

M
y Bank

Transfer Com
plete

Next Transfer

A big yes to modernization.
But what about complexity?

Get the report ›

As applications become more distributed
than ever, complexity continues to rise.
And with 84% of organizations planning moves
toward the edge, this complexity will only
increase. Read these and other trends in the
latest F5 State of Application Strategy Report.

https://www.f5.com/state-of-application-strategy-report?utm_medium=owned-social&utm_source=twitter&utm_campaign=ww-alwys_adapp

Overcoming IT
Complexity

Simplify Operations, Enable Innovation, and
Cultivate Successful Cloud Outcomes

With Early Release ebooks, you get books
in their earliest form—the author’s raw and

unedited content as they write—so you can take
advantage of these technologies long before the

official release of these titles.

Lee Atchison
with contributions from Mark Menger

978-1-492-09843-0

[FILL IN]

Overcoming IT Complexity
by Lee Atchison

Copyright © 2022 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Jennifer Pollock and Gary O’Brien

Production Editor: Beth Kelly

Copyeditor: FILL IN COPYEDITOR

Proofreader: FILL IN PROOFREADER

Indexer: FILL IN INDEXER

Interior Designer: Monica Kamsvaag

Cover Designer: FILL IN COVER DESIGNER

Illustrator: Kate Dullea

March 2023: First Edition

Revision History for the Early Release
2022-07-07: First Release

2022-08-08: Second Release

2022-09-21: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492098492 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Overcoming IT Complexity,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s
views. While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the author
disclaim all responsibility for errors or omissions, including without limitation responsibility
for damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technology
this work contains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492098492

Contents

1 | What is the Modern IT Complexity Dilemma? 7

2 | Auditing and Assessing Your IT Ecosystem 33

3 | Moving to an Adaptive Architecture 51

v

What is the Modern IT
Complexity Dilemma?

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advan-

tage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content

and/or examples in this book, or if you notice missing material within

this chapter, please reach out to the editor at gobrien@oreilly.com.

The complexity of modern IT systems supporting modern applications can
impact your customers, your partners, your employees, and the quality and secu-
rity of your application.

Addressing this complexity dilemma is essential, but it is not easy. The IT
Complexity Dilemma refers to the challenges businesses face when trying to
manage and optimize their IT operations. The increasing complexity of modern
IT systems has made it difficult for businesses to keep up with technology
changes and make necessary updates to their infrastructure, making it difficult
for them to realize their desired return on their technology investments. Busi-
ness pressures have caused IT organizations to focus increasingly on creating
new features and focus less on resolving ongoing problems and upgrading exist-
ing architectures. This has led to a build-up of technical debt, which can have
consequences such as slowed business processes, increased IT costs, and even
system failures.

7

| 1

There are several measures that businesses can take to mitigate the effects
of the IT Complexity Dilemma, including investing in automation technologies,
establishing standard operating procedures, and hiring skilled IT professionals.
By taking these steps, businesses can improve their ability to manage and opti-
mize their IT operations, minimizing the negative impacts of complexity.

However, even with these measures in place, businesses will still face chal-
lenges in managing their IT operations due to the increasing complexity of
modern IT systems. By attempting to mitigate the effects of this complexity,
businesses can improve their efficiency, security, and competitiveness in today’s
increasingly complex IT environment.

As we will discuss later in this chapter, the core to the complexity dilemma is
this technical debt. In fact, technical debt and complexity go hand-in-hand. We’ll
learn that, beneath the surface, technical debt is much more than needed code
refactorings.

Technical debt and complexity go hand-in-hand.

Instead, technical debt is a metric that describes everything that interferes
with the smooth operation and customer experience of an application. In other
words, technical debt is everything that makes the application complex—whether
that is operational complexity, complex customer experiences, or simply com-
plexity that makes the application difficult to enhance, expand, and improve.

But before we can talk about complexity, it’s important to understand how
IT organizations are structured in modern enterprises, and how the operations
and development teams within the IT organization interact to create a working
system.

Structure of Modern IT Organizations

IT organizations vary considerably in size and shape. A modern IT organiza-
tion is typically a relatively flat, matrix-type structure. Teams of developers and
operators work together closely in this organization. To keep up with the fast
pace of customer demand and technological change, both the development and
operations teams need to adapt quickly. Development needs to both quickly build
new systems and applications and be able to repair and upgrade existing systems.
Operations not only needs to deploy and manage those systems quickly but

8 | OVERCOMING IT COMPLEXITY

also detect and resolve problems when they occur. A close, working relationship
between development and operations is critical to this speed.

However, natural separations start taking shape as applications grow in
complexity and the organization grows in size. Traditional divisions between
development and operations begin to formalize, and the space between the two
groups grows and expands.

A flat management structure has been able in the past to assist the orga-
nization in keeping the communications channels flowing as much as possi-
ble—flowing between development, operations, security, and product leadership
teams. But, as the organization grows, keeping the organization flat and respon-
sive becomes harder and harder.

Management and organizational structures are required to keep the growing
organization operational. Formalized processes help yield consistent results and
plans. Yet, these same structures and processes create a natural blockage to
communications flow. This blockage makes

it harder for the organization to function. Teams split, and the organizational
distancing limits cooperation and communications. This limits growth.

Ironically, the biggest inhibiter to growth is, in fact, growth.

Ironically, the biggest inhibiter to growth is, in fact, growth.

The organizational structure gets more complex, and the application gets
more complex.

Since an IT organization is only as good as the management that drives it, it
is essential to have a strong and effective management team in place. This team
is responsible for steering the organization in the right direction, setting goals
and objectives, and ensuring that all aspects are running smoothly.

The management team must also adapt to changes quickly and effectively
respond to new demands in the marketplace. They must work across organiza-
tional boundaries, and operate in unison with all product, development, opera-
tional, and support teams.

How the IT organization is structured varies considerably based on the
nature of the business. The type of company is the biggest indicator of the
structure of the IT organization. And nothing drives the organization more
significantly than where and how the software development teams are organized.

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 9

ROLE OF SOFTWARE DEVELOPMENT IN IT ORGANIZATIONS

Within an IT organization, the structure and responsibility of the development
organization is related to the nature of the business and the structure of the rest
of the company. The importance of the development organization ranges from
a limited role in managing internal processes and systems to a role of being an
integral part of the core business model of the company. This means there is no
one-size-fits-all organizational structure that defines a modern IT organization.

But we can generalize. For this discussion, we’re going to define three types
of businesses and describe the IT organization structure that tends to occur in
each of these businesses:

• The SaaS Focused IT Organizations

• The Non-SaaS Software Focused IT Organizations

• The Non-software Focused IT Organizations

Let’s look at each of the three types individually and their characteristics.
Then we will look at how the IT and software development organizations look
different inside each type of company. In the end, you will find that your circum-
stances lead to an amalgam of two or three of these types.

Business Type #1: The SaaS Focused IT Organizations

This is a business where the primary purpose is to create a Software as a Service
(SaaS) application, or a company where the operation of customer software is
the primary goal of the business. This includes business-to-business (B2B) com-
panies providing services such as inventory management, financial planning,
communications, and sales infrastructure. Examples of SaaS companies and
products include Intuit QuickBooks, Slack, Shopify, MailChimp, and Salesforce.

There are also business-to-consumer (B2C) SaaS companies providing enter-
tainment, retail shopping, and social media services. Example B2C SaaS compa-
nies include Amazon, Netflix, Facebook, and Twitter.

A highly functional SaaS organization requires a high caliber application
development team, and a high caliber operations organization. The two teams
must cooperate to succeed. DevOps is a common model in a modern organiza-
tional structure.

Take a look at the example SaaS company in Figure 1-1. The engineering
and product management of a SaaS company are typically proportionately large
groups that require large investments in application development. Each team
owns a part of the overall SaaS application and builds, tests, deploys, operates,

10 | OVERCOMING IT COMPLEXITY

and maintains only the services they are responsible for. Operations teams pro-
vide a smooth operations infrastructure that supports the development teams.
The focus of the enterprise, typically, is on the software development teams.
These companies may have separate IT organizations to support business pro-
cesses, but the application development teams are not part of that organization.

Figure 1-1. SaaS Focused Organization

In these high tech, software driven companies, the application development
teams are a core component of the enterprise. Given its importance, this group
reports high in the company’s organizational hierarchy.

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 11

Business Type #2: The Non-SaaS Software IT Organizations

This is a business with the primary purpose of creating software that they sell to
other people or companies, but they typically do not operate the software for their
customers. Any software that doesn’t require a significant back-end SaaS-like
application to function requires the software they produce to be operated directly
by the customer.

Examples of this type of software include popular software such as Microsoft
Word and Adobe Illustrator. But it can also include game software such as
Angry Birds, music applications, and ebook readers. It might include tools like
anti-virus software, firewalls, and news aggregators.

A non-SaaS software organization has a software or engineering focused
mission. These organizations have high caliber applications development teams,
but they typically do not have a strong operations team. Since the software the
organization sells is given to customers to run, rather than operated by the
company itself, there is no need for a large operational focus.

A generic separate IT Organization provides tools and processes that sup-
port the company as a whole, including the product development teams and
sales/marketing, etc. However, these teams are support teams. They support
the efforts of the product development teams, but they do not contribute to the
product development or operations at all.

12 | OVERCOMING IT COMPLEXITY

Figure 1-2. Non-SaaS Software Company

Take a look at the example in Figure 1-2. Non-SaaS software companies have
the same focus on application development teams as SaaS focused organizations,
but these teams are typically not DevOps teams. They are independent software
development teams that produce software sold and delivered to customers. The
IT organization is small and provides support to the company as a whole, includ-
ing development and operations of tools for the company. The IT organization
is separate and isolated from the primary, mainstream product development
software teams.

Business Type #3: The Non-Software Focused IT Organizations

This is a business with a primary purpose other than producing, selling, or oper-
ating software. They likely will use both internally and perhaps customer facing

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 13

software to run their business, but their primary business is not software. This
is almost all non-technology focused companies, including banks, restaurants,
stores, taxi services, airlines, railroads, media companies, etc.

Notice that some companies do fit multiple categories. For instance, Micro-
soft offers SaaS services (Office 365) and non-SaaS software (Microsoft Word and
Halo). Additionally, a company such as Charles Schwab may offer investment
software as a service, yet they also focus on general financial services and invest-
ments. These companies may have different divisions that appear to be separate
companies, each structured differently. Or they may have a hybrid structure.
Keep in mind that these categories are generalizations.

The mission of a non-software company is not technology focused. They may
use software as a tool internally to manage the sales, marketing, manufacturing,
or other business processes, but software is secondary to their primary business.

As such, there are no large application development teams. There is an
IT organization, and that organization will have a relatively small development
and operations team within the IT organization itself. Calling the organization
“small” is in relation to the company itself. Only a small portion of the compa-
ny’s resources are invested in IT systems and personnel.

Figure 1-3 illustrates this. The company leadership has bigger things to focus
on, leaving IT leadership to manage these small development and operations
teams.

14 | OVERCOMING IT COMPLEXITY

Figure 1-3. Non-Software Focused Company

For these more traditional non-software-based enterprise companies, the IT
organization is purely in a supportive role. The IT organization is primarily
operations focused, but may also have some development capabilities. Tooling
and operational processes are the central focus.

THE STRUCTURE OF IT ORGANIZATIONS

Within an IT organization, the development teams are focused on driving the
tooling and resources needed to operate the company, including building applica-
tions necessary for the company to run. The responsibilities and the processes
the teams follow depend on where the company fits within the three types of
organizations we just discussed.

Development – Company Focus and Talent Availability

There is a direct correlation between the amount of focus your company places
on software development with the availability of high quality technical talent and
software leadership available to your organization. The best software developers,

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 15

architects, and software leaders tend to gravitate towards the much more lucra-
tive opportunities in SaaS application development, and other software-centric
companies.

This means that organizations where software plays only a secondary role in
the company’s mission find it difficult to attract and retain software talent. Often
this means the organization, as a whole, suffers. Yes, there are high quality,
talented developers in these organizations, but they are much harder to locate
and hire, and hence tend to be less available to a typical non-development-centric
organization. This tends to create less innovation and fewer creative solutions to
problems in these types of organizations. Rather than state of the art software
applications, the applications created in such organizations tend to be supportive
applications that lack a high degree of innovation.

The caliber of your IT development teams is critically important in determin-
ing the sophistication of applications your organization can support, and your
organization’s ability to respond to the increase in complexity that occurs over
time.

The result is, organizations where software is a secondary part of the busi-
ness rather than a primary part tend to be organizations that are more sensitive
to the IT complexity dilemma.

Operations — Different Focus than Development

Interestingly, a different characteristic occurs in the operations part of IT organi-
zations. Operations organizations tend to attract high quality talent based on how
central the operational aspects of the organization are to the business focus. This
means SaaS companies, which are highly dependent on high quality operational
organizations, tend to attract high quality operational talent, compared to organi-
zations where the operations are secondary to the goals of the business.

The next highest talent attraction is to non-software companies that require
a significant internal software infrastructure to keep the organization running
smoothly. This includes organizations such as banks and other financial firms.
These companies have important software infrastructures that must stay opera-
tional and attract strong operational-focused talent.

Less attractive to operational talent are companies that produce “boxed” soft-
ware that is operated on customer computers and systems, rather than internal
operational environments.

This makes sense. SaaS companies rely heavily on highly performant opera-
tional environments and invest heavily in these areas. This investment, and
the opportunities it produces, attract the top operational engineering talent to

16 | OVERCOMING IT COMPLEXITY

these organizations. Organizations that are less operations focused need less
investment in this area, and hence don’t attract as much interest.

Traditional operations, however, is changing. Many traditional operational
capabilities are handled by outsourced infrastructure, such as SaaS applications
and cloud service providers. Additionally, newer tooling and capabilities auto-
mate a large portion of basic operational needs.

Tools such as Infrastructure as Code (IaC) and Operations as Code (OaC) help
with this automation, and strive to make operational setup and basic operational
responsibilities automated and repeatable. This improves overall operational reli-
ability. Additionally, since Scripts and script-like descriptions drive iaC and OaC,
these capabilities encourage code as documentation and knowledge sharing of
the operational environments involved. Finally, since IaC and OaC generalize the
operational aspects of an application into code-like capabilities, they allow the
use of standardized and well understood development processes, such as revision
management. Revision management allows tracking and correlating failures to
changes, creating a better operating team, reducing mistakes, increasing security
and traceability, and improving overall accountability.

The Role of DevOps in Modernization Enterprise

DevOps is a term in wide use in modern application organizations. It describes
the collaboration between development and operations teams within an organiza-
tion. The intent of DevOps is to break down the traditional barriers that exist
between these two groups and encourage collaboration and cooperation, allow-
ing them to work together more effectively and efficiently. This leads to faster
problem solving, increased efficiency and responsiveness, and overall higher
application quality and availability. DevOps is becoming the norm in modern IT
organizations.

In a DevOps organization, individual teams own some portion of the applica-
tion—both the development and testing of the component and the deployment
and ongoing operation of the component. In modern applications, the compo-
nents are typically application services, meaning the owning team is responsible
for the development, testing, deployment, operation, and ongoing support of the
services in their care.

Take a look at Figure 1-4. This shows a software company that uses DevOps
principles. As such, it describes the same sort of SaaS company described back
in Figure 1-1. The primary difference is that both the development aspects, and
most of the operational aspects of ownership are assigned to the same team
under the engineering and product leadership organization. There is still a very

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 17

thin operations support organization, but the job of this organization is not to
manage the operations of the application; rather, their job is more of a tools and
infrastructure team. They provide tools and assistance to the product teams that
own and operate their individual services.

Figure 1-4. DevOps Focused Software Company

By merging the development and operational aspects of individual services
into a single organization, communication barriers between the historically typ-
ical development org and operations org diminish, which improves the perfor-
mance and reliability of the organization.

Now that we understand more about how modern IT organizations are struc-
tured, we can talk about the problem complexity plays in these organizations and
how complexity impacts the long term viability and success of the organization.

18 | OVERCOMING IT COMPLEXITY

THE ADVENT OF COMPLEXITY

It’s hard to point exactly when complexity begins within a young startup IT
organization, but it’s usually tied to some decision that was meant to reduce time
to market or cost to market, at the expense of some further work or cost later on.
This starts the slow and inexorable climb in complexity. For larger, more estab-
lished enterprises it’s undoubtedly tied to the incorporation of technology into
the established enterprise’s processes. In either case, the increase in complexity
is tied to the increase in technical debt. So the advent of IT complexity is driven
by the collection of technical debt within the organization.

Technical Debt – The Key to Complexity

In software development, technical debt is the cost of additional rework caused
by choosing an easy, limited, or sub-optimal solution now, rather than using a
better approach that would take longer or cost more money.

Ward Cunningham coined the term technical debt. According to Ward:
“technical debt includes those internal things that you choose not to do now,

but which impede future development if left undone.”
The code development aspect of technical debt only captures a small part

of it. Technical debt applies to all aspects of the modern application design,
development, and long term operation of the application.

For SaaS and other cloud-centric applications, the long-term operational
impact is a significant driver of technical debt. The longer an application oper-
ates, the greater the technical debt. The greater an application’s technical debt,
the greater the negative impact on the long-term operation of the service.

When a SaaS company decides to add a new capability to an application
but takes shortcuts in the architecture to launch the capability quicker, they
are adding to the technical debt of the application and the company. Unless a
concerted effort is made to resolve the technical debt by completing the proper
design and architecture, your application will build up this debt until it hinders
your development and operational processes.

Technical debt is similar to financial debt. In moderation, it can be handled
and the cost can be dealt with. But if technical debt is not repaid, it can accumu-
late “interest” in the form of additional technical debt. Just as in financial debt,
too much interest and you can no longer afford to repay the debt. Too much
technical debt makes the changes necessary to resolve (or pay back) the technical
debt harder and more expensive to implement.

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 19

Let your financial debt grow too large, and you will go broke. Let your
technical debt grow too large, and your application will become unsupportable
and unsustainable.

How does technical debt grow? Technical debt can grow naturally and quietly
during the normal product development process. Every project that contributes
to a product, also contributes to its technical debt. This is illustrated with the top
box in Figure 1-5. During the normal product development, work and output is
added to the product, as well as some amount of debt to the stack of technical
debt

Sometimes, a project is done “quick and dirty”, such as when a new feature
is added without proper design in order to get it out the door quicker. In these
cases, the project adds more debt. Sometimes, the project can even add more
technical debt than useful capabilities. This is the example project shown in the
middle box in Figure 1-5. More technical debt is added to your application than
the amount of real value the project provided.

Figure 1-5. Flow of technical debt during product development

To keep technical debt from growing without bounds, some effort needs to
be added to each project to reduce the technical debt. As shown in the bottom
box in Figure 1-5, keeping your technical debt at a sustainable level requires
constant investment in reducing the technical debt over time.

This constant flow of increasing and decreasing technical debt is one of
the reasons why it can sneak up on a product. If more debt is regularly added

20 | OVERCOMING IT COMPLEXITY

than is reduced from the backlog, the debt will grow, yet the growth may not be
noticeable. It’s not until the debt has grown to a point where it starts having a
negative impact on your product that you notice its size. At this point, it may be
too large to deal with effectively and easily.

Each project can either increase or decrease the technical debt within a
system. During a full, high quality project, the planned work often includes
doing all the work necessary, along with working on reducing some amount of
related technical debt. When the work is completed, the technical debt for the
application is lower than it was before. This is illustrated in Figure 1-6. The work
completed for the project is larger than the project itself, and the extra effort is
towards reducing the size of the technical debt. This is a project that’s dealing
with technical debt in a healthy way.

Figure 1-6. A full/complete project can plan to reduce technical debt

Unfortunately, many projects are much more quick and dirty. They are
designed to only complete as much of the project as is absolutely necessary, leav-
ing the rest of the project as work that will be completed later. In fact, a common
project management philosophy involves building an MVP — Minimum Viable
Product, essentially dictating that you do as little product work as possible to get a
functional product out the door.

The result is work that is not completed. More often than not, this increases
the overall technical debt of the application. This phenomenon is illustrated in
Figure 1-7. Here, the work completed is only part of the total project. We have left
some amount of work not done out of the project. This additional work which

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 21

was not completed, ends up increasing the overall technical debt remaining in
the project.

Figure 1-7. A quick & dirty project often increases technical debt

In any case, as projects are executed, the amount of technical debt can vary
over time, sometimes decreasing, sometimes increasing. The more full, high
quality projects that are completed, the lower the overall technical debt. The more
quick and dirty projects used to implement functionality, the higher the resulting
technical debt. The types of projects you execute will, over time, vary the total
technical debt you have in your application.

The Negative Impact of Technical Debt Sometimes deciding to build a simpler
solution now, in favor of delaying longer term implementation is advantageous
(this is the Figure 1-7 situation). It allows you to get a solution out to customers
earlier, which allows the company to start monetizing the change, and receive
customer input on capabilities the customer likes and does not like, which can
be fed into a later, more ambitious solution. This is analogous to saying that
borrowing money is advantageous if you use the money to contribute to a greater
cause, such as purchasing a home. Paying some interest on borrowed money
is fine, as long as the money you borrowed is put to good use. So too, with
technical debt, managing some technical debt is useful and appropriate as long
as you give value to your product and your company. Technical debt becomes
a problem when it is left unresolved—unresolved technical debt ages over time
and increases in cost.

Using the financial metaphor, technical debt becomes a problem when it
builds up so that the cost of servicing the debt is too great, and it impedes your

22 | OVERCOMING IT COMPLEXITY

ability to invest in future projects. So, too, technical debt becomes a problem
when managing and servicing that debt is overwhelming compared to managing
and servicing the product.

When too many quick and dirty projects rule your project plan, and projects
designed to reduce debt are not staffed in your company, your debt starts to
become unmanageable. If this goes on for too long, technical debt overwhelms
the project, as shown in Figure 1-8.

Figure 1-8. Technical debt overwhelming the project

In this scenario, servicing the debt becomes the dominant role of your team,
and you spend little or no time contributing to improving the product. Your debt
is too large to be effectively managed.

The organizational pain of complexity

Technical debt and complexity go hand-in-hand. So too do complexity and organ-
izational pain. While technical debt is not a complete picture of application
complexity, the growth of technical debt is tied very closely to the growth of
application complexity.

As your application gets more and more complex, many things happen to it:
It becomes brittle
A complex application is subject to minor issues quickly escalating into

major problems. While most applications operate in a well of a positive feedback
cycle, a complex application’s operational well turns into a negative feedback
cycle, and minor issues quickly escalate out of control. Figure 1-9 shows a stable
application tends to stay in the valley between the two hills, which builds success

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 23

upon success, while the brittle application is ready to roll away off the top of the
hill into failure at the smallest of nudges.

Figure 1-9. Application brittleness leads to instability and failure.

Fewer engineers have complete knowledge of the application
Only the most senior engineers, and those engineers working on the applica-

tion the longest, have a broad understanding of how the complete application
works. As time goes on, the knowledge of these most senior engineers becomes

24 | OVERCOMING IT COMPLEXITY

diluted, less accurate, higher level, or more specialized. Broad, general purpose,
but detailed knowledge of the application as a whole is no longer possible by
single individuals.

The knowledge that engineers do have on the application becomes obsolete
quicker

Complex applications change frequently, and engineers’ knowledge about
how the application works gets outdated quicker.

It gets harder to bring new engineers up to speed
Complex applications have long learning paths. This is not only because

there is more to learn. The knowledge needed for new engineers to become
productive is more distributed, anecdotal, and out of date.

The net result of these issues is higher organizational pain. This pain trans-
lates into poor quality changes, less motivated staff, and ultimate staff turnover.
Higher turnover means greater need to train new engineers, which is harder as
the pain increases. Brittleness leads to lower availability, and customer-visible
issues and failures.

This is the pain of complexity.

Messy Desk Syndrome Imagine a perfectly clean desk. Now, take a sheet of
paper and set it in the corner. Is your desk messy? No, not yet. Now you take
fifty other sheets of paper that go together and sit them on top of the one sheet
in the corner. Is your desk messy? No, not yet. Now imagine more sheets, but
these don’t go with the stack in the corner, they are for a different project. So you
put them in different locations on the desk, just single sheets in single locations,
seemingly in a location that makes sense. Now put more papers and documents
and books and folders and pictures one at a time all over the desk. If you don’t
know where something goes, just put it in a new location. You’ll figure it out
later. Sooner or later, your desk is messy. In fact, it’s extremely messy.

Unless you have a solid organizational plan for organizing the papers on
your desk established at the beginning, and stick with it, sooner or later your desk
will become messy, one sheet at a time.

Your desk becomes messy because you didn’t have a plan from the begin-
ning, but just “winged it” along the way. You made your desk messy simply by
using and working on it.

So too, your organizational pain becomes large because you didn’t have an
architectural plan from the beginning. Rather, you started with no plan and
adjusted and changed the plan as time went along. You “winged it”, metaphori-

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 25

cally. You have added technical debt, and hence organizational pain, simply by
working and building the application.

Every action you take, little by little, builds up. Your technical debt grows a
bit at a time until it becomes overwhelming.

• “Let’s change our login process to allow saving login credentials in the•
user’s browser”

• “Let’s add this new feature to that menu”•

• “Users would rather this feature work in three steps rather than the cur-•
rent four steps. Let’s combine two of the steps.”

• “We need to remove the per-session limit on this resource”•

• “We don’t have time to build this full feature now, but we can build this•
smaller feature, which will make many customers happier. We can do the
rest later.”

• “Let’s release this feature this way first, and then we can collect input from•
customers and modify it to make it more user friendly as we get more
input”

Any one of these statements can correspond to a simple set of changes that
makes perfect sense at the time. It might not have any obvious impact on overall
technical debt at all.

But the little changes…and the little debt…and the little impact…and the little
piece of paper on the corner of your desk…adds up. And like the messy desk,
each action may individually seem perfectly benign. Actions may look perfectly
acceptable. But, when combined, they multiply and become overwhelming.

Icing the Cake

Many IT organizations use the expression “icing the cake”. Icing the cake

is when you describe the current situation as “everything is ok”, whether

it actually is ok or not.

The slow accrual of technical debt and organizational pain leads to

this process of icing the cake. At the start, all is well and it’s easy to say

“everything is ok”, because it is—or at least appears to be.

But as time goes on, and technical debt increases, and organiza-

tional pain increases, little by little, things aren’t ok any more. But the

26 | OVERCOMING IT COMPLEXITY

tendency to keep saying “everything is ok” is strong. The organization

keeps “icing the cake”.

Ultimately, a debt-ridden application operated by a pain-ridden orga-

nization still says that “everything is ok”. They fail to notice what’s obvi-

ous to every outsider. The pain is real and the organization is not ok.

Without you noticing it, the icing went bad.

Complexity in an IT Organization

Complexity grows in IT organizations as well. Complexity starts by growing
within your application. As your application grows complex, so does the infra-
structure needed to run the application. Your IT operations become more com-
plex. Your engineering organization becomes more complex. To wrap their
minds around all of this, your IT management gets more complex.

What started as a simple increase in the needs of your application, has
changed into the growth of a complex IT organization.

An organization that was once agile tends to change and migrate over time.
It changes into either a robust or rigid organization—one that is afraid of and
rejects change in order to keep the system stable and supported, or it changes
into a fragile organization—an organization where every minor change risks
breaking a larger system or process, limiting the ability to adjust and grow. This
is illustrated in Figure 1-10.

Figure 1-10. An Agile organization fails over time either by becoming rigid, or fragile.

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 27

As complexity increases, the ability of the organization to change direction
quickly and respond to new demands diminishes. The organization becomes less
agile.

As complexity increases, the ability of the organization to change

direction quickly and respond to new demands diminishes.

Almost independent of the specific company, complexity and technical debt
correspond to a lowered ability to respond to market and competitive demands.

Why is this true? There are typically two reasons why application complexity
leads a company to lower agility.

First, when an organization has overly complex applications, changes to
those applications are increasingly likely to cause problems. Small changes and
small adjustments cause large failures and outages to occur. This makes the
organization hesitate. Changes go through additional review cycles, changes get
consolidated, changes that don’t show clear value are discarded as too dangerous.
Rather than having a “Yes, we can try that” attitude, the stock attitude of the
organization changes to a much more conservative view. “No, not unless it’s
absolutely necessary” becomes the more likely answer.

This is the reaction to keep the application from failing. It’s the company’s
response to keeping the application robust—the fewer changes you make, the
safer the application is.

The application development process slows down considerably. This makes
the application—and the company—significantly less agile than its competitors.

Second, if the organization doesn’t naturally slow down, then it might con-
tinue to make changes. However, because of the application complexity, the
organization tends to make changes without understanding what’s involved in
the changes. This risky behavior leads to dangerous changes, and these changes
break things. The organization doesn’t slow down and become conservative,
but moves forward recklessly. The result? Application availability suffers and cus-
tomer issues increase. Technical debt increases even more than it had previously.
This feeds into the complexity and it creates a vicious circle. Complexity leads
to brittleness which leads to failures which lead to technical debt which leads to
complexity.

28 | OVERCOMING IT COMPLEXITY

IT Death

So, technical debt leads to complexity, and complexity leads to organizational
pain. This all ultimately leads to IT death.

But what does IT death look like?
IT death is what happens to an organization when the pain of complexity

sends the organization into a state of ineffectualness. It cannot improve, it cannot
grow, and hence it stagnates. Since competitors will continue to grow, an organi-
zation’s stagnation ultimately leads to its death.

You see it in many organizations.
Xerox, long the leader in copiers for larger organizations, suffered from the

inability to pivot from copiers to the personal computer. Despite the fact that
Xerox PARC originally conceived the modern personal computer user interface,1

they were unable to compete with Microsoft and Apple for the personal computer
operating system. Arguably, without Xerox PARC, there would be no Apple Mac-
intosh computer, yet Xerox’s inability to pivot kept them from this innovation.

It’s not just technology companies that suffer this fate. Firestone, the tire
company, was facing the difficult task of modernizing its tire creation process
in light of radial tire technology created by one of its competitors, Michelin.
Firestone bogged down and could not update its processes to handle the new
technology. Try as it might, it kept making tires that customers did not want, and
their business suffered. Ultimately, Firestone was absorbed by Bridgestone. This
is an example of what the Harvard Business Review2 calls Active Inertia.

Many other originally highly innovative companies fall into the trap of IT
death by losing their ability to innovate. Hewlett Packard, one of the founding
companies of Silicon Valley—the heart of technical innovation across the world
—found its lack of innovation lead to a slow death spiral.

And let’s not talk about the innovation failure of Polaroid, which couldn’t
innovate new camera technology; or Blockbuster Video, which failed to embrace
the importance of video streaming technology.

And Borders book store, which was overwhelmed by the innovation of the
upstart Amazon.com.

Technical debt and complexity slow down innovation. They keep companies
from staying competitive, and ultimately this results in their eventual downfall,
and potentially even death.

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 29

What makes a mature IT organization

A mature IT organization is an agile organization. It can make decisions quickly
and easily, stick by those decisions until organizational needs dictate a change,
and implement those decisions quickly and effectively.

Why is it important for a mature IT organization to be agile? Without agility,
companies fall into two traps that can bring them down:

• Lack of competitive offerings.•

• Unsafe security vulnerabilities.•

Let’s look at each of these in turn.

Competitive Offerings Maintaining competitiveness is critical to a modern
application. This is because the pace of change is accelerating. Technology is
advancing and new competitors are emerging constantly. Your competitors are
moving faster than ever before. If you can’t keep up with your competitors,
you quickly fall behind and soon become irrelevant. Keeping up means moving
faster and faster, which means being able to adapt and change as the situation
demands.

Customers are constantly pushing the feature, price, quality envelope with
new and innovative ways of doing business. If you have a customer that is
pushing you on price, quality, or feature set, you need to be able to respond to
remain competitive.

New ideas are the lifeblood of a competitive company. When a new idea
comes up, you need to be able to quickly adjust and adapt to enable the new idea.
This requires agility.

Customers are looking for innovation when it comes to making a buying
selection. Companies that appear innovative are more likely to get the customer’s
business. This means you need to respond to customer requests and customer
needs faster. Failing to do this will not only lose you customers, but it will soon
cost you credibility in the industry.

Agility is essential to maintaining a thriving business.

Security Vulnerabilities Your competitors aren’t the only ones innovating. Bad
actors are innovative as well.

Never before has the IT infrastructure of our valuable applications been at
risk to security vulnerabilities and actions of bad actors as it is today. Bad actors
are not only growing in numbers, but they are growing in sophistication as well.
Bad actors are just as innovative at coming up with new ways to attack your

30 | OVERCOMING IT COMPLEXITY

application, as your competitors are innovative at coming up with new ways to
attack your business success.

Bad actors are constantly innovating, improving their attack vectors, and
exposing the vulnerabilities of our applications.

You, as a company and the owner of your application, must innovate con-
stantly to keep your applications safe and secure. You have to constantly strive to
keep one step ahead of the bad actors. This innovation requires agility.

Summary

Hence, the IT complexity dilemma. IT agility is critical to building a successful
company, yet the very success itself adds technical debt and complexity, and this
complexity leads to either rigidity, or fragility. In either case, ultimately, competi-
tors will outpace the organization in innovation, and the organization dies. Long
term success for a company means managing the IT complexity dilemma.

1 Xerox’s Palo Alto Research Center.
2 Why Good Companies Go Bad, Harvard Business Review.

WHAT IS THE MODERN IT COMPLEXITY DILEMMA? | 31

https://hbr.org/1999/07/why-good-companies-go-bad

Auditing and
Assessing Your IT
Ecosystem

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advan-

tage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content

and/or examples in this book, or if you notice missing material within

this chapter, please reach out to the editor at gobrien@oreilly.com.

How do you avoid the IT complexity dilemma? First things first. To deal with
IT organizational complexity or the complexity of your application you need to
understand what makes up your organization.

So, the first step in understanding complexity is to perform an audit of your
application, your IT organization, your teams, your delivery and operations pro-
cesses, your company as a whole, and assess your current situation to determine
what parts of your system contribute to your excess complexity.

Auditing vs. Assessment

Auditing and assessment are two distinct processes that are often used some-
what interchangeably to describe the process of understanding the components
that make up a complex system, such as an enterprise application. But what’s the
difference between the two?

33

| 2

Auditing is typically the process of creating a controlled inventory. In this
context, the word “controlled” is a governance phrase.

• A bank can count its money, but it has its records formally reviewed by an•
independent agency for accuracy when it undergoes an audit.

• A company keeps their own financial records, but if they are about to be•
acquired or merged, their records are audited independently to ensure the
records are accurate.

• If you live in the United States, you keep track of your own personal•
finances and you submit records to the IRS every year to specify how
much income tax you owe. Occasionally, the IRS can audit individuals to
validate that the information they are providing is correct and accurate.
Other nations have similar processes.

Whether it’s a formal audit by an independent agency, an in-house compli-
ance audit, or even an informal review, the word audit has a formality and
control aspect associated with it.

In an IT audit, we are talking about determining, formally or informally, the
components of our applications, the infrastructure they are running on, and the
systems and processes they utilize.

Large enterprises may invest hundreds of thousands of dollars and spend six
or more months creating such an audit, using a formal outside auditing firm. Or
an architect may create a quick diagram in Visio, print it out, and put it in a log
book. Both are essentially audits, but the former is much more formal than the
latter.

Assessment is what happens next. Once you know what components make
up your systems and applications, understanding how they work together, what
each component is used for, why it exists, how it’s important, and the overall
impact on the system as a whole, is the assessment. Often, this is done as part of
the audit, but it doesn’t have to be. The word assessment also has connotations,
just like auditing does:

• A teacher creates a test as an assessment to see if their students understand•
the material they were taught.

• A coach will evaluate how an athlete performs to assess how they can utilize•
the athlete in a team setting.

34 | OVERCOMING IT COMPLEXITY

• A voter will assess the pros and cons of each side of an issue before casting•
a vote.

Assessing often implies grading, scoring, or evaluating.
Auditing and assessing are two sides of the same coin. They are complemen-

tary processes that work together to determine the makeup of a large, complex,
enterprise application infrastructure.

When applied to IT applications, auditing and assessing are more akin to a
survey. What is a survey? A survey is a view of the structure and architecture of
our system that is built and maintained external to the system.

A survey is a form of measurement indicating how our application, infrastruc-
ture, business, or system operates and how it’s structured.

What Do You Measure?

In business, including application development and IT infrastructure, our meas-
urements are built around people, processes, and technology.

People
Do we have the right skill sets in the right places to allow our business to
function successfully? Are our employees engaged and satisfied? Are we
utilizing our people most effectively?

Processes
Do we make good and timely decisions using the right data? Are our
business processes efficient and effective? Do we waste time or resources
inappropriately?

Technology
Do we have the right applications for our business to function? Are those
applications running in the right infrastructure? Are we properly utilizing
all aspects of our infrastructure? Do we waste technology we have pur-
chased by not using it effectively? Are we inefficient because we have not
acquired a piece of technology that may help us?

Determining what to assess is important but highly case dependent. Focus-
ing on questions, such as shown above, is a good way to brainstorm on what to
measure. This gives you a great perspective on the sorts of things to measure
when doing an assessment and audit.

AUDITING AND ASSESSING YOUR IT ECOSYSTEM | 35

Why Do You Measure?

You can’t track how your organization progresses in its growth without under-
standing the state of your organization and how it’s currently functioning. Only
by measuring can you know what components make up your system, and under-
stand how they work together.

To determine where you can improve, you must measure where you are

currently.

MEASURE-TRY-MEASURE-REFINE

Before you make any change to how a system operates, you want to determine
how that change might impact the system. In order to do that, you need to
measure the current state of the system before you make a change. Then, when
you try making a change, you can re-measure and assess the impact. This allows
you to refine your attempt and measure again. The result is a loop, called the
Measure-Try-Measure-Refine loop, illustrated in Figure 2-1.

Figure 2-1. Measure-Try-Measure-Refine Loop

36 | OVERCOMING IT COMPLEXITY

1 PDSA Cycle, The Deming Institute. https://deming.org/explore/pdsa/

This is a basic process of cyclic improvement, and it goes by many other
names. It’s very similar to the Plan-Do-Check-Act (PDCA) or Plan-Do-Study-Act
(PDSA) cycle, otherwise known as the Deming cycle1.

In this version, we start at the top with Measure. We measure our system to
understand our current state before making any changes.

We then move on to the Try step. Here, we attempt a change to see whether
it positively or negatively impacted our system—did it help us or hurt us.

We then do another round of Measure. We measure our system again to see
how it has changed from the original measurement. By comparing our current
state with our original state, we can determine if what we tried improved our
situation or made it worse.

We then Refine our attempt to account for the problems and expand on the
benefits. The net result, we should be in an improved situation.

This leads us back to the top where we Measure again and start the cycle all
over again, for continuous improvement.

Measure-Try-Measure-Refine. Then repeat.
This is the process of continuous improvement.
We must measure before and after we make any change and determine

the difference between the two measurements, to recognize the impact of our
attempt.

You can’t tell if you improved unless you know your situation

before and after every change you make.

Every change has a cost associated with it. Costs may be tangible costs
such as engineering costs, testing costs, operational impact of a change, or less
tangible such as opportunity costs. Sometimes we make a change that improves
our situation, but the cost is greater than the value of the improvement. We may
have made a localized improvement. But overall, we are not better off because the
cost was too great. Only by measuring can we understand the real value of the
change we made as well as the associated cost.

AUDITING AND ASSESSING YOUR IT ECOSYSTEM | 37

Another benefit of measurement is knowing when you are done. This cycle
could go on forever, but sooner or later the improvements you make are no
longer worth the cost of making them. We can use our measurement to know
when to stop. When have we reached our goal or when have we made as much
improvement as we can without incurring unreasonable cost or burdens. This
process stopping based on measurement is illustrated in Figure 2-2.

Figure 2-2. Measure to determine when it is time to stop

In summary, measurement helps us:

1. Determine our current system’s state and where we are in our process. So1.

we know where to place our energies to improve.

2. Analyze our changes to see if they’ve made things better or worse, or2.

better enough given the cost of the change.

3. Determine when it is time to stop making improvements.3.

How Deep Do You Measure?

A large enterprise may spend six months on a large, formal audit of their system.
This is a form of measurement. It will give an accurate state of the system that is

38 | OVERCOMING IT COMPLEXITY

complete and highly detailed, but will show the system as it was six months ago,
when the audit started.

Figure 2-3. Formal assessment is inaccurate the moment it’s completed

Such an audit is not of any use to us in managing systemic improvements,
when we are trying to incrementally improve between each measurement cycle.
If we can only make small changes every six months, after the end of a formal
audit/measurement cycle, then we can’t make changes very fast and our entire
Measure-Try-Measure-Refine process fails. In order to succeed at getting out of
the IT Complexity dilemma, we need to get out of unwieldy long and expensive
evaluation cycles. Our Measure-Try-Measure-Refine cycle duration should be
measured in days or hours, not in months or years.

So, when you create an inventory of your system, when you create a review
of your applications, when you measure the current state of your application in its
infrastructure, how deep should you measure the system?

One viewpoint says that you need to have a deep and detailed view into
your application and its infrastructure. You need to know about every CPU,
data memory, network segment, cable, application procedure, service, node, etc.
Without knowing everything, you know nothing. This viewpoint is the approach
that creates the six month formal external audits we talked about previously. By
requiring precise measurement of everything, you can’t possibly know everything
you need in a timely manner. It can also lead to knowledge without understand-
ing. By the time you have measured everything, you have no context for applying
the understanding gained.

AUDITING AND ASSESSING YOUR IT ECOSYSTEM | 39

I was big into computers as a kid, and living in the midwest where storms

(thunderstorms, tornados, and snowstorms) were a big deal and it gen-

erated an interest in meteorology. In the 1970’s, neither of these technol-

ogy fields (computers or meteorology) were very advanced. Computers

were simple and just starting to be understood, and meteorology was

just starting to leverage computers and satellite technology in a serious

way.

At that time I was told by someone who was an expert in meteorol-

ogy that “We now have the ability to completely understand what the

weather will be in any given location 24 hours in advance.” At the time,

this was an amazing comment to hear. Meteorology wasn’t anywhere

near that precise back in those days, but this person was saying we could

predict the weather.

But, this expert went on to say, “the problem, though, is it’ll take our

fastest computers 3 days to figure out what tomorrow’s weather will be.”

It’s not very useful to figure out what tomorrow’s weather will be, if it

takes three days to figure it out.

Thus was my first lesson in the concept that too much data can be

worse than not enough data.

Sometimes, too much data isn’t helpful, especially if the cost of getting that
data makes the data inherently less useful. If you need six months to collect the
data, you can’t use that data to determine what changes you need to make today
to make things better tomorrow.

Instead, you will need to compromise. You’ll need to collect some sort
of subset of data, with the expectation that the subset you collect gives you
the insight you need to extrapolate the rest of the data. This is illustrated in
Figure 2-4.

40 | OVERCOMING IT COMPLEXITY

Figure 2-4. Rather than doing a full assessment, you can do a partial assessment and extrapolate
the results

But what data do you need? Let’s assume you have a large system that is
running many large applications and you want to do an inventory that lets you
know how many infrastructure components are needed by each application. You
are doing this so you can compare these numbers to the amount of inventory you
actually have on hand and understand if you have excess capacity, or are running
your services too lean. But taking a complete inventory will be too expensive and
take too long. How do we determine what we have without doing a full inventory
of our entire system? Let’s look at some possibilities.

Option 1: Look at only some attributes of our inventory (such as compute) and ignore
others (such as networking or storage).

One subset you can do when you create your inventory is to only look at the
CPUs you have in your infrastructure. How many CPUs do you have? How
powerful are they? How much raw computation power does that represent?
You can then determine how much computation power you have assigned
to each of the parts of each of your applications.

This type of inventory only focuses on raw computation power.
It ignores other important aspects of the infrastructure an application
requires, for example memory, storage, and network. The extrapolation you
make is that, if one application has twice as much computation as another
application, then you can assume it also has twice as much networking,
memory, and storage.

However, this is rarely accurate. Just because an application has twice
as many CPUs assigned to it, or twice as powerful CPUs, does not mean

AUDITING AND ASSESSING YOUR IT ECOSYSTEM | 41

that those CPUs have twice as much memory, or that you have twice
as much database storage, or that you have twice as much networking
capacity.

Using computation as a proxy for your entire system inventory leads to
inaccurate data and bad expectations.

Option 2: Look at a single application or service in its entirety, but ignore all other
applications/services.

Another subset you can look at when creating your inventory is to look at
one single application or service in its entirety. You determine how much
computation it requires, how much memory, storage, networking, etc. You
figure out what services compose this application, and what external serv-
ices this application requires to operate. You make a complete inventory of
everything required to run that one particular application.

Then, you use this information, and make the assumption that all the
other applications or services in your system will have a similar set of
requirements. If your analyzed application needs 25 servers, and another
application needs 50 servers, then you can assume that the other applica-
tion uses twice as much everything as your analyzed application.

This is perhaps a bit more accurate than option 1, but as you can
imagine it is still inaccurate. How much infrastructure a given application
or service requires does not have much bearing at all on how much another
application or service requires. Two applications will look very differently
internally, and they will use a very different mix of support services. You
are still no closer to understanding the complete infrastructure inventory
for your entire system.

Neither of these options is a very useful model for getting a complete look at
the inventory of your application.

Then, how do you build your inventory short of doing a full, multi-month
audit of your entire infrastructure?

Each of the above options created inaccuracies while speeding up the inven-
tory by pulling out important data from your dataset. Rather than pulling data
out of your dataset, how about simply spending less time creating the inventory
list in the first place? Rather than trying to accurately and completely create an
inventory of a small section of your infrastructure, let’s try and create an overview
inventory that may not be very accurate, but will represent your entire system.

42 | OVERCOMING IT COMPLEXITY

ADAPTIVE ASSESSMENT

Let’s accept the fact that this may not initially be a very accurate inventory.
Instead, as time goes on and we adjust our system, let’s add more data to our
existing, incomplete and inaccurate inventory, and little by little build up the
quality and accuracy of the resulting inventory. As time goes on, our inventory
will be adjusted and changed, and at each change, we add more data to our
inventory and make it a more accurate overall assessment of our system.

I refer to this as an adaptive assessment. Rather than striving for perfection in
the inventory—either the complete inventory (which will take too long) or in a
part of the inventory (which will be unrepresentative)—we strive for an estimate
of the inventory for the entire system. Then, over time, we’ll refine the estimate
and make the estimate more and more accurate.

It’s an iterative approach to inventory assessment.

Figure 2-5. An adaptive assessment grows and expands with your infrastructure

Figure 2-5 illustrates this adaptive assessment process. In the adaptive
assessment, you are trading some amount of inaccuracy for speed. You are
exchanging granularity of assessment for development speed.

Realizing your inventory will be worthless if it takes six months to finish
(because the inventory you have six months from now will not be the same
inventory as what you have now), you instead create a shallow assessment of
your inventory, and refine it over time. You will have a much more relevant
and useful inventory for a greater period of time. You will get your initial, albeit
inaccurate inventory very quickly. As your system changes, you strive to add

AUDITING AND ASSESSING YOUR IT ECOSYSTEM | 43

more detail to your assessment. Little by little your assessment becomes more
accurate. Because the inventory didn’t take much time to create in the first place,
it stays as accurate as possible to your current state rather than a six month old
historical state.

Note

An adaptive assessment trades granularity for speed. Since an assessment of where

you were six months ago is irrelevant, a less refined estimate now is better than an

accurate assessment later.

Value of an Adaptive Assessment

The true value of an adaptive assessment is time. We will begin to talk about
adaptive organizations in the next chapter. But an adaptive organization with an
adaptive architecture requires decision making cycles that are measured in days
or weeks or less. In many cases, the action execution cycles are measured in
minutes or days. Since a formal audit can take weeks or months, it’s useless
and wasteful to an adaptive organization. Waiting six months for the results of
a formal audit is just not practical or often even useful, and even if you could
wait the six months, you would have a six month out of date view of your system.
If you make decisions and changes daily, the assessment will be woefully out of
date months before you ever see it.

An adaptive assessment gives you some actionable information immediately.
Even if you don’t have full access to everything you would have available in the
formal audit, what you do have available to you is available at the right time.
Some data when you actually need it is infinitely better than complete data when
it’s too late to be useful.

Some data when you actually need it is infinitely better than

complete data when it’s too late to be useful.

The key is to keep the end goal in mind. Ultimately you do want to end up
with as accurate an assessment as possible—both due to the quality of the infor-
mation and the accuracy of the information in time (an inventory that represents
the current state of the system, not some point in time view of the system in the
past).

44 | OVERCOMING IT COMPLEXITY

The trick then is this: how do you decide what level of granularity you are
willing to lose in your assessment in order to have the data you need in a timely
manner? Put another way, how granular is still useful and when do you need it
by?

Creating an Adaptive Assessment

Start with this optimistic goal:

We want everything.

But we need to temper that goal with a reality check:

I am willing to accept errors in what we collect.

We may end up with guesses and estimates in much of our assessment in
order to get our results more quickly.

We will be using the error bar approach to an adaptive assessment. This
approach results in a complete assessment—a complete inventory of our system.
But our assessment is based on guesses and estimates, which may be wrong.
Hence they have “error bars”. Our goal is, over time, to revise our estimates as
we gain more information in order to reduce the size of the error bars, ultimately
creating a more accurate assessment, such as the right hand side of Figure 2-5.
We strive for a complete inventory, with errors, quickly. This is opposed to
the extrapolation approach which strives for a partial inventory, quickly. Or the
formal audit which strives for a complete inventory, without errors, after a long
time.

A classic error bar approach starts with colloquial knowledge about the sys-
tem. “I believe we have 48 network access ports in our primary service rack”.
Close enough, we’ll use that number for our inventory for now. At some point
in the future we can verify that number. If we find it’s 50 instead of 48, we can
adjust our assessment and we will end up with an assessment that is eventually
more accurate. But, in the meantime, we have a workable number we can deal
with. Knowing that we have “around 48 ports in our rack” is infinitely more
useful than saying “I don’t know how many ports we have, and we won’t know
for several months”.

Adaptive assessments say that “I value being educated sooner rather than
later, and I understand I will get more educated as time goes on”.

AUDITING AND ASSESSING YOUR IT ECOSYSTEM | 45

Decisions Based on Adaptive Assessments

Of course, we will be using our assessments to make decisions. It’s important to
understand that our assessments are not absolute. They are estimates, and will
be adjusted and refined over time. Our data—our assessment—is agile.

As a result, the decisions we are making using this data need to be agile as
well. We need to be willing to rethink and reimplement decisions when we are
presented with more accurate and more refined data. This does not mean we can
flip-flop on decisions routinely.

Decision flexibility is a struggle for many IT organizations. Some organiza-
tions cannot change directions easily, even with clear and compelling evidence
they are headed in the wrong direction. Meanwhile, other organizations can’t
stay focused on anything and constantly move back and forth in a series of
non-decisions. Neither approach is a good place to be.

To effectively use adaptive assessments, you need to be willing and able to
make decisions that stick, but be willing to rethink those decisions when and if
the refined data you have available suggests a change.

Your data has error bars, so your decisions must have error bars too. Flexibil-
ity is important, while still making actionable decisions.

Your data has error bars, so your decisions must have error bars

too.

The most important skill you need as an organization is adaptivity. Your
architectures need to be adaptive, not overly robust. An architecture that is rigid
and resistant to change is not an architecture that is suitable for adaptive assess-
ment.

Loose Coupling

Many architectural patterns support adaptive assessments, but one of the most
valuable patterns that you should embrace in all your architectural decisions
— application, infrastructure, business — is the pattern of a loosely coupled
architecture.

Loosely coupled architectures are where the connection between any two
modules within the architecture is as loose and flexible as possible. Loosely

46 | OVERCOMING IT COMPLEXITY

coupled architectures apply to application architectures (such as service oriented
architectures), infrastructure architectures (such as cloud centric architectures),
and to business and organizational architectures.

For application architectures.
In the case of application architectures, loose coupling means you must
create solid APIs and contractual agreements between software services
that define the expected black box interactions between the services. These
solid APIs create and manage the inter-service expectations. But they do
not put any requirements on the actual methods, systems, and architecture
used in the internal implementation of the services themselves.

For infrastructure architectures
In the case of an application infrastructure, loose coupling means you
should depend on using infrastructure services, such as cloud-based services,
that have predefined expectations about how they work. However, the user
of these services does not need knowledge on how the infrastructure ser-
vice itself is actually constructed or how it functions.

For business and organizational architectures
In the case of organizational architectures, loose coupling means defining
the ownership and responsibilities of individual teams, independently from
the ownership and responsibilities of other teams or the organization as a
whole. Teams have clearly defined goals that are achievable independently,
without requiring undue intervention from neighboring or connecting
teams.

In my O’Reilly Media book Architecting for Scale, 2nd Edition, you can
read much more about loose coupling. This book has five tenants for building
highly scalable applications and organizations, several of these tenets describe
patterns that involve loose coupling. Tenet 2 is about loosely coupled applications
(service oriented architectures). Tenet 5 is about loosely coupled infrastructures
(cloud based architectures). Tenet 3 talks about loosely coupled organizations and
processes. And Tenet 4 talks about risk management, which is an important part
of building and using adaptive architectures as a whole.

Examples of Adaptive Assessments

There are many ways to perform adaptive assessments. How do you get started?
Here are a couple examples that apply to IT infrastructure assessments.

AUDITING AND ASSESSING YOUR IT ECOSYSTEM | 47

EXAMPLE 1: THE BRAINSTORM ADAPTIVE ASSESSMENT

An adaptive assessment can start with nothing more than a group brainstorm
to try and write down what the parts of your infrastructure are, and how they
work together. The result may not be very accurate at all, but it is still a useful
assessment of your system, because it gives you a view of how people think the
system is constructed. As you find mistakes and correct errors, you’ll grow that
understanding and you’ll be able to refine your team’s internal understanding of
how the system actually functions. You should encourage your teams to update
the assessment every time they interact with the system and make changes, so
the assessment continues to improve over time.

Your brainstorm is an adaptive assessment because it meets the two core
requirements:

1. Quick results. It generates results at some level of quality very quickly.1.

After the initial brainstorming meeting, you have an assessment. It may
not be accurate yet, but it’s a start and has immediate value.

2. Improve over time. The results improve as time goes on. As your team2.

keeps updating the assessment as they make changes, the assessment
keeps improving.

EXAMPLE 2: THE CLOUD TAG ADAPTIVE ASSESSMENT

A convenient way to start an assessment of your operational infrastructure, when
using cloud architectures is to begin by virtually tagging individual components
of your infrastructure. This is particularly useful in cloud based systems as most
cloud providers give you the tools necessary to tag individual infrastructure com-
ponents. By starting to tag infrastructure components with specific attributes,
you can begin to see how you are utilizing your cloud infrastructure. You can tag
infrastructure components to show which applications use a specific component,
what teams are responsible for managing it, who is responsible for paying for it,
and who to contact to determine when the component is being used, or if the
component is still being used at all.

Once you’ve started the process of tagging your cloud infrastructure
resources, you can generate reports based on those tags to find out all sorts
of useful things. Who owns which components, what team uses which services,
who uses excessive resources, who has spare resources, and who is running their
resources too hot.

48 | OVERCOMING IT COMPLEXITY

By putting policies into place requiring all new cloud components to be prop-
erly tagged and encouraging teams interacting with existing cloud components
to add proper tagging if they do not have them yet, you’ll keep improving your
assessment of how your cloud infrastructure is working. Your assessment will
improve over time.

Eventually, you may even want to utilize a cloud service that will enforce
tagging rules. Some enterprises setup polices that ensure tagging by simply sys-
temically deleting resources that are not tagged correctly. Nothing will encourage
a team to make sure their cloud infrastructure resources are properly tagged
more than having a critical infrastructure component simply disappear from
their application because it wasn’t tagged correctly!

Your cloud tagging assessment is an adaptive assessment because it meets
the two core requirements:

1. Quick results. It generates results at some level of quality very quickly.1.

Simply tagging a few very visible resources will give you some level of
reporting ability.

2. Improve over time. The results improve as time goes on. Every time you2.

create a new cloud resource going forward, make sure to tag is appropri-
ately (software can actually require this task before it creates the resource).
Existing untagged resources are tagged as they are noticed. As time goes
on, a greater percentage of resources will be properly tagged.

The Survey Analogy

At the beginning of this chapter, I said the word survey is a better description of
what we are doing, than the words auditing and assessing, which are historically
used. The process of an adaptive assessment is more accurately described as a
survey from another perspective as well.

Think about using surveys as a way to get information about people. Politi-
cians do surveys all the time. Companies with visible brand loyalty use surveys
to understand the value of their brand. And employers use surveys to. In fact,
employers frequently use surveys to determine how their employees are doing.
They do what are called employee satisfaction surveys.

Let’s think about an employee satisfaction survey for a minute. When we
conduct one of these surveys we get is a list of what percentage of respondents
gave specific answers to the specified questions. That’s all we get. This is not the
same thing as whether employees are happy or not. Instead, we deduce whether

AUDITING AND ASSESSING YOUR IT ECOSYSTEM | 49

our employees are happy or not from the answers. This is an assumption based
on the data.

As time goes on, we can repeat the survey. We can even fine tune some
of the questions to get better and more accurate results. By comparing results
over time, we can get a more accurate answer to the question about whether
our employees are happy or not, as well as whether the things we are doing are
improving our employee happiness.

These surveys are non-IT examples of adaptive assessments.

Summary

An adaptive assessment is a highly effective way to get an audit/assessment of
your business, processes, applications, and infrastructure quickly and effectively.
It assumes that some data, even if not 100% accurate is better than no data at
all. An adaptive assessment is characterized as an assessment that: 1) generates
quick results and 2) improves the quality of those results over time. A successful
adaptive assessment requires both of these characteristics.

50 | OVERCOMING IT COMPLEXITY

Moving to an Adaptive
Architecture

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advan-

tage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the content

and/or examples in this book, or if you notice missing material within

this chapter, please reach out to the editor at gobrien@oreilly.com.

One of the greatest tools that the modern cloud era has brought us is the develop-
ment and growth of the adaptive architecture. The adaptive architecture helps IT
organizations build applications and systems that are more flexible and hence
more agile. Used properly, adaptive architecture is the leading component in
decreasing IT infrastructure costs associated with cloud computing. Finally, and
perhaps most importantly, adaptive architectures are a major tool in the process
of reducing IT complexity and hence technical debt.

But what is an adaptive architecture?

Adaptive Architectures

An adaptive architecture is any architecture design that is able to be changed
dynamically and programmatically without the need for physical intervention
and manual operations in the change.

51

| 3

Figure 3-1. Traditional vs Adaptive Architecture

The left side of Figure 3-1 shows a traditional architecture. Human work-
ers manually work with the individual infrastructure components — servers,
switches, network cables, etc. — and make changes as needed to adapt to the
growing needs of the organization. If additional server resources are required,
someone manually goes in and adds a new server to the rack, wires it up, and
gets it up and running. This process could take days, weeks or even months in
some cases. This is opposed to the adaptive architectures, such as those provided
by cloud computing providers. In these architectures, a software program deter-
mines the needs and dynamically, in real time, changes the IT infrastructure
allocated to an application, and changes how it is configured, all automatically
without human interference. If a new server is needed, one is allocated from the
cloud service provider and attached automatically at the correct location within
the infrastructure. Changes that took hours or days in the traditional architecture
world take minutes or seconds in the adaptive architecture world. This allows
architectures to be constantly and creatively modified on the fly to meet the
ever-changing application needs.

If a service is getting additional traffic and needs some additional resources
to handle the traffic, they can be automatically and dynamically added as needed,
then freed when the need no longer exists. Need to perform a long complex oper-
ation, such as calculate a monthly report or process a new dataset? Temporarily
allocate the additional resources, configure them as necessary, and perform the
operations.

52 | OVERCOMING IT COMPLEXITY

Want to try out a new idea in the running application? Temporarily allocate
the additional resources to allow you to try the idea. If it works, you can put the
resources into the IT infrastructure set. If it doesn’t work, simply delete them
and they go away.

Want to see how your new feature will perform under a heavy production
load before launching it in production? Spin up some servers to run the feature
and spin up some servers to generate fake traffic and give it a try. When you are
done, simply delete the unneeded resources.

Is your application under a security attack and you need to reroute traffic
around a compromised system? Try launching a replacement patch and pull
the compromised component out of the infrastructure. Try to do that with a
traditional architecture.

Adaptive Architectures in Action

Adaptive architectures give us flexibility and adaptivity. They allow us to try new
ideas easily, add new resources to handle unexpected loads, and replace broken,
failed, or vulnerable components quickly.

How do adaptive architectures fit into our modern application architecture?
There are several places where they can assist.

AUTOSCALING

In most modern online applications, the resource needs of the application vary.
Typically, they vary in relationship to the amount the application is currently
being used, whether that’s measured by the number of simultaneous users,
the amount of processing going on for each user, or the amount of data being
handled by each user, the general case holds true. The more an application is
used, the more resources it takes to operate that application. This is illustrated
generically in Figure 3-2. The more an application is used (horizontal line of
chart), the more resources it consumes (vertical line of chart).

MOVING TO AN ADAPTIVE ARCHITECTURE | 53

Figure 3-2. Resource requirements go up as application usage increases

In traditional application architectures, this creates a quandary. Resources
need to be allocated to the application, but how many resources do you allocate?
Given that historically (before the cloud), resource allocation required money and
effort to set up, the resource allocation tended to be static. Given that resource
usage is dynamic, that resulted in cases where either excess resource capacity sat
idle for long periods of time, or the application ran out of resources due to insuf-
ficient capacity. Figure 3-3 illustrates this. If resources are statically allocated, they
do not change as application usage changes. This means either you have excess
capacity that is idle, or you have insufficient capacity and your application is
starved.

54 | OVERCOMING IT COMPLEXITY

Figure 3-3. Static resource allocation results in excess capacity or insufficient capacity

However, with adaptive architectures, the quantity of resources allocated to
an application does not have to be static. It can be dynamic — adaptive — and
change based on the needs of the application. As application usage increases,
additional capacity can be added to meet those needs.

This is illustrated in Figure 3-4. As application usage increases, adaptive
infrastructure capacity adjusts dynamically to meet the needs. Ideally, you always
have just a bit more resources available than the application requires, so you do
not have significant excess capacity, nor do you ever have insufficient capacity.

MOVING TO AN ADAPTIVE ARCHITECTURE | 55

Figure 3-4. Adaptive architectures dynamically change allocated resources based on needs

By far, the best known example of adaptive architecture is autoscaling.
Autoscaling is a cloud mechanism that monitors the resource requirements of
an application, and adds or removes resources from the application as needed in
order to meet the ongoing needs.

As an example, AWS has an Auto-Scale service which can dynamically
change the number of servers involved in a server pool. It does this by monitor-
ing various analytics of the server pool and determines if more or less capacity is
required, and either adds or removes servers from the pool to meet the existing
needs.

Some cloud based services do this allocation automatically and behind the
scenes. For example, AWS Elastic Load Balancer will dynamically change the
size and number of servers to a given application in order to handle the rate
of incoming requests. As the number of requests increases, additional capacity
is automatically added. That capacity is removed when the number of requests
decreases. All of this is done completely transparently to consumers of the load
balancer, it’s handled internally to AWS’s control systems.

56 | OVERCOMING IT COMPLEXITY

SELF-HEALING

Imagine an application running on a pool of servers. What happens if one of
the servers in the pool begins to fail or becomes damaged? This is illustrated in
Figure 3-5.

Figure 3-5. A server begins to fail in a server pool for an application

In a traditional, non-cloud application, your application will begin to oper-
ate sluggishly or may start failing intermittently. A human would need to get
involved, login to the failing server, and repair whatever is going wrong with it.
If processes have terminated, they need to be restarted. If a file is corrupted it
needs to be repaired. These fixes may be fast, or they may be time consuming. If
they are time consuming, the server may be removed from the pool temporarily
while the repairs are performed, causing the application to operate at a reduced
capacity.

In a cloud-centric application, adaptive architecture technology can be used
to assist the repair process. If a server begins to go bad, rather than summoning
a human to attempt to repair the server, instead the application can simply
terminate the failing server and remove it from the pool. Then, allow the adaptive
architecture technology to realize that additional resources are needed in the
pool to run the operation, and a new server is spun up and added to the pool
automatically. This is illustrated in Figure 3-6.

MOVING TO AN ADAPTIVE ARCHITECTURE | 57

Figure 3-6. Adaptive architecture can spin up a replacement server

Rather than engaging a human to attempt to repair the ailing server, the
ailing server is simply abandoned algorithmically, and a replacement server is
automatically put into place.

There are two main advantages of this approach:

1. A human did not need to respond to the event. The problem was fixed1.

automatically and dynamically.

2. Since a human did not have to respond and fix the problem to resolve the2.

issue, the issue could be resolved substantially faster and potentially with
less disruption to the users of the application.

Adaptive architectures can automatically repair failing infrastructure quickly
and effectively without human interaction for many high profile and high impact
failure modes.

INFRASTRUCTURE AS CODE

Traditional on-premises infrastructure is historically constructed by racking
servers and other hardware together, connecting cables, and wiring up communi-
cations components.

This is a painstakingly manual process that is not only error prone, but
also unreproducible and untraceable. It’s unreproducible because of human
involvement. There is no guarantee that one person will connect a computer
in exactly the same manner as someone else does, and the result is a mixture of
systems that are not consistent. Further, if a mistake is made and a problem is
introduced, it’s not easy to trace where that problem was introduced and hence
how to solve it.

Adaptive architectures provide solutions to these problems. Since in an adap-
tive architecture your infrastructure is constructed programmatically rather than

58 | OVERCOMING IT COMPLEXITY

manually, you can create standard processes and systems to perform the same
connections consistently and repeatedly .

This ability has led to a best practice for infrastructure creation known as
Infrastructure as Code (IaC). IaC is an approach to automation that allows a
description of the desired infrastructure setup to be created in a simple text
document using a standard infrastructure description language. This document
is then fed into an IaC system that issues the appropriate calls to the cloud
and component APIs to construct a real cloud infrastructure that matches the
documented infrastructure. This is illustrated in Figure 3-7.

Figure 3-7. Basic Infrastructure as Code model for infrastructure management

Then, if a change is needed to the infrastructure, you simply make an adjust-
ment to the document, and re-feed the document into the IaC system, which will
issue API calls to adjust the infrastructure to match the updated documentation.

There are many advantages to this model of infrastructure management.
First, the process simplifies the design of complex infrastructures and makes the
process more approachable for an average software developer. This allows the
development team to be heavily involved in the construction and management
of the infrastructure that operates their software, allowing more consistent and
efficient use of hardware resources, and enables better coordination of operations
and development using DevOps principles.

Second, infrastructure documents can be managed just like software code
can be managed by putting the document into a revision control system, such as
git. This allows infrastructure documentation to go through review and approval
processes, just like the software application itself uses. In fact, the exact same
processes for software quality control can be used for infrastructure quality con-
trol.

MOVING TO AN ADAPTIVE ARCHITECTURE | 59

Finally, if an infrastructure change causes a problem in the operating appli-
cation, a review of the revision history can be instrumental in understanding
where the problem originated and how to resolve the problem. This removes the
troublesome quandary of trying to figure out “what changed on the server???”.
All changes are explicitly tracked and managed, and can be reviewed as needed
later.

DEVELOP IN A PRODUCTION-LIKE ENVIRONMENT

Infrastructure as Code (IaC) also gives you additional benefits. Since the infra-
structure document describes an accurate view of the exact hardware setup
required to build your production infrastructure, that same document can be
used to easily setup auxiliary, non-production versions of the infrastructure.
This includes setting up staging and QA environments, and ensuring they are
identical in design to the production infrastructure. The common problem of
divergence and infrastructure drift that often occurs between production and
staging/testing environments is eliminated because all environments are created
from the same source.

Additionally, a developer that wants to test a design in a production-like
environment can easily spin up a production-like environment of their own that
allows them to test their own changes safely and in isolation from both produc-
tion, as well as from other developers and testers. This is illustrated in Figure 3-8.

Figure 3-8. Production application and equivalent development instances can all be identical and
managed

Many identical copies of the production environment (perhaps identical, or
perhaps scaled down in size but otherwise identical) can be created and managed
easily using adaptive architectures and IaC techniques.

60 | OVERCOMING IT COMPLEXITY

LOAD TESTING

The same IaC techniques can be used with adaptive architectures in order to
create simulated environments for load testing. Take a look at Figure 3-9.

Figure 3-9. Load testing using simulated users on a copy of production

Here you see a production application with real users in the top left hand
section. Then, in the lower right hand section is an exact copy of the production
setup to work with a simulated user load. This environment allows you to test
various user loading scenarios on an equivalent of a production environment in
a very accurate manner. This can be done independently and completely isolated
from the existing production environment, yet in a manner that is virtually
identical to the production environment.

Adaptive architectures allow setting up many different testing scenarios such
as load testing in production equivalent environments without impacting existing
production environments.

Cost of adaptive architecture in increased complexity

Adaptive architectures are, on the surface, more complex than non-adaptive
architectures. The increased flexibility and agility gives you the ability to be
more flexible and agile. The increased ability to programmatically modify your
infrastructure means you can modify your infrastructure to be as complex as you
want to. Unless managed appropriately, flexibility breeds complexity.

MOVING TO AN ADAPTIVE ARCHITECTURE | 61

As we learned in chapter 1, increased complexity increases technical debt and
decreases the reliability and availability of your application. Increased complexity
leads to fragility (instability of the application) or rigidity (resistance to making
changes to the application). So, unless properly managed, adaptive architectures
can lead to increased fragility or increased rigidity, neither is good.

Adaptive architectures provide you all of the great advantages discussed
previously, yet they also can lead to a rigid and/or fragile organization due to
increased complexity. So, how do you avoid complexity while leveraging the
benefits of an adaptive architecture?

Interestingly, the way you reduce complexity in adaptive architectures is to
use the same techniques you use to reduce general software complexity in large
software applications.

This means leveraging common best practices that help reduce the cognitive
load of large application systems. Best practices such as:

Modularization
Breaking software into smaller modules, such as services and microser-
vices, is a great way to compartmentalize complexity and hence reduce
the amount of complexity you need to keep in your mind at any given
point in time. Similar techniques work to compartmentalize complexity in
adaptive architectures. Modularizing your infrastructure and managing the
modules individually, reduces the impact of complexity in your application
infrastructure.

For example, when architecting the front-end load balancer for an applica-
tion, you treat the application architecture itself like a black box. Similarly,
when you focus on creating a dynamic infrastructure for an application
using multiple services, you can treat the database high availability strategy
you require as a black box, ignoring the details until later.

Loose Coupling
Reducing tight dependencies between software services creates separation
that reduces friction in large scale application development. Similarly, in
adaptive architectures, reducing the coupling between architectural mod-
ules reduces the complexity in working with adaptive architectures. By
reducing the required interaction between infrastructure components, you
reduce the complexity of those components.

62 | OVERCOMING IT COMPLEXITY

For example, the interaction between a front-end request cache and an
application service should be restricted to basic HTTP caching protocols.
There should be no deeper integration between the cache and the applica-
tion than those basic HTTP protocols. While it might seem wise to build a
backdoor cache invalidation system connecting the application to the cache,
avoid that in lieu of basic HTTP cache invalidation commands already in
the standard HTTP protocol.

Reuse components
Reusing software components is a classic model to reduce software system
complexity, and the same technique works with adaptive architectures. By
using common, reusable infrastructure modules repeatedly in different
places in your architecture, you can reduce complexity by increasing modu-
larity and loose coupling.

For example, if every server you deploy has the same basic structure and
components, you’ll have fewer variations to worry about. If each service
is structured identically (or using one of a few different infrastructure
structures), you can reuse the same patterns in multiple services, reducing
complexity. Using one or two standard inter-service communications mod-
els reduces the complexity involved in each service picking their own com-
munications protocol. Allowing individual services to control the software
installed and the directory structure of the underlying servers may ease
some tasks for those services, but it increases the number of moving parts
for the architecture as a whole.

Standardize
Restricting choices by standardizing on specific components reduces com-
plexity, often improving agility and time to value.

For example, AWS has hundreds of different variations of sizes and shapes
of servers to choose from when creating an adaptive architecture. Any of
those hundreds of variations can be used in the same application. How-
ever, by reducing the allowed list of choices to a select few that covers the
variation needs of your application, you now only have to deal with a few
variations, rather than the full set of hundreds. This reduces complexity
substantially.

MOVING TO AN ADAPTIVE ARCHITECTURE | 63

Besides leveraging best practices such as these, there are other strategies that
can reduce your architectural complexity. Consistency, repeatability, regularity,
all of these things help to reduce complexity.

EXAMPLE: DECREASING COMPLEXITY WITH TIERED SECURITY

Let’s take a look at an example of managing and reducing complexity in an
adaptive architecture. In this example, we’re going to look at a cloud-based secu-
rity model and how you can use some of the above techniques to reduce the
complexity in the security setup.

Take a look at Figure 3-10.

Figure 3-10.

This diagram shows a simplified security model for an enterprise. This
enterprise has four applications that are spread across four different geographic
sites. Site 1 and Site 2 hosts applications 1,2, and 3. Site 3 hosts applications 2, 3,
and 4. Site 4 hosts applications 1, 2, and 4.

For security, there are security policies and security infrastructure require-
ments for every app segment on every site, plus each site has security require-
ments. This means there are 16 different and distinct dynamically changing
security requirements that must be managed. If they are each managed inde-
pendently, keeping track of all of these requirements will be nearly impossible,
especially as the number of servers, sites, and applications grow. If this was a
reasonable size enterprise, there might be tens of thousands of distinct security
and infrastructure requirements for each component in the system.

Obviously, it would be best if all the policies and infrastructure were the
same, so that there is only a single policy to track. Realistically, however, this isn’t
going to be the case. Different locales have different security requirements. Dif-

64 | OVERCOMING IT COMPLEXITY

ferent applications have different security requirements. The complexity grows
exponentially as the number of sites and applications grows.

The solution is to implement a tiered, or hierarchical security model, using
the modular, loose-coupling, and reuse practices described earlier. In this model,
there is a set of standard, global, security policies and infrastructure require-
ments, that apply to all applications in all locales. Next, there is a set of site-wide
security policies and infrastructure requirements that are set and established at
the site/ locale level. Finally, there are a set of application specific policies that
apply to each application at the third level.

All general policies and standardized infrastructure requirements are
included at the top, global, policy level. These apply to everything. The site-wide/
locale policies only contain the policy exceptions and how they deviate from the
global policy. Then, at the application specific level, the policy exceptions that
apply at a specific application are applied here.

The desire is to put as many policy and requirements into the global security
policy as possible. Everything that applies company-wide should be specified
once at the global level. These policies and requirements are applied universally
across all sites and all applications. This would include things like user password
requirements, security rules to keep BOTS at bay, edge firewall requirements,
etc.

The site-wide policies should only contain exceptions to these global policies
that apply at the given locale. For example, locales in EU that must follow EU’s
GDPR requirements would have these exceptions described in the EU locale
policies, or they might have to deal with policies required for AWS regions that
are different for Azure regions. The end result is a set of policies that are, mostly,
described and implemented once (globally), but can be adjusted and modified
as needed for a given locale. These site-wide policies can depend on yet ignore
the rules specified in the global policy. The site-wide policies, for examples, don’t
have to deal with BOTS, because the global tier is dealing with them.

Finally, application specific exceptions are described at the application-
specific policy level. These policies might include requirements such as which
network ports that application requires, what type of traffic is expected, and
scaling requirements. This layer can ignore those policies established by the
locale based policies and the global policy, and only focus on the ones needed
that are unique to this application.

As many policy and infrastructure requirements as possible should be speci-
fied at the global level, with fewer and fewer requirements as you move down the

MOVING TO AN ADAPTIVE ARCHITECTURE | 65

tiers to the more finer grain, application level requirements, which should specify
as few requirements as possible.

The net result is rather than tens of thousands of distinct security policies,
you have three tiers, with only the required detailed exceptions at the lower, finer
granular level. The vast majority of the requirements are specified at the single,
global level.

This sort of model puts process and procedure around the complexity of
managing a completely agile security model. It makes use of modularization with
the tiers of control, loose coupling, since the layers are independent of each other
as much as possible, reused components to reduce the variations, and overall a
standard model that impacts how and where changes can be made.

There is nothing magic about this tiered model, but models such as this can
dramatically simplify the operating and development models of your application
that is employing adaptive architecture techniques.

Often policies in a model like this are handled in an out-of-band manage-
ment tier that manages the code, configuration management, infrastructure and
policy rules, and analytics in a general fashion, keeping those requirements
global yet safely isolated from the three production tiers. The management
control plane tier is independent of the other three tiers and provides the man-
agement and control for all the other tiers.

Summary

Adaptive architectures are a fantastic tool to improve the creation and operation
of large modern applications. However, used inappropriately, adaptive architec-
tures can increase your application complexity, leading to fragility and rigidity in
thought, process, and design as an organization. Using the same best practices
that have been used reliably in building large scale software applications, we
can leverage adaptive architectures yet manage the increased complexity to allow
us to gain the advantages of the adaptive architectures without the burden of
increased complexity.

All of this means more agility, which means you can build more secure
applications while enabling competitive business innovation.

66 | OVERCOMING IT COMPLEXITY

About the Author
Lee Atchison is a recognized industry thought leader in cloud computing, and
the author of the best selling book Architecting for Scale, published by O’Reilly
Media, currently in its second edition. Lee has 34 years of industry experience,
including eight years at New Relic and sever years at Amazon.com and AWS,
where he led the creation of the company’s first software download store, created
AWS Elastic Beanstalk, and managed the migration of Amazon’s retail platform
to a new service-based architecture. Lee has consulted with leading organizations
on how to modernize their application architectures and transform their organi-
zations at scale. Lee is an industry expert and is widely quoted in publications
such as InfoWorld, Diginomica, IT Brief, Programmable Web, CIO Review and
DZone. He has been a featured speaker at events across the glove from London
to Sydney, Tokyo to Paris, and all over North America. LinkedIn profile: https://
www.linkedin.com/in/leeatchison.

https://www.linkedin.com/in/leeatchison
https://www.linkedin.com/in/leeatchison

	Cover
	F5
	Copyright
	Table of Contents
	Chapter 1. What is the Modern IT Complexity Dilemma?
	Structure of Modern IT Organizations
	Role of Software Development in IT Organizations
	The Structure of IT Organizations
	The Advent of Complexity

	Chapter 2. Auditing and Assessing Your IT Ecosystem
	Auditing vs. Assessment
	What Do You Measure?
	Why Do You Measure?
	Measure-Try-Measure-Refine

	How Deep Do You Measure?
	Adaptive Assessment

	Value of an Adaptive Assessment
	Creating an Adaptive Assessment
	Decisions Based on Adaptive Assessments
	Loose Coupling
	Examples of Adaptive Assessments
	Example 1: The Brainstorm Adaptive Assessment
	Example 2: The Cloud Tag Adaptive Assessment

	The Survey Analogy
	Summary

	Chapter 3. Moving to an Adaptive Architecture
	Adaptive Architectures
	Adaptive Architectures in Action
	Autoscaling
	Self-Healing
	Infrastructure as Code
	Develop in a Production-like Environment
	Load Testing

	Cost of adaptive architecture in increased complexity
	Example: Decreasing Complexity with Tiered Security

	Summary

	About the Author

