all apps within a service
mesh – SSL/TLS, mTLS, traffic routing, high availability, and so on – from the apps themselves,
and implementing deployment testing patterns such as circuit breaker, canary, and blue-green .

 Single Sign-On (SSO): The practice of requiring users to authenticate just once to access multiple
apps and services . SSO technologies – including SAML, OAuth, and OIDC – make it easier to
manage authentication and authorization .
(Page 35)

• Simplified Authentication: SSO eliminates the need for a user to have a unique ID token
for each different resource or function .

• Standardized Authorization: SSO facilitates setting user’s access rights based on their
role, department, and level of seniority rather than having to separately configure rights
for each user .

https://en.wikipedia.org/wiki/OSI_model
https://www.f5.com/labs/articles/education/what-is-mtls

 SSL (Secure Sockets Layer)/TLS (Transport Layer Security): A protocol for establishing
authenticated and encrypted links between networked computers . (Although the SSL
protocol was deprecated in 1999, it is still common to refer to these related technologies as
“SSL” or “SSL/TLS .”) An SSL certificate authenticates a website’s identity and establishes an
encrypted connection .
(Page 37)

 T Traffic Control (sometimes called Traffic Routing or Traffic Shaping): The act of controlling
where traffic goes and how it gets there .
(Page 14)

 Traffic Splitting (sometimes called Traffic Testing): A subcategory of traffic control in which
incoming traffic is divided into streams directed to different versions of a backend app
running simultaneously in an environment (usually the current production version and an
updated version) . The proportion of traffic directed to the updated version is usually
increased by increments until that version receives all traffic .
(Page 14)

 Transport Layer: See Layer 4 .

 V Visibility: The state of being able to see or be seen .
(Pages 23, 74)

 W Web Application Firewall (WAF): A reverse proxy that detects and blocks sophisticated
attacks against apps and APIs (including the OWASP Top 10 and other advanced threats) while
letting “safe” traffic through .
(Pages 9, 32, 45, 62)

 Z Zero Trust: A security concept – used in high-security organizations but relevant to
everyone – in which data must be secured at all stages of data storage and transport .
This means that the organization has decided not to “trust” any users or devices by default,
but rather to require that all traffic is thoroughly vetted . A zero-trust architecture typically
includes a combination of authorization and mTLS, with a high probability that the
organization implements end-to-end encryption .
(Pages 38, 67, 74)

©2021 F5, Inc . All rights reserved . F5, the F5 logo, NGINX, the NGINX logo, F5 NGINX, F5 NGINX App Protect, F5 NGINX App Protect DoS,
F5 NGINX App Protect WAF, F5 NGINX Ingress Controller, F5 NGINX Plus, F5 NGINX Service Mesh, and NGINX Open Source are trademarks
of F5 in the U .S . and in certain other countries . Other F5 trademarks are identified at f5 .com . Any other products, services, or company names
referenced herein may be trademarks of their respective owners with no endorsement or affiliation, expressed or implied, claimed by F5 .

https://www.nginx.com/resources/glossary/reverse-proxy-server
https://owasp.org/www-project-top-ten/
https://www.nginx.com
http://f5.com

	Conclusion
	Timeout and Error Results for the
Dynamic Deployment
	Latency Results for the Dynamic Deployment
	Latency Results for the Static Deployment
	Performance Testing Three Different
NGINX Ingress Controller Options
	Not Ready for a Service Mesh?
	F5 NGINX Service Mesh
	How to Choose the Service Mesh
That’s Right for Your Apps
	Are You Ready for a Service Mesh?
	NGINX Open Source vs. NGINX Plus –
Why Upgrade to Our Commercial Edition?
	9.	How to Choose a Service Mesh

	NGINX vs. Kubernetes Community Ingress Controller
	Commercial Ingress Controllers
	8.	How to Choose an Ingress Controller –
NGINX Ingress Controller Options

	Default Ingress Controllers
	Open Source Ingress Controllers
	Future-Proof Your Ingress Controller
	7.	How to Choose an Ingress Controller –
Open Source vs. Default vs. Commercial

	Ingress Controller Risks
	6.	How to Choose an Ingress Controller –
Risks and Future-Proofing
	How Are You Going to Resource the
Ingress Controller?
	What Do Ingress Controllers Do?
	Why Do You Need an Ingress Controller?
	What’s an Ingress Controller?
	 Choose the Best Kubernetes
 Traffic Managment Tools for
 Your Needs
	5.	How to Choose an Ingress Controller – Identify Your Requirements

	Part Two
	Make Security Everyone’s Responsibility
	Security Use Case #1:
Resolve CVEs Quickly to Avoid Cyberattacks
	Security Use Case #2:
Stop OWASP Top 10 and DoS Attacks
	Security Use Case #3:
Offload Authentication and Authorization from the Apps
	Security Use Case #4:
Set Up Self-Service with Guardrails
	Security Use Case #5:
Implement End-To-End Encryption
	Security Use Case #6:
Ensure Clients Are Using a Strong Cipher with a Trusted Implementation

	Security and Identity Terminology
	Troubleshooting Two Kubernetes Problems
	Kubernetes Problem #1: Slow Apps
	Kubernetes Problem #2: Resource Exhaustion
	4.	Six Methods to Enhance Security

	How to Attain Insights Through Visibility
	More Sophisticated Traffic Control and Splitting
with Advanced Customizations
	3.	Two Problems You Can Solve with
Better Visibility

	Using NGINX for Advanced Kubernetes
Traffic Management
	Advanced Traffic Management Use Cases
	Resilience Use Case #1:
Protect Services from Getting Too Many Requests
	Resilience Use Case #2:
Avoid Cascading Failures
	Resilience Use Case #3:
Test a New Version in Production
	Resilience Use Case #4:
Ensure a New Version is Stable
	Resilience Use Case #5:
Find Out if Customers Like a New Version Better than the Current Version
	Resilience Use Case #6:
Move Users to a New Version Without Downtime

	Kubernetes Priorities:
Resilience, Visibility, and Security
	2.	Six Ways to Improve Resilience

	The Solution: Production-Grade Kubernetes
	Modern Shifts and Trends
	 Overcome Kubernetes
 Challenges with Kubernetes
 Traffic Management Tools
	1.	Reduce Complexity with
Production-Grade Kubernetes

	Part One
	 Foreword
	What Problems Do You Want the
Ingress Controller to Solve?

