BIG-IP SSL Orchestrator and Cisco Web Security Appliance
SSL/TLS Visibility with Service Chaining for Advanced Threat Protection
Table of Contents

3 Introduction
3 The Integrated F5 and Cisco Solution
6 Deployment Planning
6 Sizing
7 License Components
8 Traffic Exemptions for SSL/TLS Inspection
8 Certificate Requirements
9 Architecture Best Practices
9 Security Best Practices
9 IP Addressing
10 Initial Setup
11 Configure Cisco WSA Prerequisites
11 Configure BIG-IP SSL Orchestrator Prerequisites
11 Configuring BIG-IP SSL Orchestrator/Cisco WSA Integration
13 Configure Cisco WSA
19 Configure BIG-IP SSL Orchestrator
29 Testing the Solution
29 Server Certificate Test
29 Decrypted Traffic Analysis on the F5 System
29 Decrypted Traffic Analysis on the Cisco WSA
29 Additional Considerations
30 Creating Service Networks Manually
30 Configuring External Access for Cisco WSA DNS and Engine Updates
32 Configuring Pass-through Transparent Proxy Authentication to Cisco WSA
The Secure Sockets Layer (SSL) protocol and its successor, Transport Layer Security (TLS), have been widely adopted by organizations to secure IP communications, and their use is growing rapidly. While SSL/TLS provides data privacy and secure communications, it also creates challenges to devices in the security stack intended to inspect the encrypted traffic. In short, the encrypted communications can’t be seen as clear text and are passed through without inspection, becoming security blind spots. This creates serious risks for businesses: What if attackers are hiding malware inside the encrypted traffic?

Performing decryption of SSL/TLS traffic on security inspection devices with native decryption support is one answer, but this can tremendously degrade the performance of those devices. This performance concern becomes even more challenging given the demands of stronger, 2048-bit certificates.

An integrated F5 and Cisco solution solves these related SSL/TLS challenges. F5® BIG-IP® SSL Orchestrator® centralizes SSL/TLS inspection across complex security architectures, enabling flexible deployment options for decrypting and re-encrypting user traffic. It also provides intelligent traffic orchestration using dynamic service chaining and policy-based management. The decrypted traffic is then inspected by one or more Cisco Web Security Appliances (WSAs), which can prevent previously hidden threats and block exploits. This solution eliminates the blind spots introduced by SSL/TLS and closes any opportunity for adversaries. BIG-IP SSL Orchestrator, with its ability to address HTTP proxy devices inside its decrypted inspection zone, allows the Cisco WSA to provide optimal security functionality while offloading SSL/TLS and complex orchestration to the F5 system.

This guide provides an overview of the joint F5 and Cisco solution and describes different deployment modes, including service chain architectures and recommended practices.

The Integrated F5 and Cisco Solution

The F5 and Cisco integrated solution enables organizations to intelligently manage SSL/TLS while providing visibility into a key threat vector that attackers often use to exploit vulnerabilities, establish command and control channels, and steal data. Without SSL/TLS visibility, it’s impossible to identify and prevent such threats at scale.

BIG-IP SSL Orchestrator provides:

- **Multi-layered security.** To solve specific security challenges, security administrators are accustomed to manually chaining together multiple point products, creating a bare bones “security stack” consisting of multiple services. A typical stack may include components like data leak prevention (DLP) scanners, web application firewalls (WAFs),
intrusion prevention and/or detection systems (IPSs and IDSs), malware analysis tools, and more. In this model, all user sessions are provided the same level of security, as this daisy chain of services is hard-wired.

- **Dynamic service chaining.** Dynamic service chaining effectively breaks the daisy chain paradigm by processing specific connections, based on context provided by the security policy, that then allow specific types of traffic to flow through arbitrary chains of services. These service chains can include five types of services: Layer 2 inline services, layer 3 inline services, receive-only services, ICAP services, and HTTP web proxy services.

- **Topologies.** Different environments call for different network implementations. While some can easily support SSL/TLS visibility at layer 3 (routed), others may require these devices to be inserted at layer 2. BIG-IP SSL Orchestrator can support all of these networking requirements with the following topology options:
 - Outbound transparent proxy
 - Outbound explicit proxy
 - Outbound layer 2
 - Inbound reverse proxy
 - Inbound layer 2

- **Security policy.** The BIG-IP SSL Orchestrator security policy provides a rich set of context-aware methods to dynamically determine how best to optimize traffic flow through the security stack. Context can minimally come from a variety of source, destination, and traffic data.

The Cisco WSA provides:

- **Web reputation and categorization** that is regularly updated by TALOS, one of the largest commercial threat research groups in the world, to assess web content and risk.

- **Anti-malware protections** that can identify known malicious files as well as analyze unknown files for hidden threats.

- **Automated monitoring and analysis** to quickly determine the scope of damage, remediate it, and bring operations back to normal.

- **Application visibility** that grants full control over web applications such as those included in the Microsoft Office 365 suite.

- **Granular policy options** that can block individual web objects and file types.

- **Automated traffic analysis** to scan all web traffic in real time for both known and new malware, using dynamic reputation and behavior-based analysis on all web content.

SSL/TLS VISIBILITY: HOW DO WE DO IT?

F5’s industry-leading full-proxy architecture enables BIG-IP SSL Orchestrator to install a decryption/clear-text zone between the client and web server, creating an aggregation
SSL/TLS ORCHESTRATION USING SECURITY SERVICE CHAINS

As shown in Figure 1, BIG-IP SSL Orchestrator can load balance, monitor, and dynamically chain security services, including next-generation firewalls (NGFWs), DLPs, IDS/IPSs, WAFs, and antivirus/malware tools, by matching the user-defined policies to determine whether to bypass or decrypt and whether to send to one set of security services or another. This policy-based traffic steering capability allows for better utilization of the existing security services investment and helps to reduce administrative costs.
BIG-IP SSL Orchestrator enables administrators to apply different service chains based on context derived from a powerful classification engine. That context can come from:

- Source IP/subnet
- Destination IP/subnet
- IP intelligence category
- IP geolocation
- Host and domain name
- URL filtering (URLF) category
- Destination port
- Protocol

Deployment Planning

Careful advance consideration of deployment options can ensure an efficient and effective implementation of the integrated solution using BIG-IP SSL Orchestrator and the Cisco WSA security system.

SIZING

The main advantage of deploying BIG-IP SSL Orchestrator in the corporate security architecture is that the wire traffic now can be classified as “interesting” traffic, which needs to be decrypted by BIG-IP SSL Orchestrator for inspection by Cisco WSA, and “uninteresting” traffic, which is allowed to pass through or be processed differently according to other corporate policy requirements. This selective steering of only the interesting traffic to the firewall system conserves its valuable resources (as it need not inspect the entire wire traffic), maximizing performance.

As a result, it’s important to consider the entire wire traffic volume to calculate the appropriate F5 device size. The Cisco WSA system will require two interfaces on the F5 systems (or one 802.1q VLAN tagged interface) to allow traffic flow through logical inbound and outbound service interfaces.

Refer to the BIG-IP SSL Orchestrator data sheet and consider the following factors when sizing the F5 system for the integrated solution:

- Port density.
- SSL/TLS bulk encryption throughput.
- System resources.
- The number of security services and devices in service chain.

Note: BIG-IP SSL Orchestrator has no specific port density requirement. Layer 3 devices must be layer 3 adjacent (routable); layer 2 devices must be layer 2 adjacent (switched); and the F5 device supports 802.1q VLAN tagging, so a single interface can be logically divided into multiple VLANs. Security devices can connect to BIG-IP SSL Orchestrator across a switched or routed architecture, so port density is expandable. The only significant requirement is that inline security devices (layer 2, layer 3, and HTTP devices) must have separate physical or logical inbound and outbound interfaces.
LICENSE COMPONENTS

BIG-IP SSL Orchestrator supports two licensing modes: Standalone and as an F5® BIG-IP® Local Traffic Manager™ (LTM) add-on.

Standalone software license mode
This option supports the following F5 platforms:

- i2800, r2800
- i4800, r4800
- i5800, r5800
- i10800, r10800
- r10900
- i11800
- i15800
- VE High Performance (HP—8vCPU, 12vCPU, 16vCPU, 20vCPU, 24vCPU)
- F5® VIPRION™ platform and F5® VELOS® platform are also supported

The standalone option is suited for environments that need standalone security solutions and have no need to integrate with other F5 software functions. Standalone mode restricts the F5 platform to the following additional F5 software modules:

- F5® BIG-IP® Access Policy Manager™ (APM) for user authentication.
- F5® BIG-IP® Advanced Firewall Manager™ (AFM) to protect against denial-of-service.
- F5® BIG-IP® Advanced WAF™ to protect against common vulnerabilities (CVEs) and web exploits, targeted attacks, and advanced threats.
- F5® Secure Web Gateway Services or an F5 URLF subscription for URL categorization.
- An F5® IP Intelligence Services subscription for IP reputation services.

BIG-IP LTM add-on software license mode
This option supports all F5® BIG-IP® iSeries® and older F5 platforms and has no specific restrictions on additional F5 software modules (including the above software services). This option is suited for environments that need to deploy BIG-IP SSL Orchestrator on an existing F5 device or have other functions that must run on the same device.

Optional licensing options
In addition to the above licensing modes, the following may also be licensed:

- An F5 URLF subscription to use the URL category database.
- An F5® IP Intelligence Services subscription to detect and block known attackers and malicious traffic.
- A network hardware security module (HSM) to safeguard and manage digital keys for strong authentication.
TRAFFIC EXEMPTIONS FOR SSL/TLS INSPECTION

As noted, the F5 system can be configured to distinguish between interesting and uninteresting traffic for the purposes of security processing. Examples of uninteresting traffic (including those types that can’t be decrypted) to be exempted from inspection may include:

- Guest VLANs.
- Applications that use pinned certificates.
- Trusted software update sources like Microsoft Windows updates.
- Trusted backup solutions like a crash plan.
- Any lateral encrypted traffic to internal services to be exempted.

Administrators can also exempt traffic based on domain names and URL categories. The policy rules of the BIG-IP SSL Orchestrator system enable administrators to enforce corporate Internet use policies, preserve privacy, and comply with regulatory requirements. Traffic exemptions based on URL category might include bypasses (and thus no decryption) for traffic from known sources of these types of traffic:

- Financial
- Health care
- Government services

CERTIFICATE REQUIREMENTS

Certificate requirements depend on the direction of traffic flow.

- **Outbound traffic flow** (internal client to Internet): An SSL/TLS certificate and associated private key—preferably a subordinate certificate authority (CA)—on the F5 system are needed to issue certificates to the end host for client-requested external resources that are being intercepted. To ensure that clients on the corporate network do not encounter certificate errors when accessing SSL/TLS-enabled websites from their browsers, this issuing certificate must be locally trusted in the client environment.

- **Inbound traffic flow** (Internet client to internal applications): Inbound SSL/TLS orchestration is similar to traditional reverse web proxy SSL/TLS handling. At minimum, it requires a server certificate and associated private key that matches the host name external users are trying to access. This may be a single instance certificate or a wildcard or subject alternative name (SAN) certificate if inbound SSL/TLS orchestration is defined as a gateway service.
ARCHITECTURE BEST PRACTICES

A number of best practices can help ensure a streamlined architecture that optimizes performance and reliability, as well as security. F5 recommendations include:

• Deploy the F5 systems in a sync/failover device group (S/FDG), which includes the active standby pair, with a floating IP address for high availability (HA).

• Every Cisco WSA in the service pool must be dual homed on the inward and outward VLANs with each F5 system in the device sync/failover device group.

• Further interface redundancy can be achieved using the Link Aggregation Control Protocol (LACP). LACP manages the connected physical interfaces as a single virtual interface (aggregate group) and detects any interface failures within the group.

• Unlike with some competing solutions, the F5 systems do not need physical connections to the Cisco WSA. All the F5 system requires is layer 3 reachability to steer traffic through the firewalls. In slow networks, however, we recommend deploying the services not more than one hop away.

SECURITY BEST PRACTICES

SSL/TLS orchestration generally presents a new paradigm in the typical network architecture. Previously, client/server traffic passed encrypted to inline security services, which then had to perform their own decryption if they needed to inspect that traffic. In the F5/Cisco integrated solution using BIG-IP SSL Orchestrator, all traffic to a security device is decrypted—including usernames, passwords, and social security and credit card numbers. It’s therefore highly recommended that security services be isolated within a private, protected enclave defined by BIG-IP SSL Orchestrator. It’s technically possible to configure BIG-IP SSL Orchestrator to send the decrypted traffic anywhere that it can route to, but this is a dangerous practice that should be avoided.

IP ADDRESSING

Keeping in mind the security best practice noted above, the recommended approach to integrating security devices is to physically move them to an isolated enclave of BIG-IP SSL Orchestrator. This generally requires re-addressing inline layer 3 security services. The following information assumes this approach, and the sample IP addresses represent a local/internal addressing scheme.

When the Cisco WSA is deployed as either a transparent or explicit proxy, we recommend configuring its IP addresses for connected inbound and outbound interfaces from private addressing subnets provided by BIG-IP SSL Orchestrator. The default subnets are derived from an RFC2544 CIDR block of 198.19.0.0, which improves security and minimizes the likelihood of address collisions.
For example, administrators can configure a Cisco WSA to use the IP address 198.19.96.10/25 on its inbound interface and 198.19.96.130/25 on its outbound interface. The table below explains the IP addresses that need to be configured when deploying multiple Cisco WSAs in a service pool.

<table>
<thead>
<tr>
<th>Cisco WSA</th>
<th>Inbound IP</th>
<th>Outbound IP</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO WSA 1</td>
<td>198.19.96.10/25</td>
<td>198.19.96.130/25</td>
<td>198.19.96.245</td>
</tr>
<tr>
<td>CISCO WSA 2</td>
<td>198.19.96.11/25</td>
<td>198.19.96.131/25</td>
<td>198.19.96.245</td>
</tr>
<tr>
<td>CISCO WSA N</td>
<td>198.19.96.n/25</td>
<td>198.19.96.n/25</td>
<td>198.19.96.245</td>
</tr>
</tbody>
</table>

The Cisco WSA would then default route back to BIG-IP SSL Orchestrator on a defined address in the outbound subnet. In the example above, that IP is 198.19.96.245.

Note: A /25 network (255.255.255.128) subdivides a regular /24 network into two subnets and is a simple way to maximize local protected IP addressing for security services. Below are the IP subnets and schemes that BIG-IP SSL Orchestrator uses by default, but any addressing scheme can be used.

198.19.96.1 — 198.19.96.126
198.19.96.129 — 198.19.96.254

Additionally, BIG-IP SSL Orchestrator doesn’t source NAT (SNAT) for the client source address across inline layer 3 services. Inline layer 3 services must therefore also have a static route back to the inbound side of BIG-IP SSL Orchestrator for IPs/subnets that match the client-side network. See Figure 3 for an example.

<table>
<thead>
<tr>
<th>Route</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT-SIDE NETWORK</td>
<td>10.20.0.0/25</td>
</tr>
<tr>
<td>BIG-IP SSL ORCHESTRATOR SERVICE INBOUND SELF</td>
<td>198.19.96.7/25</td>
</tr>
<tr>
<td>BIG-IP SSL ORCHESTRATOR SERVICE OUTBOUND SELF</td>
<td>198.19.96.245/25</td>
</tr>
</tbody>
</table>

In this sample, the following Unix/Linux route command would create a static route for traffic originating from 10.20.0.0/25 to flow back to 198.19.96.7:

```
route add -net 10.20.0.0/24 gw 198.19.96.7
```

Initial Setup

Initial setup includes configuration of the Cisco WSA and setup of BIG-IP SSL Orchestrator. Once these steps are complete, proceed to configuration for the chosen deployment scenario.
CONFIGURE CISCO WSA PREREQUISITES

Before the Cisco WSA can receive traffic from BIG-IP SSL Orchestrator, there are a few basic configurations that must be completed. Any and all licenses should be applied, and the System Setup Wizard (SSW) should be completed. The SSW will step through configuration of the system hostname, Domain Name Servers (DNS), Network Time Protocol Servers (NTP), and time zone, along with many other settings, including the IP address, subnet mask, and hostname for the management interface (M1). Instructions for additional interface configuration appear later in this guide.

CONFIGURE BIG-IP SSL ORCHESTRATOR PREREQUISITES

Before BIG-IP SSL Orchestrator configuration can begin, a few prerequisites need to be addressed.

Define client side and outbound side VLANs and self-IPs
For SSL/TLS orchestration in a layer 3 (routed or explicit proxy) topology, the F5 system must be configured with appropriate client-facing and outbound-facing VLANs and self-IPs. The VLANs define the connected interfaces, and the self-IPs define the respective IPv4 and/or IPv6 subnets.

1. Log in to the F5 system, and under the Network menu, configure the client side and outbound side VLANs and self-IPs appropriately.

Import a CA certificate and private key
For SSL/TLS orchestration in an outbound traffic topology, a local CA certificate and private key are required to re-sign the remote server certificates for local (internal) clients. For an inbound traffic topology, remote clients terminate their SSL/TLS sessions at the F5 system, so it must possess the appropriate server certificates and private keys.

1. Log in to the F5 system, and under System—Certificate Management, import the required CA and/or server certificates and private keys

With these prerequisites complete, proceed to the second part of configuration, where the system is finalized for BIG-IP SSL Orchestrator.

Configuring BIG-IP SSL Orchestrator/Cisco WSA Integration

BIG-IP SSL Orchestrator is configured to send decrypted traffic to an inline Cisco WSA. BIG-IP SSL Orchestrator handles both decryption and re-encryption of HTTPS traffic, with an inspection zone installed between the ingress and egress. Decrypted traffic is steered to a service pool of Cisco WSA devices. Administrators can also deploy the F5 system as a device sync/failover device group (including an HA pair) with a floating IP address for high availability.
The Cisco WSA can be configured as either a transparent proxy or explicit proxy inside the inspection zone.

How traffic flows in this deployment:

1. Client traffic arrives at the ingress side of the F5 system, where it’s classified, and interesting HTTPS traffic is decrypted as part of the SSL/TLS handling process.

2. BIG-IP SSL Orchestrator steers the decrypted traffic through the load balanced Cisco WSA service pool as part of a service chain that potentially includes multiple types of security services.

3. The HTTP traffic is inspected by the Cisco WSA services for any hidden threats before sending that traffic back to the F5 system.

4. The F5 system orchestrates the decrypted traffic through other services in the chain before it aggregates and re-encrypts the traffic, which is then routed to the next destination.

Note: Inside the BIG-IP SSL Orchestrator inspection zone, all traffic passing to the Cisco WSA devices is unencrypted HTTP. It’s a security best practice to protect this device and the network between it and the F5 device. It’s therefore recommended that the Cisco WSA devices be moved to the secure enclave created by BIG-IP SSL Orchestrator. This brings with it a few architectural changes.

If the Cisco WSA was previously installed in the network to service client traffic as either a transparent or explicit proxy, BIG-IP SSL Orchestrator must now fulfill that role:

- If the Cisco WSA was configured as an explicit proxy, BIG-IP SSL Orchestrator must then be configured as an explicit proxy and clients must communicate with it as their explicit proxy gateway.
- If the Cisco WSA was configured as a transparent proxy, BIG-IP SSL Orchestrator must be configured as a transparent proxy and routed client traffic must now pass through it.

Cisco WSA devices inside the inspection zone can be explicit or transparent, irrespective of the proxy mode of BIG-IP SSL Orchestrator.

If the Cisco WSA device was previously handling explicit proxy user authentication, BIG-IP SSL Orchestrator must now fulfill this role. F5 BIG-IP Access Policy Manager (APM) can be provisioned to provide the same authentication functionality.
CONFIGURE CISCO WSA

Following are the minimum requirements to configure a Cisco WSA device for integration with BIG-IP SSL Orchestrator. Please refer to Cisco documentation for additional product-specific information.

Configure interfaces

The Cisco WSA devices must be physically or logically two-armed. In other words, each device must have separate physical or logical inbound and outbound interfaces. This can either be two separate physical interfaces or a single 802.1q VLAN tagged interface (a single interface with two tagged VLANs). The recommended method is to use the P1 interface for inbound traffic and the P2 for outbound traffic.

The M1 interface should be reserved for management traffic, while the P1 interface and optionally the P2 interface are defined for data plane traffic.

1. To complete the interface configuration in the WSA GUI, navigate to Network > Interfaces > Edit Settings... and set the relevant parameters described below.

<table>
<thead>
<tr>
<th>Setting</th>
<th>User Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERFACES</td>
<td>Configure the P1 and P2 interface addressing according to the deployment. For example, if using the Auto Manage option in the HTTP service settings in BIG-IP SSL Orchestrator, enter an address in the 198.19.96.0/25 subnet for P1 and in the 198.19.96.245/25 subnet for P2. Otherwise, use appropriate addresses per the BIG-IP SSL Orchestrator configuration.</td>
</tr>
<tr>
<td>SEPARATE ROUTING FOR MANAGEMENT SERVICES</td>
<td>This setting should be enabled to limit management services to the M1 interface only. In this configuration, services such as SSH, HTTP/S, and FTP which are used to administer the WSA are not allowed unless they ingress on the M1 interface.</td>
</tr>
<tr>
<td>APPLIANCE MANAGEMENT SERVICES</td>
<td>This option defines which services are restricted by the previous setting.</td>
</tr>
</tbody>
</table>

Configure VLANs (optional)

If two separate data plane interfaces are not available (P1 and P2), it’s also possible to configure the single P1 interface with two VLANs. This is best done from the command line interface using SSH. From the Cisco WSA CLI, perform the following actions to define the P1 (inbound) and P2 (outbound) interfaces:

1. Ensure that the interfaces are enabled and mapped correctly. This will list the active interfaces and their layer 2 (MAC) addresses.

```
[]> etherconfig
[]> media
```
2. Create a VLAN
 `[] > etherconfig
 `[] > vlan

 Assuming none already have been created:

 `[] > new

3. Enter a VLAN tag ID for the interface (for example, “34”). This is an arbitrary 802.1q
 VLAN tag ID number. Enter any reasonable value below 4096.

4. Enter the name or number of the ethernet interface you wish to bind to; select the
 number of the P1 interface.

5. Perform the same action for a second VLAN on the same interface.

6. Create an IPv4 address for the new VLANs.
 `[] > interfaceconfig
 `[] > new

7. Select the number of the first VLAN from the presented list.

8. For the question, **Would you like to configure an IPv4 address for this interface (y/n),**
 enter `Y`.

9. Enter an IPv4 address. Assuming the best practice security, this will be an address
 defined for use with BIG-IP SSL Orchestrator (see [IP Addressing](#) above). For example,
 when using the **Auto Manage** option in BIG-IP SSL Orchestrator’s HTTP service
 settings, enter an address in the 198.19.96.0/25 subnet (ex. 198.19.96.60). Otherwise,
 use an appropriate address that will be in a different subnet than the P2 outbound
 interface.

10. For **Netmask**, enter the appropriate subnet mask for the defined IPv4 address (for
 example “24”, “255.255.255.0”, or “0xffffff00”). Again, if following best practice security
 with the /25 subnet examples above, enter “25” or “255.255.255.128”.

11. For the question, **Would you like to configure an IPv6 address for this interface (y/n)?**
 enter `N`.

12. Enter a **Hostname**.

13. Perform steps 7 through 12 for the second VLAN, starting from the `[] > new` command.
 This time, select the number of the second VLAN from the presented list. Follow the
 same IP addressing instructions as above, except that the IPv4 address will be in a
 separate subnet. If following security best practice and using the **Auto Manage** option
 in BIG-IP SSL Orchestrator’s HTTP service settings, when the inbound address is in
 the 198.19.96.0/25 subnet, then the outbound interface will be in the 198.19.96.129/25
 subnet. Enter an IP address between 198.19.96.130 and 198.19.96.254. Otherwise use
 an appropriate address that will be in a different subnet than the P1 inbound interface.

14. Commit these settings.
 `[] > commit
Configure routes
The Cisco WSA devices will require two routes.

- **A gateway route to send data plane traffic outbound.** This is an IP address on BIG-IP SSL Orchestrator facing the outbound side of the Cisco WSA.

- **A static return route.** BIG-IP SSL Orchestrator doesn’t SNAT traffic across inline security devices by default, so the source address passing through the Cisco WSA will be foreign and need a static return route to define the path back to the F5 system on the inbound side of the Cisco WSA.

These can be configured using either the GUI or the command-line interface (CLI). To configure using the GUI, navigate to **Network > Routes** and add the appropriate route to the **Data** routing table.

To configure using the CLI, follow these steps:

1. Configure the gateway route.
   ```
   [] > setgateway
   ```

2. Select **IPv4** from the list of options.

3. Select **Data Default Gateway** from the list of options.

4. Enter a new default gateway. Enter an address that is in the outbound side interface/VLAN subnet. For example, if using the auto-managed IP subnets, you might use an address of 198.19.96.244.

5. Configure the static return route.
   ```
   [] > routeconfig
   Select IPv4 from the list of options.
   ```

6. Select **Data** from the list of options.
   ```
   [] > new
   ```

7. Enter a **Name** for the route. Enter any arbitrary name.

8. Enter the destination IPv4 address to match. CIDR addresses such as 192.168.42.0/42 are also allowed.

9. Enter the client-side subnet. This is the source-side subnet that the Cisco WSA will see. For example, if the client-side subnet is 10.20.0.0/24, enter this value directly.

10. Enter the gateway IP address for traffic to `<subnet>`. This will be the self-IP on the F5 system on the inbound side of the Cisco WSA. This will be defined as part of BIG-IP SSL Orchestrator configuration. When using the auto-managed option, this might be an address in the 198.19.96.0/25 subnet (ex. 198.19.96.1).

11. Commit these settings.
    ```
    [] > commit
    ```
Note: In addition to the client and default routes, we recommend manually configuring various system services to use the management routing table to access the Internet. The following services can be manually configured to use the management routing table:

- External URL feeds
- AMP file reputation and analysis
- Updates and upgrades
- DNS
- Active Directory (AD)

If these services use the data routing table, they will egress through BIG-IP SSL Orchestrator and will require additional configuration on that device to allow the connections.

Configure DNS

DNS settings are minimally required to allow the Cisco WSA devices to talk to remote (home base) services for engine updates. They are also required if the WSA is configured as an explicit proxy.

There are generally two options for DNS: Passing through either the management interface (M1) or the data plane outbound interface (P2 or the second VLAN on P1). In Cisco WSA version 11 and up, it’s possible to explicitly configure which routing table to use. When the solution is configured for data plane egress, BIG-IP SSL Orchestrator must be further configured to allow this traffic out. For this reason, the recommended practice is to limit DNS traffic to the M1 interface.

1. To configure DNS in the Cisco WSA GUI, navigate to Network > DNS. Identify the relevant settings below:

<table>
<thead>
<tr>
<th>Setting</th>
<th>User Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY DNS SERVER</td>
<td>Configure the desired DNS resolver and any alternative resolvers which are required. Optionally, configure the Cisco WSA to use the Internet Root DNS servers.</td>
</tr>
<tr>
<td>SECONDARY DNS SERVERS</td>
<td>Optionally configure any additional servers to be used.</td>
</tr>
<tr>
<td>ROUTING TABLE FOR DNS TRAFFIC</td>
<td>This option is available in Cisco WSA version 11 and up. If it’s available, the best practice is to enable this setting to prevent the need for additional configuration on BIG-IP SSL Orchestrator to allow this traffic.</td>
</tr>
</tbody>
</table>

Alternately, to configure DNS using the CLI, reference the steps below:

1. Enter DNS configuration:
   ```bash
   [] > dnsconfig
   [] > setup
   ```

2. For the question, Do you want the Gateway to use the Internet’s root DNS servers or would you like it to use your own DNS servers? choose the appropriate setting for your network:
1. Use Internet root DNS servers.
2. Use own DNS cache servers.

3. Choose the routing table to use. Choose option 2 if available.
 1. Data.
 2. Management.

4. Enter the number of seconds to wait before timing out reverse DNS lookups or accept the default.

5. Enter the minimum TTL in seconds for DNS cache. The default is 1800; lower this setting to 300 to accommodate low TTL records.

6. Enter the number of failed attempts before considering a local DNS server offline. We recommend accepting the default, 100.

7. Enter the interval in seconds for polling an offline local DNS server. Again, accept the default, 5 seconds.

8. The system will indicate what local DNS cache servers are currently being used. This will reflect the server address configured using the System Setup Wizard.

9. Commit these settings.

Configure the web proxy service
Please refer to the appropriate Cisco WSA documentation for more detailed information on configuring Cisco WSA. The following are the minimal settings required for integration with BIG-IP SSL Orchestrator. Configuration of the web proxy will be performed from the Cisco WSA UI.

In this scenario, the Cisco WSA can be configured as either a transparent or explicit web proxy.

1. In the Cisco WSA UI, under Security Services > Web Proxy, confirm or create the following settings:
### Setting	User Input
HTTP PORTS TO PROXY | BIG-IP SSL Orchestrator passes unencrypted HTTP traffic to the Cisco WSA, but by default it doesn’t alter the original destination ports (80 for HTTP and 443 for HTTPS). This option defines the ports that BIG-IP SSL Orchestrator will use when sending that traffic to the Cisco WSA. Traditionally an explicit proxy listens on port 3128 or 8080, and a transparent proxy HTTP listens on port 80. These ports are arbitrary, but to match the default configuration of BIG-IP SSL Orchestrator, these can be changed to 80 and 443.

CACHING | BIG-IP SSL Orchestrator doesn’t interfere in any way with Cisco WSA’s caching functions.

PROXY MODE | When in **Transparent** mode, the proxy (Cisco WSA) can accept transparent and explicit forward connections. When in **Forward** mode, only explicit forward connections are supported. To allow for the Cisco WSA to authenticate clients, this setting must be set to **Transparent**. The rest of this guide assumes a transparent proxy configuration from the Cisco WSA perspective.

IP SPOOFING | This mode enables Cisco WSA to source outbound traffic from the original client source address. In other words, if Disabled, the traffic leaving the Cisco WSA will be sourced from the outbound side IP address of the Cisco WSA itself. If **Enabled**, the traffic leaving the Cisco WSA will be sourced from the original client source address. BIG-IP SSL Orchestrator can work with either setting irrespective of any other devices in the service chain.

Note: BIG-IP SSL Orchestrator doesn’t SNAT traffic to inline services by default, so X-Forwarded-For headers are generally not required. The Cisco WSA device will receive the true client source address in the packets.

Authentication (optional)

The Cisco WSA may optionally be used to authenticate users to enforce web access policies and to allow for web tracking and reporting based on AD users and groups. This is not required, and therefore this section may be skipped if Cisco WSA authentication is not part of the deployment.

Enforcing authentication in the Cisco WSA when integrated with BIG-IP SSL Orchestrator requires a transparent proxy configuration. When clients initially send an unauthenticated request to a web site, the Cisco WSA will respond with an HTTP redirect response that directs the client to its own hostname. Upon following the redirect, the client is then challenged for authentication. Once authentication has been completed, the client is then redirected back to the original URL.

Because the Cisco WSA only receives HTTP traffic from BIG-IP SSL Orchestrator, it will always redirect the client to the original URL over HTTP when authentication has completed. If the original request was sent over HTTPS and the site doesn’t accept connections over HTTP, the client request will fail. To account for this, an F5® iRule® must be created to re-write the redirect URL string sent to the client from the Cisco WSA. This is addressed as part of BIG-IP SSL Orchestrator configuration later in this guide.
Because a typical deployment of BIG-IP SSL Orchestrator will utilize multiple Cisco WSA appliances for load balancing and high availability, specific steps are required to ensure that when the client follows the redirect for authentication of the request, it’s delivered to the same WSA to which the initial web request was made. This is accomplished using a dedicated virtual IP (VIP) and CARP load balancing in BIG-IP SSL Orchestrator configuration, which is also addressed later in this guide.

The redirect hostname configured on the WSA is the name that will be used for authentication redirects. This hostname should resolve to the VIP that is configured on BIG-IP SSL Orchestrator for direct authentication between the clients and the WSA.

1. Configure this hostname using the WSA GUI by navigating to Network > Authentication. Please refer to the WSA user guide documentation regarding domain authentication configuration, which is outside the scope of this guide.

If Kerberos is required in the deployment, additional steps are required to employ the key tab feature on the WSA. Please refer to specific documentation regarding this feature, which also is outside the scope of this guide.

CONFIGURE BIG-IP SSL ORCHESTRATOR

A Cisco WSA device is configured as an HTTP service in BIG-IP SSL Orchestrator. This configuration will focus on the traditional outbound (forward proxy) use case. Once logged into the F5 system, navigate to the SSL Orchestrator menu and review the environment.

Create the BIG-IP SSL Orchestrator deployment using guided configuration

BIG-IP SSL Orchestrator’s guided configuration presents a completely new and streamlined user experience. This workflow-based architecture provides intuitive, re-entrant configuration steps tailored to the selected topology.

The following steps will walk through the Guided Configuration (GC) to build a simple transparent forward proxy.

Initialization

If this is the first time accessing BIG-IP SSL Orchestrator in a new BIG-IP build, upon first access, the guided configuration will automatically load and deploy the built-in BIG-IP SSL Orchestrator package.
Configuration review and prerequisites

1. Take a moment to review the topology options and workflow configuration steps involved.

2. (Optional). Satisfy any of the DNS, NTP, and Route prerequisites from the page in Figure 6. Keep in mind, however, that aside from NTP, the guided configuration will provide an opportunity to define DNS and route settings later in the workflow.

3. No other configurations are required on this page, so click Next.

Topology properties

BIG-IP SSL Orchestrator now creates discreet configurations based on the selected topology. An explicit forward proxy topology will ultimately create an explicit proxy listener and its relying transparent proxy listener, but the transparent listener will be bound only to the explicit proxy tunnel. If a subsequent transparent forward proxy topology is configured, it will not overlap the existing explicit proxy objects.

The Topology Properties page includes the following options:

- The Protocol option presents four protocol types:
 - TCP. This option creates a single TCP wildcard interception rule for the L3 inbound, L3 outbound, and L3 explicit proxy topologies.
 - UDP. This option creates a single UDP wildcard interception rule for L3 inbound and L3 outbound topologies.
 - Other. This option creates a single any protocol wildcard interception rule for L3 inbound and L3 outbound topologies. This option is typically used for non-TCP/UDP traffic flows.
 - Any. This option creates the TCP, UDP, and non-TCP/UDP interception rules for outbound traffic flows.

- The BIG-IP SSL Orchestrator Topologies option page presents six topologies. See Figure 7.
- **L3 Explicit Proxy.** This is the traditional explicit forward proxy.
- **L3 Outbound.** This is the traditional transparent forward proxy.
- **L3 Inbound.** This is a reverse proxy configuration.
- **L2 Inbound.** The layer 2 topology options insert BIG-IP SSL Orchestrator as a bump-in-the-wire in an existing routed path, where BIG-IP SL Orchestrator presents no IP addresses on its outer edges. The L2 inbound topology provides a transparent path for inbound traffic flows.
- **L2 Outbound.** The layer 2 topology options insert BIG-IP SSL Orchestrator as a bump-in-the-wire in an existing routed path, where BIG-IP SSL Orchestrator presents no IP addresses on its outer edges. The L2 outbound topology provides a transparent path for outbound traffic flows.
- **Existing Application.** This topology is designed to work with existing BIG-IP LTM applications. Whereas the L3 inbound topology provides an inbound gateway function for BIG-IP SSL Orchestrator, the Existing Application option works with BIG-IP LTM virtual servers that already perform their own SSL/TLS handling and client-server traffic management. The existing application configuration workflow proceeds directly to service creation and security policy definition, then exits with a BIG-IP SSL Orchestrator-type access policy and per-request policy that can easily be consumed by a BIG-IP LTM virtual server.

Figure 7: Sample topology configuration

1. To create a typical outbound SSL/TLS visibility solution, enter a **Name**.
2. Select the **Any** protocol, which will create separate TCP, UDP, and non-TCP/UDP interception rules.
3. Select **IPv4** for the **IP Family**.
4. Select the **L3 Outbound** or **L3 Explicit Proxy Topology**.
5. Click **Save & Next**.

SSL configuration

This page defines the specific SSL/TLS settings for the selected topology, in this case a forward proxy, and controls both client-side and server-side SSL/TLS options. If existing SSL/TLS settings are available (from a previous workflow), it can be selected and re-used. Otherwise, the SSL Configurations page creates new SSL settings for this workflow.
1. Under **Client-side SSL**, select the appropriate option for each of the following:

 - **Cipher Type.** The cipher type can be a **Cipher Group** or a **Cipher String**. For the former, select a previously defined cipher group from Local Traffic > Ciphers > Groups. For the latter, enter a cipher string that appropriately represents the client-side SSL/TLS requirement. For most environments, the **Default** is optimal.

 - **Certificate Key Chain.** The certificate key chain represents the certificate and private key used as the template for forged server certificates. While reissuing server certificates on-the-fly is generally easy, private key creation tends to be a CPU-intensive operation. For that reason, the underlying SSL/TLS forward proxy engine forges server certificates from a single defined private key. This setting gives administrators the opportunity to apply their own template private key, and optionally to store that key in a FIPS-certified HSM for additional protection. The built-in default certificate and private key uses 2K RSA and is generated from scratch when the F5 system is installed. Click **Add**, select **default.crt** and **default.key**, and click **Done**.

 - **CA Certificate Key Chain.** An SSL/TLS forward proxy must re-sign or “forge” remote server certificate to local clients using a local CA certificate, and local clients must trust this local CA. This setting defines the local CA certificate and private key used to perform the forging operation. Assuming a local CA certificate and key were imported in the initial setup, select them here.

 Note: SSL/TLS settings minimally require an RSA-based template and CA certificates but can also support elliptic curve digital signature algorithm (ECDSA) certificates. In this case, BIG-IP SSL Orchestrator would forge an EC certificate to the client if the SSL/TLS handshake negotiated an ECDHE_ECDSA cipher. To enable EC forging support, add both an EC template certificate and key, and an EC CA certificate and key.

 - **[Advanced] Bypass on Handshake Alert.** This advanced setting allows the underlying SSL/TLS forward proxy process to bypass SSL/TLS decryption if an SSL/TLS handshake error is detected on the server side. We recommend leaving this **Disabled**.

 - **[Advanced] Bypass on Client Certificate Failure.** This advanced setting allows the underlying SSL/TLS forward proxy process to bypass SSL/TLS decryption if it detects a certificate request message from the server, as in when a server requires mutual certificate authentication. We recommend leaving this **Disabled**.

 Note: These two advanced bypass options can create a security vulnerability. If a colluding client and server can force an SSL/TLS handshake error or a client certificate authentication, they can effectively bypass SSL/TLS inspection. This is why we recommended leaving these settings disabled.

2. Under **Server-side SSL**, select appropriate settings from the following options:

 - **Cipher Type.** The cipher type can be a **Cipher Group** or **Cipher String**. For the former, select a previously defined cipher group from Local Traffic > Ciphers > Groups. For the latter, enter a cipher string that appropriately represents the server-side SSL/TLS requirement. For most environments, the **Default** is optimal.
• **Trusted Certificate Authority.** Browser vendors routinely update the CA certificate stores in their products to keep up with industry security trends and to account for new and revoked CAs. In the SSL/TLS forward proxy use case, however, the F5 product now performs all server-side certificate validation in lieu of the client browser. BIG-IP SSL Orchestrator ships with a CA certificate bundle that maintains a list of CA certificates common to the browser vendors. A more comprehensive bundle can (and should) be obtained from the F5 downloads site and selected here. Otherwise, it’s safe to select the built-in `ca-bundle.crt`.

• **[Advanced] Expire Certificate Response.** BIG-IP SSL Orchestrator performs validation on remote server certificates and can control what happens if it receives an expired server certificate. The options are **Drop**, which simply drops the traffic, and **Ignore**, which mirrors an expired forged certificate to the client. The default and recommended behavior for the forward proxy use case is to **Drop** traffic on an expired certificate.

• **[Advanced] Untrusted Certificate Authority.** BIG-IP SSL Orchestrator performs validation on remote server certificates and can control what happens if it receives an untrusted server certificate, based on the **Trusted Certificate Authority** bundle. The options are **Drop**, which simply drops the traffic, and **Ignore**, which allows the traffic and forges a good certificate to the client. The default and recommended behavior for the forward proxy use case is to **Drop** traffic with an untrusted certificate.

• **[Advanced] OCSP.** This advanced setting selects an existing Online Certificate Status Protocol (OCSP) profile or can create a new one for server-side OCSP and OCSP stapling. With this setting **Enabled**, if a client issues a Status_Request message in its ClientHello message (an indication that it supports OCSP stapling), BIG-IP SSL Orchestrator will issue a corresponding Status_Request message in its server-side SSL/TLS handshake. BIG-IP SSL Orchestrator will then forge the returned OCSP stapling response back to the client. If the server doesn’t respond with a staple but contains an Authority Info Access (AIA) field that points to an OCSP responder URL, BIG-IP SSL Orchestrator will perform a separate OCSP request. The returned status is then mirrored in the stapled client-side SSL/TLS handshake.

• **[Advanced] CRL.** This setting selects an existing CRL profile or can create a new one for server-side Certificate Revocation List (CRL) validation. With this setting **Enabled**, BIG-IP SSL Orchestrator attempts to match server certificates to locally cached CRLs.

3. Click **Save & Next**.

Services list
The Services List page is used to define security services that attach to BIG-IP SSL Orchestrator. The guided configuration includes a services catalog that contains common product integrations. Beneath each of these catalog options is one of the five basic service types. The service catalog also provides a generic security service option. (Depending on the user’s screen resolution, it may be necessary to scroll down to see additional service options.)
1. To define the Cisco WSA service, either double-click it or select it in the service catalog and click **Add**.

2. Enter a unique **Name** for this service (for example, WSA).

3. Configure the following service details:

 - **Auto Manage Addresses.** When **Enabled**, this setting provides a set of unique, non-overlapping, non-routable IP addresses to be used by the security service. If **Disabled**, the To and From IP addresses must be configured manually. We recommend leaving this option **Enabled** (selected).

 Note: In environments where BIG-IP SSL Orchestrator is introduced to existing security devices, it's a natural tendency to not want to have to move these devices. And while BIG-IP SSL Orchestrator certainly allows this, not moving the security devices into BIG-IP SSL Orchestrator-protected enclaves runs the risk of exposing sensitive decrypted traffic, unintentionally, to other devices that may be connected to these existing networks. It's therefore highly recommended, and a security best practice, to remove integrated security devices from existing networks and place them entirely within the isolated enclave created and maintained by BIG-IP SSL Orchestrator.

 - **Proxy Type.** This setting defines the proxy mode that the inline HTTP service is in. In **Explicit** proxy mode, the configuration will request the service's listening IP and proxy port. In **Transparent** proxy mode, the configuration will simply request the service's inbound interface IP address. To support Cisco WSA transparent proxy mode authentication, select **Transparent**.

4. Configure the **To Service**, which defines the network connectivity from BIG-IP SSL Orchestrator to the inline security device.

 - **When Auto Manage Addresses** (above) is **Enabled**, this IP address will be predefined, and therefore the inbound side of the service must match this IP subnet. When **Auto Manage Addresses** option is **Disabled**, the IP address must be defined manually.

 - **VLAN.** Select **Create New**, provide a unique name (for example, WSA_in), select the F5 interface connecting to the inbound side of the service, and add a VLAN tag value if required.

5. Configure the following service details:

 - **Service Down Action.** BIG-IP SSL Orchestrator monitors the load balanced pool of security devices, and if all pool members fail, it can actively bypass this service (**Ignore**) or stop all traffic (**Reset, Drop**).
• **Security Devices.** This setting defines the inbound-side IP address of the inline HTTP service used for passing traffic to this device. Multiple load balanced IP addresses can be defined here. For a transparent proxy HTTP service, only an IP address is required. For an explicit proxy HTTP service, the IP address and listening port is required. Click **Add**, enter the service's inbound-side **IP Address** (the port value is explicit), and then click **Done**.

6. Configure the **From Service**, which defines the network connectivity from the inline security device to BIG-IP SSL Orchestrator.

• **With the Auto Manage Addresses option Enabled**, this IP address will be pre-defined, and therefore the outbound side of the service must match this IP subnet. With this option **Disabled**, the IP address must be defined manually.

• **VLAN.** Select **Create New**, provide a unique **Name** (for example, WSA_out), select the F5 interface connecting to the outbound side of the service, and add a VLAN tag value if required.

7. Continue to configure the following service details:

• **Enable Port Remap.** For an inline transparent proxy configuration, this setting defines the port that detected HTTPS traffic is remapped to. For the Cisco WSA, enter a remapping port of **80**.

• **Manage SNAT Settings.** This setting allows BIG-IP SSL Orchestrator to SNAT traffic to an inline service. This is especially useful in a load-balanced BIG-IP SSL Orchestrator scaling configuration but is not required in this use case. Leave the default setting **None**.

• **Authentication Offload.** When an access authentication profile is attached to an explicit forward proxy topology, this option will present the authenticated username value to the service as an X-Authenticated-User HTTP header. To support Cisco WSA transparent proxy mode authentication, leave this set to **None**.

• **iRules.** BIG-IP SSL Orchestrator allows for the insertion of additional iRule logic at different points. An iRule defined at the service only affects traffic flowing across this service. It’s important to understand, however, that such iRules mustn’t be used to control traffic flow (for example, pools, nodes, or virtuals), but rather should be used to view or modify application layer protocol traffic. For example, an iRule assigned here could be used to view and modify HTTP traffic flowing to or from the service. Additional iRules are not required, however, so in general, leave this empty.

8. Click **Save & Next**.
Service chain list
Service chains are arbitrarily ordered lists of security devices. Based on environmental requirements, different service chains may contain different reused sets of services, and different types of traffic can be assigned to different service chains. For example, HTTP traffic may need to go through all of the security services, while non-HTTP traffic only goes through a subset of the services, and traffic destined to a financial service URL can bypass decryption and still flow.

1. Click **Add** to create a new service chain containing all of the desired security services.
2. Provide a unique **Name** to this service (for example, my_service_chain).
3. Select any number of desired **Services** and move them into the **Selected Service Chain Order** column. Optionally, order them as desired. Select all of the services.
4. Click **Save & Next**.

Security policy
Security policies are the set of rules that govern how traffic is processed in BIG-IP SSL Orchestrator. The actions a rule can take include:

- Whether to allow the traffic.
- Whether to decrypt the traffic.
- Which service chain, if any, to pass the traffic through.

The guided configuration presents an intuitive, rule-based, drag-and-drop user interface for the definition of security policies.

In the background, BIG-IP SSL Orchestrator maintains these security policies as visual per-request policies. If traffic processing is required that exceeds the capabilities of the rule-based user interface, the underlying per-request policy can be managed directly.

1. Create any security rules and associate actions as required, then click **Save & Next**.
Interception rules
Interception rules, which are based on the selected topology, define the "listeners," analogous to BIG-IP LTM virtual servers, which accept and process different types of traffic (such as TCP, UDP, or other). The resulting BIG-IP LTM virtual servers will bind the SSL/TLS settings, VLANs, IPs, and security policies created in the topology workflow.

The Interception Rules page includes default and custom options.

1. Select the outbound rule type:
 - For the transparent forward proxy topology workflow, the **Custom** option exposes source address, destination address and port, and layer 7 profile selections. These are not generally required for most outbound configurations, so keep the **Default** selection.
 - This option is not present for explicit proxy configurations.

2. Select the **Proxy Server Settings** as needed. This setting, which is present for an explicit proxy configuration, defines the BIG-IP SSL Orchestrator explicit proxy listening IP address and proxy port. For explicit proxy authentication, this section also allows for the selection of a BIG-IP APM SWG-explicit access policy.

3. Indicate the **Ingress Network (VLANS)**. This defines the VLANs through which traffic will enter. For a forward proxy topology, this would be a client-side VLAN.

4. Enable **L7 Interception Rules**. FTP and email protocol traffic are all "server-speaks-first" protocols, and therefore BIG-IP SSL Orchestrator must process these separately from typical client-speaks-first protocols like HTTP. This selection enables processing of each of these protocols, which create separate port-based listeners for each. As required, selectively enable the additional protocols that need to be decrypted and inspected through BIG-IP SSL Orchestrator. (This option is not present for explicit proxy configurations.)

5. Click **Save & Next**.

Egress settings
The Egress Settings page defines the topology-specific egress characteristics.

1. **Manage SNAT** settings. Define if and how SNAT will be used for egress traffic.

2. Define **Gateways**. This setting defines the next hop route for traffic. For an outbound configuration, this is usually a next hop upstream router.
Summary

The Summary page presents an expandable list of all of the workflow-configured objects.

1. To expand the details for any given setting, click the corresponding arrow icon on the far right.
2. To edit any given setting, click the corresponding pencil icon, which will send the workflow back to the selected settings page.
3. When the defined settings are correct, click Deploy.

Upon successful deployment of the configuration, BIG-IP SSL Orchestrator will display a dashboard. See Figure 11.

Figure 11: The deployment dashboard

The Interception Rules tab shows the listeners that were created per the selected topology.

Figure 12: The interception rules tab

This completes the configuration of BIG-IP SSL Orchestrator as a forward proxy. At this point an internal client should be able to browse out to external (Internet) resources, and decrypted traffic will flow across the security services.
Testing the Solution

Test the deployed solution using one of the following options:

SERVER CERTIFICATE TEST

Open a browser on the client system and navigate to an HTTPS site such as https://www.google.com. Once the site opens in the browser, check the server certificate of the site and verify that it has been issued by the local CA set up on the F5 system. This confirms that the SSL/TLS forward proxy functionality enabled by BIG-IP SSL Orchestrator is working correctly.

DECRIPTED TRAFFIC ANALYSIS ON THE F5 SYSTEM

Perform a TCP dump on the F5 system to observe the decrypted clear text traffic. This confirms SSL/TLS interception by the F5 device.

```
tcpdump -l -nni eth<n> -Xs0
```

DECRIPTED TRAFFIC ANALYSIS ON THE CISCO WSA

1. From the web UI, navigate to Help and Support > Packet Capture.
2. Edit the packet capture settings, such as the network interface on which the packet capture runs, as required. Use one of the predefined filters or create a custom filter with the use of any syntax that is supported by the Unix tcpdump command.
3. Click Start Capture to begin.
4. Click Stop Capture to end the capture.
5. Download the packet capture.

Additional Considerations

There are a few other configuration concepts that may need exploration when integrating a Cisco WSA device with BIG-IP SSL Orchestrator.

CREATING SERVICE NETWORKS MANUALLY

As noted, the security best practice is to move security devices to BIG-IP SSL Orchestrator’s protected network enclave. When that is done, BIG-IP SSL Orchestrator provides a set of internal network addresses that the security service can use. (This is the Auto Manage setting in the service definition.) If an organization chooses not to heed the security best practice recommendation or otherwise needs to create alternate addressing for the inline security service, follow the procedure below.
1. In defining the service, make sure **Auto Manage** is not selected.

2. Alter the To Service configurations by clicking **Create New** and providing a unique local **Name** (for example, WSA_in).

3. Under **VLAN**, click **Create New** and:
 - Select the correct inbound-side interface (F5 to service).
 - Enter a VLAN tag value as required.

4. Under **Network Settings**:
 - Enter the BIG-IP SSL Orchestrator inbound-side self-IP (ex. 198.19.96.7).
 - Enter the corresponding Netmask (ex. 255.255.255.128).

5. Alter the **From Service** configuration by selecting **Create New**.

6. Provide a unique local **Name** (for example, WSA_out).

7. Under **VLAN**, click **Create New** and:
 - Select the correct inbound-side interface (service to F5).
 - Enter a VLAN tag value as required.

8. Under **Network Settings**:
 - Enter the BIG-IP SSL Orchestrator outbound-side self-IP (ex. 198.19.96.245).
 - Enter the corresponding **Netmask** (ex. 255.255.255.128).

All other To Service and From Service settings should be the same as previously described in this guide.

CONFIGURING EXTERNAL ACCESS FOR CISCO WSA DNS AND ENGINE UPDATES

Interception rules are designed to process client-server traffic through BIG-IP SSL Orchestrator, and defined security services are (by best practice) isolated within the protected enclave created by BIG-IP SSL Orchestrator. Client-server traffic is signaled to allow BIG-IP SSL Orchestrator to track it through the service chains, and any traffic not signaled is blocked. This can be an issue when a security service itself needs to communicate with external resources, as this traffic would not carry a signal. For example, the Cisco WSA device may need to talk to a DNS server or reach out to subscription, licensing, and signature update services for updates. To enable this traffic flow, separate interception rule listeners can be defined to allow specific traffic from one of the service’s IP addresses to go to specific destinations.

In the following example, an interception rule listener is created to allow the Cisco WSA to communicate with external DNS (8.8.8.8).
1. Create a new L3 outbound **Topology** with the following properties:
 - Provide a **Name** (for example, wsa_outbound_dns).
 - **Protocol**—UDP.
 - **IP Family**—IPv4.
 - **Topology**—L3 Outbound.

2. Click **Save & Next**.

3. No new services are required in the **Service List**, so click **Save & Next**.

4. No new Service Chains are required, so click **Save & Next**.

5. This **Security Policy** doesn’t need any additional processing or categorization.
 We therefore recommend removing all rules except for the base All Traffic rule. Click **Save & Next**.

6. The **Interception Rule** for the service’s outbound channel should be as specific as possible. For example, if an intercept rule were configured only with a destination IP, any legitimate client-side traffic to that IP address would incorrectly flow out through this service channel. The minimal recommendation is to ensure the service’s outbound interception rule includes the service’s source address, which would normally be the outbound-side interface IP. To do this:
 - Select the **Custom** outbound rule type and enter a Label that describes this service outbound channel.
 - Under **Source Address**, enter the outbound-side interface IP of the service, including its /32 CICR mask (for example, 198.19.0.138/32).
 - Under **Destination Address/Mask**, enter the target service. In this case, the proxy needs to access Internet DNS at 8.8.8.8/32.
 - Enter a **Port**. DNS is typically on port 53.
 - Select the service’s outbound-side **VLAN**.

7. Click **Save & Next**.

8. Under Egress Settings, define the topology-specific egress characteristics:
 - Under **Manage SNAT**, define if and how SNAT should be used for egress traffic.
 - Under **Gateways**, define the next hop route for traffic. For an outbound configuration, this is usually a next hop upstream router.

9. Click **Save & Next**.

10. On the **Summary** page, review the expandable list of all of the workflow-configured objects. Expand or edit the details as previously described.

11. When the defined settings are correct, click **Deploy**.

Note: While it's possible to pass this outbound service traffic through a BIG-IP SSL Orchestrator inspection zone, do not attempt to send the service-initiated traffic through a service chain that contains itself.
CONFIGURING PASS-THROUGH TRANSPARENT PROXY AUTHENTICATION TO CISCO WSA

Cisco WSA provides transparent proxy authentication via an HTTP redirect mechanism to an on-box authentication service, which supports HTTP Basic authentication to LDAP, and Kerberos, NTLM, and Basic authentication to Active Directory. The mechanism normally works by redirecting the user to an authentication service URL on the Cisco WSA, where the user authenticates and is then redirected back through the transparent proxy. Session persistence can be maintained via IP address or a domain-based session cookie.

A summary of the transparent proxy authentication traffic flow:

<table>
<thead>
<tr>
<th>Flow</th>
<th>Example</th>
</tr>
</thead>
</table>
| THE CLIENT ISSUES A NORMAL HTTP REQUEST THROUGH THE TRANSPARENT PROXY. | GET /foo
Host: www.example.com |
| IN THE ABSENCE OF AN AUTHENTICATED SESSION, THE PROXY REDIRECTS THE USER TO A SEPARATE AUTHENTICATION SERVICE URL. | HTTP/1.1 307 Proxy Redirect
Location: https://wsa.auth.url/<UID>/<IP>/<Original-URL> |
| THE CLIENT IS CHALLENGED AND PRESENTS CREDENTIALS TO THE AUTHENTICATION SERVICE. | <401-based authentication>
Basic, NTLM, or Kerberos |
| IF THE CLIENT IP ADDRESS IS DEFINED FOR SESSION PERSISTENCE (SURROGACY), THE AUTHENTICATION SERVICE SIMPLY REDIRECTS TO THE ORIGINAL URL, WHICH FLOWS THROUGH THE TRANSPARENT PROXY. | GET /foo
Host: www.example.com |
| IF A SESSION COOKIE IS DEFINED FOR SURROGACY, THE REDIRECT FROM THE AUTHENTICATION SERVICE CONTAINS A QUERY STRING (IPTAC). | HTTP/1.1 307 Proxy Redirect
Location: https://www.example.com/iptac=<ID> |
| THE CLIENT REDIRECTS BACK THROUGH THE TRANSPARENT PROXY WITH THE IPTAC QUERY STRING. | GET /iptac=<ID>
Host: www.example.com |
| THE PROXY REDIRECTS THE CLIENT BACK TO THE ORIGINAL URL AND SETS A DOMAIN COOKIE BASED ON THE IPTAC VALUE. | HTTP/1.1 307 Proxy Redirect
Location: https://www.example.com/foo
Set-Cookie: iptac=<ID>, domain=.example.com |
| THE CLIENT REDIRECTS BACK TO THE ORIGINAL URL AND SENDS THE IPTAC COOKIE FOR ALL SUBSEQUENT REQUESTS. | GET /foo
Host: www.example.com
Cookie: <ID> |
This logical flow presents two challenges when Cisco WSA is inside the BIG-IP SSL Orchestrator inspection zone:

- All traffic to the Cisco WSA is unencrypted HTTP, therefore the original URL in the authentication service redirect always includes an HTTP:// URL. To address this challenge, a simple iRule is required to rewrite the Original-URL value in the authentication service redirect as it leaves the Cisco WSA.

- The authentication service URL is defined within the Cisco WSA configuration and requires DNS to resolve to an IP. However, the IP address of the Cisco WSA inside the BIG-IP SSL Orchestrator inspection is non-routable and inaccessible to the client. To address this challenge, a separate F5 virtual server and pool are required to direct traffic to the Cisco WSA authentication service. Authentication service traffic should DNS resolve to this client-accessible IP on the F5 system, which then passes the traffic to the internal service.

The iRule and other configuration steps are detailed below.

Cisco WSA: Defining a Cisco WSA transparent proxy authentication realm

This guide doesn’t expand on all of the different ways to configure transparent proxy authentication on Cisco WSA.

Please see the official Cisco documentation for detailed options. The following steps approximate the configuration of an authentication realm:

1. Set up DNS to point to the Active Directory server regardless of the authentication type (Basic, Kerberos, or NTLM). The Cisco WSA must be able to access an Active Directory domain controller.

2. In the Cisco WSA UI, navigate to **Network > Authentication**. Click **Add Realm**... and configure authentication accordingly.

3. Click **Submit**.

4. Under **Network > Authentication**, click **Edit Global Settings...** and, at minimum, set the **Redirect Hostname** value. This is the URL that the transparent proxy will use to redirect to the authentication service. This address will need to be added to internal DNS to point to the F5 virtual server. Do not enable HTTPS for authentication, as this will be handled by the F5 virtual server.

5. Click **Submit**.

6. **Commit** the changes.
Cisco WSA: Add or update the Cisco WSA Identification Profile to enable transparent proxy authentication

To enable transparent proxy authentication, an Identification Profile must be defined accordingly.

1. In the Cisco WSA UI, navigate to Web Security Manager > Identification Profiles. Add a new identification profile, or simply edit the Global Identification Profile.

2. Under Identification and Authentication, select Authenticate Users.

3. Under Authentication Realm, select the previously created authentication realm.

4. Under Authentication Surrogates, select either IP Address or Session Cookie.
 - IP Address manages client session persistence (surrogacy) by virtue of the client source address. Once authenticated, the client is not required to authenticate again until the session times out. Keep in mind, however, that IP address surrogacy is not effective in a NAT environment, where all clients can be coming to the proxy from the same source address. Otherwise, IP address is the more efficient of the two surrogacy options.
 - Session Cookie manages client session persistence by virtue of domain cookies. The process is more completely described earlier, but essentially, for each new domain accessed (for example, *.google.com), the client is redirected to the authentication service, authenticates, is redirected back to the original host with an iptac query string, and then redirected again to the original full URL with a domain cookie. This method is more useful in NAT environments but is considerably less efficient as it requires multiple redirects.

5. Submit and commit changes.

BIG-IP SSL Orchestrator: Create a pool to the Cisco WSA authentication service

With HTTPS authentication disabled in the Cisco WSA authentication realm settings, traffic to the authentication service defaults to port 80.

Note: The authentication service pool must point to the same IP addresses defined in the BIG-IP SSL Orchestrator service, but on port 80.

BIG-IP SSL Orchestrator: Create a client SSL profile for the Cisco WSA authentication service

Authentication traffic should still flow across an encrypted channel, so client SSL/TLS must be configured on the F5 system to decrypt to the Cisco WSA. The certificate and private key defined in the F5 client SSL/TLS profile should match the URL defined in the Cisco WSA authentication realm (Redirect Hostname).
BIG-IP SSL Orchestrator: Create a source address persistence profile
To enable authentication service requests and regular decrypted traffic to flow to the same Cisco WSA service for a single user, a persistence profile is required that maps the source address of the client. Create a source address affinity persistence profile, with Match Across Virtual Servers enabled.

BIG-IP SSL Orchestrator: Create a virtual server to the Cisco WSA authentication service
The F5 virtual server must minimally include:

- **Destination Address/Mask**—an IP address that matches the DNS resolution of the Redirect Hostname value.
- **Port**—443.
- **Client SSL profile**—the previously created client SSL/TLS profile.
- **VLANs and Tunnels**—the client-side VLAN.
- **Address Translation**—enabled.
- **Port Translation**—enabled.
- **Default Pool**—the previously created pool.
- **Default Persistent Profile**—the previously created source address affinity profile.

BIG-IP SSL Orchestrator: Create an iRule for the Cisco WSA authentication redirects
The iRule must be attached to the Cisco WSA service to catch and rewrite the authentication redirect responses coming from the Cisco WSA service.

1. In the BIG-IP SSL Orchestrator UI, under Services, click to edit the Cisco WSA service.
2. Under Resources at the bottom of the Cisco WSA service properties page, select the created iRule, then click Save & Next.
3. Deploy to save this configuration.
4. Edit the WSATP static variable in the RULE_INIT event to mirror the DNS name of the Cisco WSA authentication service.
when RULE_INIT {
 set static::WSATP "wsa.labs.f5demo.com"
}

when HTTP_RESPONSE {
 if { ([HTTP::is_redirect]) and ([HTTP::header Location] starts_with "http://${static::WSATP}") } {
 sharedvar ctx
 if { ([info exists ctx(ptcl)]) and ($ctx(ptcl) eq "https") } {
 ## Handle HTTPS requests - first replace HTTP:// in auth URL with HTTPS
 set url [string map [list "http://${static::WSATP}"
 "https://${static::WSATP}" [HTTP::header Location]]
 ## Determine if WSA is sending the auth URL with a port value
 set hasPort [findstr ${url} "https://${static::WSATP}" [string length "https://${static::WSATP}" "]]
 ## If the redirect contains a port, strip it off
 if { ${hasPort} ne "" } {
 set url [string map [list "http://${static::WSATP}${hasPort}"
 "https://${static::WSATP}" [HTTP::header Location]]
 }
 ## Replace the outbound Location redirect header
 HTTP::header replace Location ${url}
 } elseif { ([info exists ctx(ptcl)]) and ($ctx(ptcl) eq "http") } {
 ## Handle HTTP request - first replace HTTP:// in auth URL with HTTPS
 set url [string map [list "http://${static::WSATP}"
 "https://${static::WSATP}" [HTTP::header Location]]
 ## Determine if WSA is sending the auth URL with a port value
 set hasPort [findstr ${url} "https://${static::WSATP}" [string length "https://${static::WSATP}" "]]
 ## If the redirect contains a port, strip it off
 if { ${hasPort} ne "" } {
 set url [string map [list "http://${static::WSATP}${hasPort}"
 "https://${static::WSATP}" [HTTP::header Location]]
 }
 ## Replace the outbound Location redirect header
 HTTP::header replace Location ${url}
 }
 } elseif { ([info exists ctx(ptcl)]) and ($ctx(ptcl) eq "http") } {
 ## Handle HTTP request - first replace HTTP:// in auth URL with HTTPS
 set url [string map [list "http://${static::WSATP}"
 "https://${static::WSATP}" [HTTP::header Location]]
 ## Determine if WSA is sending the auth URL with a port value
 set hasPort [findstr ${url} "https://${static::WSATP}" [string length "https://${static::WSATP}" "]]
 ## If the redirect contains a port, strip it off
 if { ${hasPort} ne "" } {
 set url [string map [list "http://${static::WSATP}${hasPort}"
 "https://${static::WSATP}" [HTTP::header Location]]
 }
 ## Replace the outbound Location redirect header
 HTTP::header replace Location ${url}
 }
}
BIG-IP SSL Orchestrator: Attach the new iRule to the Cisco WSA service

1. Navigate to the BIG-IP SSL Orchestrator Services menu and click the Cisco WSA service.
2. Click the pencil icon to the right of the service to edit it.
3. At the bottom of the Cisco WSA service configuration, move the new authentication rule to the Selected column.
4. Click Save & Next.
5. Under Service Chain, click Save & Next again, then click Deploy.

DNS proxy configuration
This is where you enable DNS on BIG-IP and configure BIG-IP SSL Orchestrator and the Cisco WSA to use BIG-IP for DNS queries. This Dev/Central article has all the details.