Deploying the BIG-IP LTM with IBM WebSphere 8

Welcome to the F5 Deployment Guide for IBM® WebSphere. This document provides guidance for deploying the BIG-IP Local Traffic Manager (LTM) with IBM WebSphere 8.

The BIG-IP system can optimize IBM WebSphere at many layers: in front of the IBM HTTP Servers, between HTTP Servers and WebSphere Application Servers, or to eliminate the HTTP layer altogether. By configuring the BIG-IP LTM system within the WebSphere infrastructure F5 provides a number of benefits, including simplification of the infrastructure, application level health monitoring, SSL offload and intelligent load balancing. While high availability remains the central goal of BIG-IP LTM, reducing complexity in an another complex environment allows organizations to spend more time on the important aspects of the architecture such as application delivery, intelligent reporting, and gathering granular statistics from the environment.

Why F5

- Reduces the complexity of WebSphere deployments, including removing the need for an additional HTTP layer.
- Ensures application health by determining the availability of a specific application based on the URI being requested and the port used by the application.
- Enables better visibility through analytics, and provides a granular understanding of how many sessions are established to each WebSphere Application server and the ability to limit these sessions using various metrics.
- Reduces the load on the WebSphere servers by taking on the following tasks:
 » SSL processing: the BIG-IP system terminates SSL requests at the front end and delivers HTTP requests to the backend.
 » TCP optimizations: the BIG-IP system reduces the number of requests to the servers using HTTP Request and Content caching.
 » Connection pooling: The OneConnect feature on the BIG-IP system reduces the number of server-side connections that a server must open by using existing server-side connections for multiple new client-side requests.

For more information of IBM WebSphere see: http://www-01.ibm.com/software/webservers/appserv/was/features/

For more information on the F5 BIG-IP system, see http://www.f5.com/products/big-ip
To provide feedback on this deployment guide or other F5 solution documents, contact us at solutionsfeedback@f5.com.

Products and versions tested

<table>
<thead>
<tr>
<th>Product</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIG-IP LTM</td>
<td>11.1 HF-2</td>
</tr>
<tr>
<td>IBM WebSphere</td>
<td>8 and 8.5</td>
</tr>
</tbody>
</table>

Important: Make sure you are using the most recent version of this deployment guide, found at http://www.f5.com/pdf/deployment-guides/ibm-websphere-8-dg.pdf.

Prerequisites and configuration notes

The following are general prerequisites and configuration notes for this guide:

- The configuration in this guide was tested with IBM WebSphere 8 servers in Network Deployment mode with a single Application Profile and two Enterprise applications installed.

- If you are using the BIG-IP advanced monitor for SNMP, SNMP services must be enabled on your WebSphere Application Server per the instructions in this guide.

- If you are using the BIG-IP system to act as an HTTP proxy and eliminate the need for a separate HTTP tier, you need the following information from your WebSphere implementation.
 - URIs associated with each WebSphere application
 - Ports associated with each WebSphere application
 - Host name and/or IP addresses of the WebSphere Application Server hosting each application.

 For more information, including where to find this information, see Creating the iRule on page 8.

Some users find it helpful to create a table with the required information. For example, we created the following table for the two applications used in our testing.

<table>
<thead>
<tr>
<th>Application Name</th>
<th>URIs</th>
<th>Ports</th>
<th>Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere_Portal</td>
<td>/wps/*</td>
<td>9080</td>
<td>server1.example.com IP: 192.168.100.1 server2.example.com IP: 192.168.100.2</td>
</tr>
<tr>
<td></td>
<td>/wps/pa_1_0_6d/*</td>
<td>9443</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/wps/pa_1_0_6e/*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/wps/pa_1_0_6c/*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/wps/*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/wrsi/*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/wps/content/*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/wps/pdm/*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PlantsByWebSphere</td>
<td>/plantsbywebshpere/*</td>
<td>9081</td>
<td>server1.example.com IP: 192.168.100.1 server2.example.com IP: 192.168.100.2</td>
</tr>
<tr>
<td></td>
<td>/plants/*</td>
<td>9444</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/pwr/*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deployment scenarios

One of the fundamental ideas covered in this architecture and deployment is the separation of the Web, Application and Data tiers. The IBM HTTP Server is acting on the Web tier while the WebSphere software is the Application tier. This Application tier then interfaces with the Data tier to provide a full and rich application experience.

There are three different deployment scenarios described in this guide in which the BIG-IP system can be configured. Follow the instructions for the scenario appropriate to your desired configuration:

1. **Configuring the BIG-IP LTM as an HTTP proxy**
 The BIG-IP system can reduce complexity in WebSphere environments by acting as the HTTP proxy. This enables benefits such as better application health monitoring, more visibility into the environment, more granular statistics gathering, and removes the need for the additional HTTP layer that only proxies connections to the back-end.

 To configure this scenario, see *Scenario 1: Configuring the BIG-IP LTM as an HTTP Proxy for IBM WebSphere on page 4*

2. **Configuring the BIG-IP LTM to load balance the IBM HTTP servers**
 The BIG-IP system can provide intelligent load balancing and health monitoring to the IBM HTTP servers. The IBM HTTP servers direct traffic to the WebSphere application servers.

 To configure this scenario, see *Scenario 2: Configuring the BIG-IP LTM for WebSphere 8 Web Tier on page 11*.

3. **Configuring the BIG-IP LTM to load balance the IBM HTTP servers and WebSphere application servers**
 The BIG-IP system can be located in front of the HTTP layer as well as between the HTTP layer and the WebSphere application servers. This enables additional visibility, statistics gathering and better health monitoring.

 To configure this scenario, see *Scenario 3: Configuring the BIG-IP LTM for the HTTP Tier and the WebSphere Application Tier on page 15*.
Scenario 1: Configuring the BIG-IP LTM as an HTTP Proxy for IBM WebSphere

In this section, we configure the BIG-IP LTM to act as an HTTP proxy. Because the BIG-IP LTM is acting as the HTTP proxy, the HTTP Tier of the deployment can be eliminated altogether.

The traffic flow is as follows:

1. Client requests the URL http://www.example.com/PlantsByWebSphere/promo.jsf. This address resolves to the virtual server address on the BIG-IP system.
2. Based on the URI, the BIG-IP system sends the client request to the load balancing pool pool_pbw, serving port 9080.
3. The request is received by an available WebSphere application server in pool_pbw.

Also see Appendix: Optional dynamic health monitor for Scenario 1 on page 20.

Gathering the WebSphere application information

In order to configuring the BIG-IP system to eliminate the need for a separate HTTP Tier, you need the following information from your WebSphere implementation, as described in the prerequisites:

- URIs associated with each WebSphere application
- Ports associated with each WebSphere application
- Host name and IP addresses of the WebSphere Application Server hosting each application.

There are two ways of obtaining this information, depending on whether you have previously configured the IBM HTTP server with your WebSphere Application server or not.

If you have not previously configured the IBM HTTP server

If you have not previously configured the IBM HTTP server as a part of a WebSphere Application server deployment, you must manually gather this information from your WebSphere implementation. For information on how to find this information, see the IBM documentation.

If you have previously configured the IBM HTTP server

If you have previously configured the IBM HTTP Server with your WebSphere Application Server, you can find the required information in the plugin-cfg.xml file.

The URIs are found in the URIGroup statements of the file. URIGroup statements group selected URIs together for the applications deployed within WebSphere. Locate the URIGroup Name that matches the relevant Application.
In the following example from the plugin-cfg.xml file, the URIs for our two are shown in bold.

```xml
<UrlGroup Name="default_host_WebSphere_Portal_URIs">
  <Url AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/wps//PA_1_0_6D/*"/>
  <Url AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/wps//PA_1_0_6E/*"/>
  <Url AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/wps//PA_1_0_6C/*"/>
  <Url AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/wps/*"/>
  <Url AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/wps/content/*"/>
  <Url AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/wps/content/*"/>
</UrlGroup>
```

The Ports and Host names can be found in the ServerCluster section of the XML file. ServerClusters are essentially the application definitions designated by the IBM WebSphere system. Locate the ServerCluster Name that matches the relevant Application, and gather the Ports and host names. You also need to know the IP addresses to which the host names resolve for the BIG-IP Pool.

In the following example from the plugin-cfg.xml file, the Ports and Host names for our two are shown in bold.

```xml
<ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin" Name="WebSphere_Portal"...>
  <Server CloneID="12xx2868r" ConnectTimeout="0" ExtendedHandshake="false" LoadBalanceWeight="2"...>
    <Transport Hostname="server1.example.com" Port="9081" Protocol="http"/>
    <Transport Hostname="server1.example.com" Port="9444" Protocol="https"/>
  </Server>
  <Server CloneID="12vxx4xx3" ConnectTimeout="0" ExtendedHandshake="false" LoadBalanceWeight="2"...>
    <Transport Hostname="server2.example.com" Port="9081" Protocol="http"/>
    <Transport Hostname="server2.example.com" Port="9443" Protocol="https"/>
  </Server>
</ServerCluster>
```
<Server ConnectTimeout="0" ExtendedHandshake="false" MaxConnections="-1" Name="server2"/>
<Transport Hostname="server2.example.com" Port="9080" Protocol="http"/>
<Transport Hostname="server2.example.com" Port="9443" Protocol="https" />
 <Property Name="keyring" Value="D:\IBM\WebSphere\DM\etc\plugin-key.kdb"/>
 <Property Name="stashfile" Value="D:\IBM\WebSphere\DM\etc\plugin-key.sth"/>
</Transport>
</Server>
<PrimaryServers>
 <Server Name="PlantsByWebSphere_1"/>
 <Server Name="PlantsByWebSphere_2"/>
</PrimaryServers>
</ServerCluster>

Configuring the BIG-IP LTM

The following tables contain a list of BIG-IP configuration objects along with any non-default settings you should configure as a part of this deployment. Unless otherwise specified, settings not mentioned in the table can be configured as applicable for your configuration. For specific instructions on configuring individual objects, see the online help or product manuals.

<table>
<thead>
<tr>
<th>BIG-IP LTM Object</th>
<th>Non-default settings/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type a unique name, such as WebSphere_Portal_HTTP.</td>
</tr>
<tr>
<td>Type</td>
<td>HTTP</td>
</tr>
<tr>
<td>Interval</td>
<td>30 (recommended)</td>
</tr>
<tr>
<td>Timeout</td>
<td>91 (recommended)</td>
</tr>
<tr>
<td>Send and Receive Strings</td>
<td>While the Send String and Receive String fields are optional, for a more specific monitor you should add Send and Receive Strings specific to your application. For example, for Portal we use: GET /wps/HTTP/1.0 r\n\n</td>
</tr>
<tr>
<td>HTTPS</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type a unique name, such as WebSphere_Portal_HTTPS.</td>
</tr>
<tr>
<td>Type</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Interval</td>
<td>30 (recommended)</td>
</tr>
<tr>
<td>Timeout</td>
<td>91 (recommended)</td>
</tr>
<tr>
<td>Send and Receive Strings</td>
<td>While the Send String and Receive String fields are optional, for a more specific monitor you should add Send and Receive Strings specific to your application. For example, for Portal we use: GET /wps/HTTP/1.0 r\n\n</td>
</tr>
</tbody>
</table>

Important: Repeat this section to create unique HTTP and HTTPS health monitors for each WebSphere application that is a part of this deployment.

1 See **Appendix: Optional dynamic health monitor for Scenario 1 on page 20** for an optional, dynamic ratio health monitor.

BIG-IP LTM Object

<table>
<thead>
<tr>
<th>Pool (Main tab-->Local Traffic -->Pools)</th>
<th>Non-default settings/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Type a unique name</td>
</tr>
<tr>
<td>Health Monitor</td>
<td>Select the monitor you created for this application</td>
</tr>
<tr>
<td>Load Balancing Method</td>
<td>Choose a load balancing method. We recommend Least Connections (Member)</td>
</tr>
<tr>
<td>Address</td>
<td>Type an IP address specific to your WebSphere application node.</td>
</tr>
<tr>
<td>Service Port</td>
<td>The appropriate Service port for your WebSphere application. This should match the port you found in your WebSphere configuration. Click Add and repeat Address and Service Port for all nodes.</td>
</tr>
</tbody>
</table>

Important: Repeat to create a unique pool for each WebSphere application that is a part of this deployment. Be sure to use the appropriate address and service port.

<table>
<thead>
<tr>
<th>Profile (Main tab-->Local Traffic-->Profiles)</th>
<th>Non-default settings/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP LAN</td>
<td>Name (Profiles-->Protocol)</td>
</tr>
<tr>
<td>Name</td>
<td>Type a unique name</td>
</tr>
<tr>
<td>Parent Profile</td>
<td>tcp-lan-optimized</td>
</tr>
</tbody>
</table>

Switching iRule

Configure the iRule as described in Creating the iRule on page 8

Persistence iRule

<table>
<thead>
<tr>
<th>Name</th>
<th>Type a unique name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Copy and paste the following iRule, omitting the line numbers.</td>
</tr>
</tbody>
</table>

```plaintext
when CLIENT_ACCEPTED {
  set add_persist 1
}
when HTTP_RESPONSE {
  if { [HTTP::cookie exists "JSESSIONID"] and $add_persist } {
    persist add uie [HTTP::cookie "JSESSIONID"]
    set add_persist 0
  }
}
when HTTP_REQUEST {
  if { [HTTP::cookie exists "JSESSIONID"] } {
    persist uie [HTTP::cookie "JSESSIONID"]
  } else {
    set jsess [findstr [HTTP::uri] "jsessionid" 11 ";"]
    if { $jsess != "" } {
      persist uie $jsess
    }
  }
}
```

Virtual Servers (Main tab-->Local Traffic -->Virtual Servers)

<table>
<thead>
<tr>
<th>HTTP</th>
<th>Non-default settings/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Type a unique name.</td>
</tr>
<tr>
<td>Address</td>
<td>Type the IP Address for the virtual server</td>
</tr>
<tr>
<td>Service Port</td>
<td>Type the appropriate Port for the virtual server</td>
</tr>
<tr>
<td>Protocol Profile (server)</td>
<td>Select the LAN optimized TCP profile you created</td>
</tr>
<tr>
<td>SNAT Pool</td>
<td>Automap (optional; see footnote 3)</td>
</tr>
<tr>
<td>iRule</td>
<td>Enable the built-in</td>
</tr>
<tr>
<td>Default Pool</td>
<td>Select the pool you created above</td>
</tr>
</tbody>
</table>

1. You must select Advanced from the Configuration list for these options to appear
2. Only required if offloading SSL on the BIG-IP LTM
3. Create two persistence profiles. Source Address Affinity is used as a fallback persistence method.
BIG-IP LTM Object

<table>
<thead>
<tr>
<th>Non-default settings/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Service Port</td>
</tr>
<tr>
<td>Protocol Profile (client)</td>
</tr>
<tr>
<td>Protocol Profile (server)</td>
</tr>
<tr>
<td>OneConnect</td>
</tr>
<tr>
<td>Web Acceleration profile</td>
</tr>
<tr>
<td>HTTP Compression profile</td>
</tr>
<tr>
<td>SSL Profile (Client)</td>
</tr>
<tr>
<td>SNAT Pool ¹</td>
</tr>
<tr>
<td>iRule</td>
</tr>
<tr>
<td>Default Pool</td>
</tr>
<tr>
<td>Default Persistence Profile</td>
</tr>
<tr>
<td>Fallback Persistence Profile</td>
</tr>
</tbody>
</table>

1. You must select **Advanced** from the **Configuration** list for these options to appear
2. Do not enable these objects on the HTTP virtual server if offloading SSL. The HTTP virtual server is only used for redirecting users to the HTTPS virtual server, and only requires a name, IP address, Port, and the redirect iRule.
3. If want to use SNAT, and you have a large deployment expecting more than 64,000 simultaneous connections, you must configure a SNAT Pool with an IP address for each 64,000 simultaneous connections you expect. See the BIG-IP documentation on configuring SNAT Pools.
4. Only enable this iRule if offloading SSL
5. Only create this virtual server if offloading SSL

Creating the iRule

The next task is to create an iRule on the BIG-IP system. The iRule inspects all HTTP requests coming into the BIG-IP system, and checks the requested URI against the list of URIs you gathered from the WebSphere configuration, and then directs the request to the appropriate load balancing pool.

You need the URIs from the WebSphere configuration you found in Gathering the WebSphere application information on page 4. You also need the BIG-IP LTM Pool names you created in the preceding table.

HTTP Request

The first section of the iRule configures the iRule to listen for all HTTP Requests. As the HTTP request comes through the BIG-IP system, the iRule checks the requested URI against the list created using the URIs gathered in our table. You do not modify this section of the iRule.

```bash
when HTTP_REQUEST {
    switch -glob [string tolower [HTTP::uri]] {
```

URI list

The next section of the iRule contains the URIs from the WebSphere application you found in Gathering the WebSphere application information on page 4. Each URI is on a separate line, surrounded by quotes, and ends with a hyphen (-) with the exception of the last entry.
In the following example, we list the URIs from our WebSphere Portal application. The URIs must be entirely in lower case. Change any uppercase letters to lowercase.

```
"/wps/pa_1_0_6d/*" -
"/wps/pa_1_0_6e/*" -
"/wps/pa_1_0_6c/*" -
"/wps/*" -
"/wsrp/*" -
"/wps/content/*" -
"/wps/pdm/*"
```

And this is list from our PlantsbyWebSphere application:

```
"/plantsbywebsphere/*" -
"/pbw/*" -
"/plants/*" -
```

Assigning the load balancing pool

After you have the list of URIs, the next task is to include a line that assigns the traffic to a pool. Because we created two unique pools per application (one for HTTP and another for HTTPS), we create an `if/else` statement to appropriately direct the traffic.

The first line checks if the traffic is coming if as HTTPS. If it is, we assign the traffic to the HTTPS pool (WebSphere_Portal_https in our example). Use the following syntax:

```
{ if {TCP::local_port == 443} {
  pool <HTTPS-Pool-Name>
}
```

In our example, it looks like the following:

```
{ if {TCP::local_port == 443} {
  pool WebSphere_Portal_https
}
```

The else statement sends the traffic that is not HTTPS to the HTTP pool (WebSphere_Portal_http in our example).

```
} else {
  pool <HTTP-Pool-Name>
}
```

In our example, it looks like the following:

```
} else {
  pool WebSphere_Portal_http
}
```

Repeat these lines for each WebSphere application that is a part of your implementation.

Closing the iRule

The final section is to add the default action, and the add two closing brackets:

```
default {
  HTTP::respond 200 content {
    Wrong URL
  }
}
```


Creating the iRule in the BIG-IP configuration utility

Once you have all of the pieces of the iRule, you create the iRule in the BIG-IP Configuration utility.

To create the iRule

1. On the Main tab, expand Local Traffic and then click iRules.
2. Click the Create button.
3. In the Name box, type a unique name, such as WebSphere-switch-iRule.
4. In the Definition section, add the iRule you created. In our example, the complete iRule looks like the following. Be sure to change all text in red from our example to match your settings. You may have more applications than the two in our example.

```
when HTTP_REQUEST {
  switch -glob [string tolower [HTTP::uri]] {
    #These are the URIs from our WebSphere Portal application
    /wps/pa_1_0_6d/* - /wps/pa_1_0_6e/* - /wps/pa_1_0_6c/* - /wps/* - /wsp/* - /wps/content/* - /wps/pdm/* {
      if {
        [TCP::local_port] == 443
      } {  # These are the URIs from our WebSphere Portal application
        pool WebSphere_Portal_https
      } else {
        pool WebSphere_Portal_http
      }
    }
    #These are the URIs from our PlantsByWebSphere application
    /plantsbywebsphere/* - /pbw/* - /plants/* {
      if {
        [TCP::local_port] == 443
      } {  # These are the URIs from our PlantsByWebSphere application
        pool PlantsByWebSphere_https
      } else {
        pool PlantsByWebSphere_http
      }
    }
    default {
      HTTP::respond 200 content {
        Wrong URL
      }
    }
  }
}
```

5. Click the Finished button.
Scenario 2: Configuring the BIG-IP LTM for WebSphere 8 Web Tier

In order to provide intelligent load balancing for the application without placing the BIG-IP LTM deeper within the application stack, the BIG-IP is placed in front of the IBM HTTP Servers.

Configuration example

The following is a logical configuration example of this scenario. In this example, a client requests an application. The BIG-IP receives the request and intelligently directs this request to an available HTTP Server.

Configuring the BIG-IP LTM for the IBM HTTP Servers

The following tables contain a list of BIG-IP configuration objects along with any non-default settings you should configure as a part of this deployment. Unless otherwise specified, settings not mentioned in the table can be configured as applicable for your configuration. For specific instructions on configuring individual objects, see the online help or product manuals.

<table>
<thead>
<tr>
<th>BIG-IP LTM Object</th>
<th>Non-default settings/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Monitor</td>
<td></td>
</tr>
<tr>
<td>(Main tab-->Local Traffic-->Monitors)</td>
<td>Name: Type a unique name</td>
</tr>
<tr>
<td></td>
<td>Type: HTTP</td>
</tr>
<tr>
<td></td>
<td>Interval: 30 (recommended)</td>
</tr>
<tr>
<td></td>
<td>Timeout: 91 (recommended)</td>
</tr>
<tr>
<td>Pool</td>
<td></td>
</tr>
<tr>
<td>(Main tab-->Local Traffic --> Pools)</td>
<td>Name: Type a unique name</td>
</tr>
<tr>
<td></td>
<td>Health Monitor: Select the monitor you created above</td>
</tr>
<tr>
<td></td>
<td>Slow Ramp Time: 300</td>
</tr>
<tr>
<td></td>
<td>Load Balancing Method: Choose a load balancing method. We recommend Least Connections (Member)</td>
</tr>
<tr>
<td></td>
<td>Address: Type the IP Address of the IBM HTTP Server nodes</td>
</tr>
<tr>
<td></td>
<td>Service Port: 80. Click Add and repeat Address and Service Port for all nodes.</td>
</tr>
</tbody>
</table>

1 You must select **Advanced** from the **Configuration** list for these options to appear.
<table>
<thead>
<tr>
<th>BIG-IP LTM Object</th>
<th>Non-default settings/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP<sup>4</sup> (
Profiles-->Services)</td>
<td>Name
Type a unique name
Parent Profile
http
Rewrite Redirect<sup>2</sup> Matching<sup>2</sup></td>
</tr>
<tr>
<td>TCP WAN (
Profiles-->Protocol)</td>
<td>Name
Type a unique name
Parent Profile
tcp-wan-optimized</td>
</tr>
<tr>
<td>TCP LAN (
Profiles-->Protocol)</td>
<td>Name
Type a unique name
Parent Profile
tcp-lan-optimized</td>
</tr>
<tr>
<td>Persistence<sup>2</sup> (
Profiles-->Persistence)</td>
<td>Name
Type a unique name
Parent Profile
Cookie
Name
Type a unique name
Parent Profile
Source Address Affinity<sup>2</sup></td>
</tr>
<tr>
<td>OneConnect (
Profiles-->Other)</td>
<td>Name
Type a unique name
Parent Profile
oneconnect</td>
</tr>
<tr>
<td>Client SSL<sup>2</sup> (
Profiles-->SSL)</td>
<td>Name
Type a unique name
Parent Profile
clientssl
Certificate and Key
Select the appropriate Certificate and Key</td>
</tr>
<tr>
<td>Web Acceleration (
Profiles-->Services)</td>
<td>Name
Type a unique name
Parent Profile
optimized-caching
URI List
Optional. In our example, we add PlantsByWebSphere/servlet/ShoppingServlet to the Exclude list to avoid caching the Shopping Cart.</td>
</tr>
<tr>
<td>HTTP Compression (
Profiles-->Services)</td>
<td>Name
Type a unique name
Parent Profile
wan-optimized-compression</td>
</tr>
</tbody>
</table>

Virtual Servers (
Main tab-->Local Traffic-->Virtual Servers)

| HTTP | Name
Type a unique name.
Address
Type the IP Address for the virtual server
Service Port 80
Protocol Profile (client)⁴ Select the WAN optimized TCP profile you created
Protocol Profile (server)⁴ Select the LAN optimized TCP profile you created
OneConnect⁴ Select the OneConnect profile you created
HTTP Profile⁴ Select the HTTP profile you created
Web Acceleration profile⁴ Select the Web Acceleration profile you created
HTTP Compression profile⁴ Select the HTTP Compression profile you created
SNAT Pool² Automap (optional; see footnote 2)
iRule² If offloading SSL only: Enable the built-in _sys_https_redirect irule
Default Pool⁴ Select the pool you created above
Persistence Profile⁴ Select the Persistence profile you created |

1. You must select **Advanced** from the **Configuration** list for these options to appear. |
2. Only required if offloading SSL. Also see Note about configuring the BIG-IP system for SSL offload on page 13. |
3. Create two persistence profiles. Source Address Affinity is used as a fallback persistence method. |
4. Do not enable these objects on the HTTP virtual server if offloading SSL. The HTTP virtual server is only used for redirecting users to the HTTPS virtual server, and only requires a name, IP address, Port, and the redirect iRule. |
5. If you are offloading SSL, see Note about configuring the BIG-IP system for SSL offload on page 13 for an additional field to set on this profile.
BIG-IP LTM Object | **Non-default settings/Notes**
---|---
HTTPS¹ | Type a unique name.
Name | Type a unique name.
Address | Type the IP Address for the virtual server.
Service Port | 443
Protocol Profile (client) | Select the WAN optimized TCP profile you created.
Protocol Profile (server) | Select the LAN optimized TCP profile you created.
OneConnect | Select the OneConnect profile you created.
HTTP Profile | Select the HTTP profile you created.
Web Acceleration profile | Select the Web Acceleration profile you created. **Note:** If you are using WebAccelerator, be sure to select the profile you created in the WebAccelerator configuration table with the webacceleration parent.
HTTP Compression profile | Select the HTTP Compression profile you created.
SSL Profile (Client) | Select the Client SSL profile you created.
SNAT Pool ² | **Automap** (optional; see footnote ³)
Default Pool | Select the pool you created.
Default Persistence Profile | Select the Cookie Persistence profile you created.
Fallback Persistence Profile | Select the Source Address Affinity profile you created.

¹ Only create this virtual server if offloading SSL. See “Note about configuring the BIG-IP system for SSL offload” following.
² You must select **Advanced** from the **Configuration** list for these options to appear.
³ If want to use SNAT, and you have a large deployment expecting more than 64,000 simultaneous connections, you must configure a SNAT Pool with an IP address for each 64,000 simultaneous connections you expect. See the BIG-IP documentation on configuring SNAT Pools.

Note about configuring the BIG-IP system for SSL offload

For certain applications, when SSL offload is used, a special variable must be set on the BIG-IP system to tell the WebSphere Application server that SSL has been offloaded. This allows WebSphere to properly form its URLs and redirects, and reduces the need for iRules or Stream profiles on the BIG-IP system.

If the BIG-IP system is offloading SSL from your WebSphere application, we recommend performing the following tasks on the BIG-IP system and the WebSphere application server as applicable.

On the BIG-IP system

The HTTP profile must have the Request Header Insert enabled. To modify an existing profile to enable this header, use the following procedure.

1. On the Main tab, expand **Local Traffic** and then click **Profiles**.
2. Click the name of the HTTP profile you created for the WebSphere application.
3. In the **Request Header Insert** row, click the **Custom** button if necessary, and then use the following syntax in the box: `<value>`:

 For example: **httpsoffload**: Be sure to include the colon. This value must match the value you configure on the WebSphere Application Server in the next section.
4. Click the **Update** button.
On the WebSphere application server
The WebSphere application server needs to be configured to detect the header you configured in the preceding procedure. For more specific instructions, consult the WebSphere documentation.

1. Connect to the administration port for the WebSphere server.
2. Navigate to **Servers > Application Servers** and then select the App Server.
3. Navigate to **Web Container Settings > Web Container > Custom Properties**.
4. Add a property named **httpsIndicatorHeader** and add a value of **httpsoffload**.

Note that the property value must match the value used in the BIG-IP system, without the trailing colon, and finally, the property and value are case sensitive. Be sure you do not capitalize the "H" in **httpsIndicatorHeader** for WebSphere versions 7 or greater.

5. Navigate to **Environment > Virtual Hosts** and select the host for your application.
6. Select **Host Aliases**.
7. Add a property with the Host Name of ***** and a port of **443**

You must rebuild and redeploy your applications and restart your web and application servers.
Scenario 3: Configuring the BIG-IP LTM for the HTTP Tier and the WebSphere Application Tier

In this section, we configure the BIG-IP LTM to implement application monitoring and advanced load balancing capabilities which optimize traffic flows through all application infrastructure. The BIG-IP LTM ensures that traffic from front-end web servers is only sent to available application servers. In addition to the round robin and weighting capabilities included in the WebSphere framework, BIG-IP LTM can track server state, and, for example, send traffic to the fastest server, or to the server with the least connections.

In this section the BIG-IP LTM manages application traffic according to the network knowledge it has about the client, web tier and application tier. IBM WebSphere management tools are used to maintain the servers, and all web and application servers included in the deployment should be equally weighted.

This solution is powered in part by an iRule that enables persistence based on the application’s own unique identifier (JSESSIONID).

- For the scenario described in this chapter, we assume there are three VLANs available in the deployment architecture: one for the BIG-IP virtual servers, one for the presentation tier and one for the application tier. Also, our deployment places all front end web servers in the presentation tier VLAN and all application servers in the application tier VLAN.

- We assume you have configured the BIG-IP LTM for the IBM HTTP Server with the WebSphere plugin as described in Scenario 2: Configuring the BIG-IP LTM for WebSphere 8 Web Tier on page 11.

Configuration example

The following diagram shows an example configuration with a redundant pair of BIG-IP devices and a cluster of WebSphere servers. The HTTP servers and WebSphere application servers are configured to communicate with each other using WebSphere tools. In this configuration, we configure an iRule on the BIG-IP LTM system which uses the application’s JSESSIONID for persistence. While the diagram shows two separate BIG-IP LTM systems, the configuration could also be on a single BIG-IP LTM system.

The traffic flow is as follows:
1. Client request requests an application, such as http://app.example.com/PlantsByWebSphere/.
2. The BIG-IP directs this request to an available HTTP Server on port 80.
3. The HTTP Server sends the response to the BIG-IP virtual server listening on port 9080.
4. The BIG-IP directs traffic to an available WebSphere Application Server.
Configuring the BIG-IP LTM for the WebSphere Application Tier

The following tables contain a list of BIG-IP configuration objects along with any non-default settings you should configure as a part of this Application tier deployment. Unless otherwise specified, settings not mentioned in the table can be configured as applicable for your configuration. For specific instructions on configuring individual objects, see the online help or product manuals.

BIG-IP LTM Object

<table>
<thead>
<tr>
<th>BIG-IP LTM Object</th>
<th>Non-default settings/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Monitor</td>
<td></td>
</tr>
<tr>
<td>(Main tab-->Local Traffic-->Monitors)</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type a unique name</td>
</tr>
<tr>
<td>Type</td>
<td>HTTP</td>
</tr>
<tr>
<td>Interval</td>
<td>30 (recommended)</td>
</tr>
<tr>
<td>Timeout</td>
<td>91 (recommended)</td>
</tr>
</tbody>
</table>
| Send String | Optional. In our example, we use GET /PlantsByWebSphere/HTTP/1.0 $

Receive String	Optional. Type the result you expect the server to return if healthy. In our example, we use <title>Plants By WebSphere Promo</title>
Pool	
(Main tab-->Local Traffic-->Pools)	
Name	Type a unique name
Health Monitor	Select the monitor you created above
Slow Ramp Time	300
Load Balancing Method	Choose a load balancing method. We recommend Least Connections (Member)
Address	Type the IP Address of the WebSphere Application server nodes
Service Port	9080. Click Add and repeat Address and Service Port for all Application server nodes.
Profiles	
(Main tab-->Local Traffic-->Profiles)	
TCP LAN	Name
(Profiles-->Protocol)	Type a unique name
Parent Profile	tcp-lan-optimized
Name	Type a unique name
Definition	Copy and paste the following iRule, omitting the line numbers.

```
1
2 when CLIENT_ACCEPTED  {
3     set add_persist 1
4 }
5 when HTTP_RESPONSE {  
6     if { [HTTP::cookie exists "JSESSIONID"] and $add_persist } {  
7         persist add uie [HTTP::cookie "JSESSIONID"]  
8         set add_persist 0  
9     }
10 }
11 when HTTP_REQUEST {  
12     if { [HTTP::cookie exists "JSESSIONID"] } {  
13         persist uie [HTTP::cookie "JSESSIONID"]  
14     } else {  
15         set jsess [findstr [HTTP::url] "jsessionid" 11 "]  
16         if { $jsess != "" } {  
17             persist uie $jsess  
18         }
19     }
```

1 You must select Advanced from the Configuration list for these options to appear.
<table>
<thead>
<tr>
<th>BIG-IP LTM Object</th>
<th>Non-default settings/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere Application Server virtual</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type a unique name.</td>
</tr>
<tr>
<td>Destination</td>
<td>Type: Network Address: Type the IP Address for the virtual server Mask: Type the appropriate netmask.</td>
</tr>
<tr>
<td>Service Port</td>
<td>9080</td>
</tr>
<tr>
<td>Protocol Profile (server)</td>
<td>Select the LAN optimized TCP profile you created</td>
</tr>
<tr>
<td>HTTP Profile</td>
<td>Select HTTP</td>
</tr>
<tr>
<td>VLAN and Tunnel Traffic</td>
<td>Select Enabled On and then select the VLAN on which your IBM HTTP devices reside. Click the Add (<<) button.</td>
</tr>
<tr>
<td>SNAT Pool</td>
<td>Automap (optional; see footnote 3)</td>
</tr>
<tr>
<td>iRule</td>
<td>Select the iRule you created above</td>
</tr>
<tr>
<td>Default Pool</td>
<td>Select the pool you created above</td>
</tr>
<tr>
<td>HTTP Forwarding virtual</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type a unique name.</td>
</tr>
<tr>
<td>Destination</td>
<td>Type: Network Address: Type the IP Address for the virtual server Mask: Type the appropriate netmask.</td>
</tr>
<tr>
<td>Service Port</td>
<td>0 or select * All Ports from the list</td>
</tr>
<tr>
<td>Type</td>
<td>Forwarding (IP)</td>
</tr>
<tr>
<td>Protocol</td>
<td>*All Protocols</td>
</tr>
<tr>
<td>VLAN and Tunnel Traffic</td>
<td>Select Enabled On and then select the VLAN on which your IBM HTTP devices reside. Click the Add (<<) button.</td>
</tr>
<tr>
<td>SNAT Pool</td>
<td>Automap (optional; see footnote 3)</td>
</tr>
<tr>
<td>Application Forwarding virtual</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type a unique name.</td>
</tr>
<tr>
<td>Destination</td>
<td>Type: Network Address: Type the IP Address for the virtual server Mask: Type the appropriate netmask.</td>
</tr>
<tr>
<td>Service Port</td>
<td>0 or select * All Ports from the list</td>
</tr>
<tr>
<td>Type</td>
<td>Forwarding (IP)</td>
</tr>
<tr>
<td>Protocol</td>
<td>*All Protocols</td>
</tr>
<tr>
<td>VLAN and Tunnel Traffic</td>
<td>Select Enabled On and then select the VLAN on which your WebSphere Application servers reside. Click the Add (<<) button.</td>
</tr>
<tr>
<td>SNAT Pool</td>
<td>Automap (optional; see footnote 3)</td>
</tr>
</tbody>
</table>

1 You must select Advanced from the Configuration list for these options to appear
2 If want to use SNAT, and you have a large deployment expecting more than 64,000 simultaneous connections, you must configure a SNAT Pool with an IP address for each 64,000 simultaneous connections you expect. See the BIG-IP documentation on configuring SNAT Pools.
Configuring BIG-IP Application Security Manager for WebSphere

The BIG-IP Application Security Manager can add an additional layer of application security to your WebSphere deployment. WebSphere Application Server 8 has been tested with BIG-IP Application Security Manager (ASM) and users can use ASM to develop security policies that can protect their application servers.

There are two methods we can use to build a policy for WebSphere:

- You can use a tool such as IBM AppScan to scan for vulnerabilities and then import this list into BIG-IP system.
- You can create a policy using learning mode within ASM.

Prerequisites

- In order to build a security policy dynamically, a scanner such as IBM Rational AppScan should be available to scan your application server. In our environment AppScan Standard Edition version 8.0 was used.
- The BIG-IP Application Security Manager (ASM) should be fully installed, licensed and provisioned on your BIG-IP Appliance.
- If you have not already initially configured the BIG-IP ASM, we recommend you use the Getting Started guide for the initial configuration: http://support.f5.com/kb/en-us/products/big-ip_asm/manuals/product/asm_getting_started_11_0_0.html

Building a dynamic policy using data imported from IBM AppScan (option 1)

To dynamically build a BIG-IP ASM policy using an import from IBM AppScan, use the following steps:

1. Run the application scan of your environment and export the results via the XML export tool. Consult the AppScan documentation for specific instructions.
2. Click Application Security > Security Policies, and then click the Create button. The Deployment Wizard begins.
3. In the Local Traffic Deployment Scenario box, click Existing Virtual Server, and then click Next.
4. Configure the Local Traffic Settings page as applicable for your configuration, and then click Next.
5. In the Deployment Scenario box, select Create a policy using third party vulnerability assessment tool output.
6. Configure the Security Policy Properties page as applicable for your configuration.
7. From the Vulnerability Assessment Tool list, select IBM® AppScan® and then configure any exceptions as applicable for your configuration. Click Next.
8. Review the settings, and then click Finished.
9. On the Import IBM AppScan Vulnerabilities page, click Choose File, and then browse to the location of your AppScan results file.
10. Manually go through the list and select which vulnerabilities to mitigate.
11. Click the Apply Policy button in the upper right.
Building a policy automatically using BIG-IP ASM Learning mode (option 2)

To build a security policy automatically using BIG-IP ASM Learning mode, use the following steps:

1. Click **Application Security > Security Policies**, and then click the **Create** button. The Deployment Wizard begins.
2. In the **Local Traffic Deployment Scenario** box, click **Existing Virtual Server**, and then click **Next**.
3. Configure the **Local Traffic Settings** page as applicable for your configuration, and then click **Next**.
4. In the **Deployment Scenario** box, select **Create a policy automatically (recommended)**.
5. Configure the **Security Policy Properties** page as applicable for your configuration, and then click **Next**.
6. From the **Configure Attach Signatures** page, assign the appropriate Systems, and then click **Next**.
7. On the **Configure Automatic Policy Building** page, from the **Policy Type** list, select a policy type. The options here are **Fundamental**, **Enhanced** and **Comprehensive**. Fundamental policies enforce HTTP request protocols, Enhanced policies include Fundamental policies and also check URLs, cookies and all allowed methods. Comprehensive policies enforce Fundamental and Enhanced policies and check for meta characters on parameters, and dynamic parameters.
8. Configure the rest of the options on the Automatic Policy Building page as applicable for your configuration. Click **Next**.
9. Review the settings, and then click **Finished**.

After you finish the Security policy, the BIG-IP ASM goes through a period of learning where the BIG-IP ASM will generate a dynamic policy based on your environment. Once enough traffic has passed through the system, the BIG-IP ASM automatically begins enforcing these policies. You can check the status of your ASM by clicking **Application Security > Policy Building > Automatic > Status**.

Additionally, you can manually add a number of protections such as DOS prevention, Brute force prevention, IP enforcement, Web scraping detection, Cross-site request forgery protection, Sensitive data masking and Antivirus protection through an ICAP server.

This completes the BIG-IP ASM configuration. For more information, see the BIG-IP ASM documentation, available at http://support.f5.com/kb/en-us.html.
Appendix: Optional dynamic health monitor for Scenario 1

In this appendix, we describe how to dynamically configure BIG-IP LTM based on health information learned from the WebSphere system. Dynamic load manipulation of pool member ratios is possible when BIG-IP LTM is deployed as described in Scenario 1 of this deployment guide, specifically, the scenario where the BIG-IP system is directly load balancing connections for WebSphere.

Prerequisites

The following are prerequisites and configuration notes for this appendix.

- An IBM Monitoring solution that can provide real-time or near real-time information via SNMP. In this guide we used the IBM WebSphere SNMP Agent for WebSphere 8.5.0.1, a production ready SNMP Agent. It is also possible to use IBM Tivoli Composite Application Manager (ITCAM) based on the NetCool monitoring platform.

- A BIG-IP LTM that has been deployed as described in Scenario 1 of this deployment guide.

- IBM WebSphere 8.5.0.1 (Fix Pack 1) contains a critical fix for the SNMP Agent.

- A free login account to F5’s DevCentral community (http://devcentral.f5.com)

More information about IBM WebSphere SNMP Agent can be found by watching this short presentation: http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.was_v8/was/8.5.0.1/Performance/WASV8501_SnmpAgent/player.html

While this deployment guide does give some information about configuring IBM WebSphere SNMP Agent, specific installation information about SNMP Agent can be found here: http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/ae/welcome_ndmp.html

Solution Overview

When the BIG-IP LTM is deployed directly in front of WebSphere server, the ability to monitor and control WebSphere application server pool members dynamically becomes possible. By layering dynamic monitoring along with standard HTTP monitors, we can control the ratio of requests sent to a particular pool member if particular indicators warrant a change.

In this example, we have setup an SNMP Agent on our WebSphere Server and we are monitoring our Java Heap Size. Once the Heap Size exceeds a predetermined threshold, the ratio is adjusted.

Monitor diagram with no ITCAM monitoring
Configuring WebSphere 8.5.0.1 Application Center for this scenario

In this section, we summarize our test environment and changes to WebSphere Application Center. Refer to IBM WebSphere product documentation on the exact configuration procedures.

There are four basic steps after your application environment is up and running: installing the SNMP Agent, configuring the SNMP Agent, configuring RMI or SOAP, and pulling the OID from the MIB.

The goal of this setup is to have an SNMP agent to monitor and to be able to retrieve the OID from the BIG-IP system.

Configuring the IBM SNMP Agent used in this example

The configuration in this section are examples only, refer to the IBM documentation and the prerequisites and documentation at the beginning of this section. For reference, we include direct links to IBM documentation.

1. Use the wsadmin.sh interface to WebSphere to install the SNMP Agent. In our example, we launched wsadmin.sh in the Deployment Manager Context (Dmgr01) and used the interactive mode by issuing the following command:

 `$AdminTask setVariable {-interactive}`

 and then

 `$AdminTask importserver {-interactive}`

 Refer to the following instructions for specific step-by-step details:

 We used interactive mode as it seemed to be less error-prone than the instructions on this page.

2. Export the Certificate Store on the SOAP interface of your WebSphere application server to allow for secure connections from your SNMPAgent. You will use the XWindows ikeyman.sh. ikeyman is documented in various places on IBM.com including here: http://pic.dhe.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=%2Fcom.ibm.websphere.express.doc%2Finfo%2Fexp%2Fae%2Fsec_keyru.html

3. Configure agentConfig.xml and jmxConfig.xml which control the SNMP variables and monitoring variables, respectively. These are the settings that the SNMP program will use to connect. In our example, we set ipAddress to localhost and snmpPort to 10162. We set user to user and password to password, and set authMode to md5. Within jmxConfig we set the connectorType to SOAP and Security to Yes. We set the
Address and Port to the SOAP interface of the WebSphere SOAP Listener. We set the trustStore to the fully qualified path of the Trust Store we exported in step two. We set the sampleInterval to 120 seconds. Finally, we provided the User and Password to the SOAP console, in this case because it is a default install, wasadmin and wasadmin, respectively. For complete instructions see this link: http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.iseries.doc%2Ftprf_snmp_install.html

4. Fourth, we used the snmpwalk program within the BIG-IP system to test the connection and pull the OID we are interested in, Java Heap Size. In this case, that OID is: .1.3.6.1.4.1.1977.2.10.13.2.1.126.36

The following IBM link details the Tables that can be retrieved: http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.iseries.doc%2Ftprf_snmp_accessing.html

By probing the CounterTable for example, we were able to find the appropriate OID. The full command we used was:

snmpwalk -v3 -u user -a md5 -A password 10.0.1.170:10162 1.3.6.1.4.1.1977.2.10.13.2.1.126.36

This completes the setup of the SNMP Agent on WebSphere in our example. If you are using IBM Tivoli Composite Application Manager (ITCAM) or another solution, the bottom line is that at the completion of this section, you should have and SNMP agent and OID to probe.

Configuring the monitor on the BIG-IP system

In this section, we configure a new monitor that is layered on any existing monitors (such as HTTP or TCP). This monitor probes the health of the JVM (or another SNMP variable) and then dynamically changes the monitor.

To configure the monitor on the BIG-IP system

You may need to log in, or register for a free account before you can access this page.

2. In the Monitor Source section, move your curser to the upper right corner of the code box, and then click the View Source (< >) icon. Save the file with a name like such as IBMWebSphereMonitor.pl

3. Open the file in a text editor to edit the following variables in red text if necessary (the numbers on the left correspond to the line numbers in the Monitor Source section):
```
# Configuration Section

# This is the pool that this monitor is applied to. You can specify it here
# or pass it in as the parameter for the monitor.
my $pool = "<pool name>";

# For version 11.x and above leave this
my $partition = "/Common/";

# SNMP Version to use, options are V1, V2c, V3
my $snmp_version = "V3";

# SNMP Community to use if V1 or V2
my $snmp_community = "public";

# SNMP Variables to use if V3
my $snmp_auth_type = "md5";
my $snmp_user = "user";
my $snmp_password = "password";
my $snmp_port = "10162";

# Specify here what items to consider when determining the ratio for the node
my @ratio_items = ( 'cpu' );
my @ratio_items = ( 'cpu', 'memory', 'disk' );

# Specify the Coefficient for each item here
my %coefficient = (
  'memory' => 4,
  'cpu' => 2,
  'disk' => 1,
);

# Specify the Threshold for each item here (between 0.00 and 1.00)
my %threshold = (
  'memory' => 0.9,
  'cpu' => 0.9,
  'disk' => 0.9,
);

# Define one or more OIDs or calculations for each item to monitor. If
# multiple items are listed then the results are averaged. Each item may be
# a single OID but may also contain multiple OIDs and/or constants separated
# by basic arithmetic operators (Such as +, -, /, and *). OIDs must be numeric
# and must begin with a period.
my %oids;
$oids{cpu} = [ '.1.3.6.1.4.1.1977.22.101.2.1.126.36 / 100' ];
```

4. Save the file in a location accessible by the BIG-IP system.
5. Log on to the BIG-IP system Configuration utility.
6. Click **System > File Management > External Monitor Program File List**.
7. Click the **Import** button.
8. In the **File Name** row, click **Choose File** and then browse to the script file you just edited.
9. In the **Name** box, give the file a name. We use: **IBMWebSphereMonitor.pl** again.
10. Click **Import**.
11. Repeat steps 5-10 on each BIG-IP device (all Active and Standby units) that are a part of this configuration.
12. Click **Local Traffic > Monitors**, and then click the **Create** button.
13. In the **Name** box, give the monitor a name, such as *IBMWebSphereMonitor*.
14. From the **Type** list, select *External*.
15. In the **Interval** box, type *120*.
16. In the **Timeout** box, type *361*.
17. From the **External Program** list, select the name of the script file you imported.
18. Click **Finished**. The final task is to associate the monitor with the Pool.
19. Click Local Traffic > Pools.
20. From the list, select the name of the WebSphere pool you created previously.
21. In the **Health Monitor** section, from the **Available** list, select the name of the monitor you just created, and click the Add (<<) button to move it to the **Active** list. This monitor should be in addition to the other monitor you already added to the pool.
22. Click **Update**.

This concludes the instructions on the dynamic monitor for WebSphere 8.
Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>New guide</td>
<td>06-01-2012</td>
</tr>
</tbody>
</table>
| 1.1 | - Added Appendix: Optional dynamic health monitor for Scenario 1 on page 20 with instructions on configuring a dynamic monitor.
- Added Configuring BIG-IP Application Security Manager for WebSphere on page 18 with instructions on configuring BIG-IP ASM for application-layer security for WebSphere.
- Added Note about configuring the BIG-IP system for SSL offload on page 13 with specific instructions on configuring SSL offload on the BIG-IP system and the WebSphere servers. | 04-18-2013 |
| 1.2 | Added a missing closing bracket (line 17) to the iRule in Creating the iRule in the BIG-IP configuration utility on page 10. | 04-26-2012 |