
BIG-IP APM Best Practices
Anthony Graber – Solutions Engineer, DISA

©2024 F52

Agenda

BIG-IP APM Overview

Smart Cards and APM

Configuration Walkthrough and Recommended Practices

©2024 F53

BIG-IP APM Overview

©2024 F54

Full Proxy Architecture

Network

Session

Application

Web application

Physical

Client / Server

L4 Firewall: Full stateful policy enforcement and TCP DDoS
mitigation

SSL inspection and SSL DDoS mitigation

HTTP proxy, HTTP DDoS and application security

Application health monitoring and performance anomaly
detection

Network

Session

Application

Web application

Physical

Client / Server

©2024 F55

F5’s Remote/Application Access Solutions
AUTHENTICATION, AUTHORIZATION, REMOTE ACCESS AND SSO TO ALL APPLICATIONS WITH CENTRALIZED ACCESS POLICY
ENFORCEMENT USING ACCESS POLICY MANAGER (APM)

Remote Access and
Application Access

Identity
Federation/SSO

Secure Web Gateway

Access
Management

Mobile
Apps

Apps/API Enterprise
Apps

Cloud,
SaaS,

and Partner
Apps

Websites/Web
Applications

Virtual Edition Chassis Appliance

Enterprise
Mobility
Gateway

Virtual Apps
VDI

©2024 F56

PKI / OCSP / CRL

Kerberos

SAML

AD / LDAP

RADIUS / TACACS

HTTP / NTLM / Basic

Form

Kerberos

SAML/WS-FED

HTTP / NTLM / Basic

Form
BIG-IP APM is a

FULL PROXY
Architecture

for

Authentication Protocols
PKI

Full Proxy Architecture for Authentication

©2024 F57

F5 Access Policy Manager (APM)

7

Client

Certificates

Password

MFA / Token

Federation

Adaptive Auth

Certificates

Dynamic Forms

Kerberos Delegation

Simple Assertion

SAML Pass-through

Services

Private/Public
Cloud

SSO Selection

Endpoint Validation

Step-Up Auth

Fraud Protection

• Transform one type of authentication into another so an app may understand and use it without
installing additional agents

• Allow flexible selection of SSO technique appropriate to the application
• Allow for centralized session control of all applications

©2024 F58

Access Policy Design

©2024 F59

Access Policy Design

©2024 F510

Access Policy Design

©2024 F511

Access Policy Design

©2024 F512
12

General protocol flow
Client Side Server Side

©2024 F513
13

General protocol flow
Client Side Server Side

Initial request “/foo”

©2024 F514
14

General protocol flow
Client Side Server Side

Initial request “/foo”

Immediate redirect to “/my.policy”
Set MRHSession cookie

©2024 F515
15

General protocol flow
Client Side Server Side

Initial request “/foo”

Immediate redirect to “/my.policy”
Set MRHSession cookie

Request to “/my.policy” with cookie

©2024 F516
16

General protocol flow
Client Side Server Side

Initial request “/foo”

Immediate redirect to “/my.policy”
Set MRHSession cookie

Request to “/my.policy” with cookie

Redirect back to “/foo”

©2024 F517
17

General protocol flow
Client Side Server Side

Initial request “/foo”

Immediate redirect to “/my.policy”
Set MRHSession cookie

Request to “/my.policy” with cookie

Redirect back to “/foo”

Request “/foo” with cookie SSO

©2024 F518
18

General protocol flow
Client Side Server Side

Initial request “/foo”

Immediate redirect to “/my.policy”
Set MRHSession cookie

Request to “/my.policy” with cookie

Redirect back to “/foo”

Request “/foo” with cookie

All subsequent requests (with cookie) Bypasses access policy evaluation

SSO

SSO

©2024 F519

Smart Cards and APM

©2024 F520

•A CAC or PIV is a collection of public and private keys stored on a
Smart Card issued by a Public Key Infrastructure (PKI).

•The certificates can be used to establish a mutual trust between the
user and the server.

•A client, such as a browser, can be used to provide this credential to a
server or website.

•When a smart card is inserted into a machine the public certs are
copied to the system’s certificate store.

What is a Common Access Card (CAC)/Personal Identity
Verification (PIV)?

©2024 F521

•A CAC or PIV is a collection of public and private keys stored on a
smart card issued by DOD Public Key Infrastructure (PKI).

•The certificates can be used to establish a mutual trust between the
user and the server.

•A client, such as a browser, can be used to provide this credential to a
server or website.

•When a smart card is inserted into a machine the public certs are
copied to the system's certificate store.

What is a Common Access Card (CAC)/Personal Identity
Verification (PIV)?

CAC EXAMPLE

©2024 F522

•Certificate bundle to authenticate the certificate from the CAC/PIV.

•Online Certificate Status Protocol (OCSP) server, Certificate
Revocation List (CRL), or CRL Distribution Point (CRLDP) for
revocation checking of the certificate.

•Active Directory, LDAP, or another directory service to query the
identity of the authenticated user.

Configuration Requirements

©2024 F523
23

SSL protocol flow with APM ODCA, ignore in clientssl profile

Client Side Server Side

1. Client initiates SSL session

2. LTM presents server cert from clientssl profile

4. Client browser shows pop-up with available certs
from user cert store, because ODCA causes an SSL
renegotiation which requests a client cert. Available
certs are controlled by the Advertised Certificate
Authorities in the clientssl profile

5. Client chooses their cert, the software
that talks to the smart card will prompt for PIN
to decrypt the user’s private key on the card

6. The F5 will verify the client cert against the
certificate bundle in the Trusted Certificate Authorities

7. Client is allowed access to the app

3. SSL session is established, client begins to
be evaluated by APM VPE

©2024 F524

• ODCA has been the preferred method of requesting the client certificate from a
CAC/PIV for many years. It’s flexible.

• Users can browse the website until they try to access restricted resources and
perform “step up” authentication which would request or require the user certificate.

• ODCA allows fallback authentication options like username/password.

• Vulnerable to session hijacking if a Man in the Browser (MITB) is present.

• MITB steals the cookie and sends it to the attacker

• Stolen cookies could be used to resume sessions

BIG-IP APM On Demand Certificate Authentication (ODCA)

©2024 F525
25

SSL protocol flow with APM, require in clientssl profile

Client Side Server Side

1. Client initiates SSL session

2. LTM presents server cert from clientssl profile

3. LTM clientssl profile requests client cert

4. Client browser shows pop-up with
available certs from user cert store.
Available certs are controlled by the
Advertised Certificate Authorities in
the clientssl profile

5. Client chooses their cert, the software
that talks to the smart card will prompt for PIN
to decrypt the users private key on the card

6. The F5 will verify the client cert via the certificate
bundle in the Trusted Certificate Authorities

©2024 F526
26

Continued…
Client Side

Server Side

8. APM prompts user with a consent banner

9. UPN/EDIPI is verified from certificate.

10. Cert OID is verified from certificate.

11. OCSP request to check certificate revocation
status.

12. LDAP/AD Query to verify user exists and
account is enabled.

13. Client is allowed access to the app

7. Client begins to be evaluated by APM VPE

©2024 F527

• This is the most secure option. It’s rigid.

• This method will also work with clients/agents that are unable to handle redirects
from APM. This is known as clientless mode.

• If the user does not present a certificate the browser will fail to an SSL error page –
no comfort pages.

BIG-IP APM with ClientSSL set to required

©2024 F528

Configuration Walkthrough and
Recommended Practices

©2024 F529

• The settings and recommended practices discussed have not been tested with
every possible configuration and may negatively impact your environments.

• Please test before making these changes in production.

• Understand the settings and how they may affect your environment.

Disclaimer

©2024 F530

• Maximum Session Timeout

• Max Sessions Per User

• Max In Progress Sessions Per Client IP

• Restrict to Single Client IP

K000138221: Mitigate potential attacks using features included with
BIG-IP APM

• HTTP Only Cookies

• ”Persistent” Cookies

• Samesite Cookies

• Revocation Checks

• …and more

©2024 F531

• The Maximum Session Timeout setting is an important attribute for a BIG-IP APM access profile
because it defines the maximum length of time a session can be active before it is automatically
terminated. By limiting the duration of each session, you can mitigate the risk of session hijacking
where an attacker could steal or use the session cookie to gain unauthorized access to confidential
resources.

• The Max Sessions Per User setting can be used to limit the number of times an individual user can
create sessions into your application. It may not be unusual for a user to create multiple sessions
into your application but this can be limited to reduce the possibility of session hijacking.

K000138221: Mitigate potential attacks using features included with
BIG-IP APM

©2024 F532

• The Max In Progress Sessions Per Client IP setting in a BIG-IP APM access profile is a security
configuration that limits the number of simultaneous sessions that a client can initiate from a single
IP address. This setting can be helpful to prevent either accidental or intentional session flooding on
the BIG-IP, however if your clients are behind a proxy this setting may cause issues.

• The Restrict to Single Client IP setting is an essential security measure within a BIG-IP APM
access profile. When enabled, this setting ensures that a session can be accessed only from the
same IP address from which it was initially created. This is a potent safeguard against attacks such
as session hijacking or cookie theft, as even if an attacker manages to steal a session cookie, they
cannot use it from a different IP address. This setting effectively ties the user session to a specific IP
address, further enhancing the security of the BIG-IP APM access profiles.

K000138221: Mitigate potential attacks using features included with
BIG-IP APM

©2024 F533

• F5 recommends enabling the HTTP Only option. This measure is designed to mitigate the risk of
client-side scripts gaining access to the BIG-IP APM session cookies, thus enhancing the security of
your sessions.

• The Persistent cookie option in APM can present a security risk and is disabled by default. This
option is primarily used when the session needs to be resumed by another application, such as
Office Suite for Sharepoint. The cookies are set to expire after 60 seconds. Persistent cookies can
be accessed by other processes.

• Samesite cookie protection was added as an option beginning in BIG-IP APM 16.0. You can enable
this setting to add the samesite attribute to the APM session cookie. This attribute enforces same-
site usage and prevents the cookie from being included with cross-site requests.

K000138221: Mitigate potential attacks using features included with
BIG-IP APM – Cookie options

©2024 F534

K000138221: Mitigate potential attacks using features included with
BIG-IP APM

Strict: Only include the cookie with requests originating from the same site as the cookie.
Lax: Include the cookie with same-site requests and with top-level cross-site navigations that use a safe HTTP method.

©2024 F535

• Revocation checks

• The best revocation check option is Online Certificate Status Protocol (OCSP). OCSP can be
configured within the BIG-IP APM to either use a configured responder or reference the
responders within the Authority Information Access (AIA) extension of the certificate.

• Certificate Revocation Lists (CRL) can be manually or automatically updated on the BIG-IP to
verify revocation status of client certificates. The max file size for a CRL is now 192MB (15.x+).

• Certificate Revocation List Distribution Points (CRLDP) is the final option for revocation status
checking. This is the least desirable option due to the time it takes to pull a large CRL file. The
CRLDP, like OCSP, can be statically defined or pulled from the AIA extension.

K000138221: Mitigate potential attacks using features included with
BIG-IP APM

©2024 F536

• UPN Checks – verify the cert contains a properly formatted User Principal Name (UPN) in the cert extensions

• Cert OID Checks – verify appropriate user OIDs are present in the cert extensions - deny Non-Person Entity (NPE) certs

• ClientSSL profile frequency always – enforce mTLS continuously

• Limit the scope of advertised CAs and trusted CAs – bundle manager

• Serial Number Check – verify serial number of cert matches initial APM session variables

…and more

©2024 F537

ClientSSL and Bundles

This bundle contains the full trust
chain to validate the client
certificate.

This bundle contains only the
certificate authorities that sign the
client certificate. This limits the
advertised scope in the SSL
negotiation within the browser.

Client Certificate is required and will
fail negotiation if no certificate is
present.

Always will force the browser to
continuously send the certificate on
session resumption.

©2024 F538

Policy Properties
Default 15 minutes

Default 5 minutes

Default 128!

Default unlimited!

Default 7 days!

©2024 F539

Certificate Bundles

©2024 F540

Example Visual Policy Editor (VPE)

©2024 F541

Example Visual Policy Editor (VPE)

©2024 F542

Example Visual Policy Editor (VPE)

©2024 F543

Example Visual Policy Editor (VPE)

©2024 F544

Example Visual Policy Editor (VPE)

©2024 F545

Example Visual Policy Editor (VPE)

©2024 F546

More iRules!

©2024 F547

More iRules!
https://community.f5.com/kb/technicalarticles/fingerprinting-tls-clients-with-ja4-on-f5-big-ip/326298
proc getCipherList { payload rlen outer inner clientip serverip } {

 upvar cipher_cnt cipher_cnt

 ## Define GREASE values so these can be excluded from cipher list

 set greaseList "0a0a 1a1a 2a2a 3a3a 4a4a 5a5a 6a6a 7a7a 8a8a 9a9a aaaa baba caca dada eaea fafa"

 ## Skip over first 43 bytes (contains tls_type hello_len tls_ver, which we don't need)

 set field_offset 43

 ## Grab the session ID length value and increment field_offset.

 binary scan ${payload} @${field_offset}c sessID_len

 set field_offset [expr {${field_offset} + 1 + ${sessID_len}}]

 ## Grab ciphersuite list length (binary and hex values).

 binary scan ${payload} @${field_offset}S cipherList_len

 binary scan ${payload} @${field_offset}H4 cipherList_len_hex

 set cipherList_len_hex_text ${cipherList_len_hex}

 ## increment field_offset and get the ciphersuite list.

 set field_offset [expr {${field_offset} + 2}]

 set cipherList_len_hex [expr {${cipherList_len} * 2}]

 binary scan ${payload} @${field_offset}H${cipherList_len_hex} cipherlist

 ## Parse through cipherlist, add each non-GREASE cipher to cipherSuite list.

 set cipher_cnt 0

 set parsed_cl $cipherlist

 set cipherSuite {}

 set cl_offset 0

 while {[scan $parsed_cl %4s%n cipherhex length] == 2} {

 if { [lsearch -sorted -inline $greaseList $cipherhex] eq "" } {

 lappend cipherSuite $cipherhex

 incr cipher_cnt

 } else {

 #log local0. "CipherList: Found GREASE cipher '${cipherhex}'"

 }

 set parsed_cl [string range $parsed_cl $length end]

 }

 ## Sort cipherSuite list.

 set cipherSuite [lsort $cipherSuite]

 ## Convert list to string.

 set cipher_list ""

 foreach cipher_hex $cipherSuite {

 append cipher_list "${cipher_hex},"

 }

This iRule is 214 lines of code to generate
a fingerprint for the browser/client

©2024 F548

©2024 F550

Appendix

©2024 F551

Decision pages – confirm_box.inc
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html><head><title>Department of Defense</title>

<link rel="stylesheet" type="text/css" HREF="/public/include/css/apm.css<? if ($GLOBALS["ap_version"]=="v2") { print("?v=v2"); } ?>">

<script language="JavaScript" src="/public/include/js/session_check.js?v=13"></script>

<script language="JavaScript" src="/public/include/js/agent_common.js"></script>

<script language="javascript"><!--//

if(self != top) { top.location = self.location; }

window.onerror=function(){ return function(){ return; } }

<? include_customized_page("logout", "session_expired.js"); ?>

function sessionTimedOut()

{

 window.sessionTimeout.showSplashLayer("MessageDIV", SessionExpired_CustomizedScreenGet());

}

function OnLoad()

{

 setFormAttributeByQueryParams("hidden_form", "action", "/confirm.php3");

 try{

 if ("undefined" != typeof(window.external) && "unknown" != typeof(window.external)

 && "undefined" != typeof(window.external.WebLogonNotifyUser) && "unknown" != typeof(window.external.WebLogonNotifyUser)){

 window.external.WebLogonNotifyUser();

 }

 }catch(e){};

 window.sessionTimeout = new APMSessionTimeout(sessionTimedOut);

}

function SubmitResult(choice)

{

 var f = document.getElementById("hidden_form");

 f.my_result.value = choice;

 f.submit();

}

--></script>

©2024 F552

Decision pages – decision_box.inc
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html><head><title>Department of Defense</title>

<link rel="stylesheet" type="text/css" HREF="/public/include/css/apm.css<? if ($GLOBALS["ap_version"]=="v2") { print("?v=v2"); } ?>">

<script language="JavaScript" src="/public/include/js/session_check.js?v=13"></script>

<script language="JavaScript" src="/public/include/js/web_host.js"></script>

<script language="javascript"><!--//

if(self != top) { top.location = self.location; }

window.onerror=function(){ return function(){ return; } }

<? include_customized_page("logout", "session_expired.js"); ?>

function sessionTimedOut()

{

 try{

 if (externalWebHost.hasWebLogonClearSession()){

 externalWebHost.webLogonClearSession();

 }

 }catch(e){};

 window.sessionTimeout.showSplashLayer("MessageDIV", SessionExpired_CustomizedScreenGet());

}

function OnLoad()

{

 try{

 if (externalWebHost.hasWebLogonNotifyUser()){

 externalWebHost.WebLogonNotifyUser();

 }

 }catch(e){};

 window.sessionTimeout = new APMSessionTimeout(sessionTimedOut);

}

function SubmitResult(choice)

{

 var f = document.getElementById("hidden_form");

 f.my_result.value = choice;

©2024 F553

UPN and username variable assign
session.logon.last.upn

set x509e_fields [split [mcget {session.ssl.cert.x509extension}] "\n"];

For each element in the list:

foreach field $x509e_fields {

If the element contains UPN:

if { $field contains "othername:UPN" } {

set start of UPN variable

set start [expr {[string first "othername:UPN<" $field] +14}]

UPN format is <user@domain>

Return the UPN, by finding the index of opening and closing brackets, then use string range to get everything between.

return [string range $field $start [expr { [string first ">" $field $start] - 1 }]]; } }

Otherwise return UPN Not Found:

return "UPN-NOT-FOUND";

session.logon.last.username

set upn [mcget {session.logon.last.upn}]; if {[string first "@" $upn] >= 0} {

return [string range $upn 0 [expr { [string first "@" $upn] - 1 }]]; } else { return $upn; }

©2024 F554

UPN and username variable assign
session.logon.last.upn

set x509e_fields [split [mcget {session.ssl.cert.x509extension}] "\n"];

For each element in the list:

foreach field $x509e_fields {

If the element contains UPN:

if { $field contains "othername:UPN" } {

set start of UPN variable

set start [expr {[string first "othername:UPN<" $field] +14}]

UPN format is <user@domain>

Return the UPN, by finding the index of opening and closing brackets, then use string range to get everything between.

return [string range $field $start [expr { [string first ">" $field $start] - 1 }]]; } }

Otherwise return UPN Not Found:

return "UPN-NOT-FOUND";

session.logon.last.username

set upn [mcget {session.logon.last.upn}]; if {[string first "@" $upn] >= 0} {

return [string range $upn 0 [expr { [string first "@" $upn] - 1 }]]; } else { return $upn; }

©2024 F555

CERTOID Check
when ACCESS_POLICY_AGENT_EVENT {

 if { [ACCESS::policy agent_id] eq "OIDCHECK" } {

 ## find and store CERT OID

 if { [ACCESS::session data get session.ssl.cert.x509extension] contains "Policy: " } {

 ACCESS::session data set session.custom.oid "[string trim [findstr [ACCESS::session data get session.ssl.cert.x509extension] "Policy: " 8 " "]]"

 }

 }

}

when ACCESS_ACL_ALLOWED {

 #### OPTIONAL HEADER INSERTS

 HTTP::header insert CERTOID [ACCESS::session data get session.custom.oid]

 HTTP::header insert CERTSUBJECT [ACCESS::session data get session.ssl.cert.subject]

 HTTP::header insert CERTSERIAL [ACCESS::session data get session.ssl.cert.serial]

 HTTP::header insert USERNAME [ACCESS::session data get session.logon.last.username]

}

©2024 F556

Cert OID Check Branch Rules

User SW Cert
expr { [mcget {session.custom.oid}] == "2.16.840.1.101.2.1.11.39" || [mcget {session.custom.oid}]
== "2.16.840.1.101.2.1.11.40" || [mcget {session.custom.oid}] == "2.16.840.1.101.2.1.11.41" }

User HW Cert
expr { [mcget {session.custom.oid}] == "2.16.840.1.101.2.1.11.42" || [mcget {session.custom.oid}]
== "2.16.840.1.101.2.1.11.43" || [mcget {session.custom.oid}] == "2.16.840.1.101.2.1.11.44" }

NPE Cert
expr { [mcget {session.custom.oid}] == "2.16.840.1.101.2.1.11.36" || [mcget {session.custom.oid}]
== "2.16.840.1.101.2.1.11.37" || [mcget {session.custom.oid}] == "2.16.840.1.101.2.1.11.38" }

©2024 F557

LDAP Query Branch Rule
expr {[mcget {session.ldap.last.queryresult}] == 1 && [mcget
{session.ldap.last.attr.userAccountControl}] != 66050 && [mcget
{session.ldap.last.attr.lockoutTime}] == 0 }

©2024 F558

Serial Number Binding
APM_X509_SN_Binding

Copyright 2024 F5

Binds an APM session to a X509 serial number from an mTLS connection

invalidates SSL session and removes APM session on mismatch

requires "client-certificate required" to be present in the clientssl profile

compatible with TLS 1.2/1.3

when ACCESS_ACL_ALLOWED priority 100 {

 set tuple [IP::local_addr]:[TCP::local_port]->[IP::remote_addr]:[TCP::remote_port]

 # ensure client certificate is present

 if {[SSL::cert count] eq 0} {

 ACCESS::log accesscontrol.warn "APM_X509_SN_Binding - No Client Certificate present $tuple "

 ACCESS::respond 403 content {<html><h1>Access Denied</h1></html>}

 ACCESS::session remove

 SSL::session invalidate

 return

 }

 set sn [X509::serial_number [SSL::cert 0]]

 # does client-certificate serial match serial stored with APM session

 if {[ACCESS::session data get "session.ssl.cert.serial"] eq $sn} {

 ACCESS::log accesscontrol.info "APM_X509_SN_Binding - Client Certificate SN match: $sn"

 return

 }

 ACCESS::log accesscontrol.warn "APM_X509_SN_Binding - Attempted session hijack from $tuple with mismatched Client Certificate SN: $sn"

 ACCESS::respond 403 content {<html><h1>Access Denied</h1></html>}

 ACCESS::session remove

 SSL::session invalidate

}

