
Continuous
API Sprawl
Challenges and Opportunities in an API-Driven Economy.

By Rajesh Narayanan, Mike Wiley

OFFICE OF THE CTO REPORT OFFICE OF THE CTO REPORT

Edge 2.0
Core Principles
By Rajesh Narayanan, Michael Wiley

Edge 2.0 - Core Principles 2

Table of Contents
3 Introduction

3 What Is Edge 2.0?
4 Concepts and Assertions
4 Unaddressed Topic(s)

5 Edge Evolution

6 Edge Consequences: Increased Complexity
8 Business Outcome: Diminished Experience

9 Edge Solution Space

10 Edge 2.0 Design Considerations

10 Secure by Default
11 Provides Native Observability
11 Supports Adaptive Interfaces
12 Solves the Inter Cluster Problem
15 Delivers Autonomy

16 Edge 2.0 Application Platform

16 EAP Scope
18 The EAP Framework
18 Unified API Control and Management
20 Edge Infrastructure Manager
21 Software Defined Application Connectivity
22 Adaptive Interface Model
23 EAP Features

24 Putting It Together

25 Summary

Edge 2.0 - Core Principles 3

Introduction
The definition of the edge has always been intertwined with the evolution of the data
center architecture. The last decade has witnessed a rapid transformation in enterprise
infrastructure architecture, expanding from on-premises data centers to today’s distributed
cloud architectures. We recognize Edge 2.0 as a technology shift that will enable applications
to leverage a distributed cloud architecture.

Every person, organization, or entity has a different interpretation of the edge. Some might
consider the edge to be a cell tower, others might say their mobile device is the edge.
For cloud service providers (CSPs), the edge is a managed infrastructure footprint which
seamlessly integrates into their back end. For military applications, the edge is the theater
of battle—be it the land, sea, or air. Every time we read about the edge the interpretation is
generally summarized as compute, networking, and storage capabilities of the infrastructure
and/or its location.

But we also see Edge 2.0 as the experience it delivers to all the stakeholders in the
ecosystem, and not just the infrastructure asset or its location.

This document describes what the functionality of Edge 2.0 should be, independent of its
physical or virtual infrastructure, or where it is located or instantiated. The intent is not to
explain how to build a better distributed application, but to illuminate the capabilities that
must be in Edge 2.0 to support the creation of the most optimum distributed applications that
suits a particular requirement.

W H AT I S E D G E 2 .0 ?

From the point of view of an entity that resides on this distributed cloud, the edge is wherever
the entity is currently located. Thus, we propose a definition of Edge 2.0 that is experience-
centric, not tied only to the location of the infrastructure, type of infrastructure, or the
controlling entity.

The focus of Edge 2.0 is towards enhancing the application-centric, operational-centric, and
developer-centric experiences. Edge 2.0 must address the meta-properties (like SLAs and
SLOs) of the application by adapting to the shifting needs of the application. Edge 2.0 must
be simple to operate and unburden operations teams from creating new automation for
every distributed application. Edge 2.0 must reduce the friction faced by developers when
they develop and deploy distributed applications at scale, by seamlessly supporting security,
governance, and service-level objectives.

 As an example, let us take a banking application. The goal of Edge 2.0 is not to improve the
business logic of the transaction. It is about making it more secure, faster, private, usable
across all geographies (as needed), and scalable up or down as needed to support the
business goals.

EDGE 2.0 IS ABOUT THE
EXPERIENCE, NOT THE
INFRASTRUCTURE OR ITS
LOCATION

Edge 2.0 - Core Principles 4

C O N C E P T S A N D A S S E R T I O N S

The following are the key concepts and assertions of this paper:

• Experience-Centric Edge: Establishes a basis for Edge 2.0 around the experience it
delivers, instead of an asset or its locations.

• Design Considerations: Specifies key design considerations for a successful
implementation of the Edge 2.0 architecture.

• Heterogeneous Infrastructure: Highlights that designing for a distributed cloud means
considering decentralized control of the infrastructure.

• Telemetry as a Foundation: Emphasizes telemetry as a fundamental building block that
must be supported across all layers of the infrastructure. Without telemetry a data-first
strategy becomes diluted.

• Inter-Cluster Challenges: Underscores a fundamental challenge with Edge 2.0 as being
inter-cluster instead of intra-cluster.

• Adaptive Interfaces: Introduces the adaptive interfaces, offering a distinct comparison
with declarative and imperative interfaces.

• Edge 2.0 Application Platform (EAP): Introduces the EAP as a framework to enable
Edge 2.0 to adapt to the needs of the applications.

U N A D D R E S S E D T O P I C (S)

There are several topics we have not yet addressed in this paper:

• Application Data Distribution: There are many subtopics here like content delivery
networks (CDNs), storage distribution, data-distribution, caching, etc. There are also
emerging technologies like Conflict-free Replicated Datatype (CRDT). An Edge 2.0
framework should include support for application data distribution in its scope.

• Functions Distribution: The advancement of edge compute can be thought about
as core cloud functions and logic, shifting closer to the location where the event is
generated, or the data resides. Due to the significant amount of compute becoming
available at the edge we should now solve problems similar to those typically solved in
legacy cloud architectures if we wish to take advantage of that compute. For example,
overlay networking, middleware workloads, and other types of workloads which are
intertwined and are more complex than the naïve use cases we have seen in early edge
–for instance storlets, which are stateless simple flows to be run next to the data.

• There are likely other areas not discussed. The goal of the framework is to be
extensible such that the responsibilities can be added as needed.

Edge 2.0 - Core Principles 5

Edge Evolution
Figure 1 best depicts the co-evolution of the Edge and datacenter architectures.Edge 1.0 and
1.5 were based on the notion of an origin site and moving the data and services from the
origin to the consumer. Edge 1.0 was deployment of internet infrastructure primarily focused
on optimizing bandwidth usage with distributed content caching, a.k.a content distribution
networks. CDNs are a fundamental design pattern since the aggregate content to transfer will
always be more than the available bandwidth.

As CPU and memory costs raced downwards, compute farms appeared along with CDN
nodes. Applications were consumed as services through service-oriented architectures (SOA).
Hence the reference to Edge 1.5 as Service Distribution Network.

A common characteristic of Edge 1.0 and Edge 1.5 is the idea of an origin site. Before the
growth of mobile, people, devices, and things were primarily downloading content or acting
as consumers of the service. The site originating the service was still different from that of the
consumer.

In Edge 2.0, however, any entity can act as an origin site or as a consumer. The traffic flow
has changed. Humans, phones, and devices are actively producing data as they upload
content or generate periodic data. Apps are becoming consumers as they depend on other
apps. All entities can act as producers or consumers of a service—APIs, humans, IoT devices,
or web, back-end, and headless applications. From its own viewpoint, every entity on the
infrastructure thinks it’s at the edge.

The distributed cloud is the latest stage in the evolution of the datacenter. Compute has
become truly ubiquitous, from mobile devices to being embedded in everyday objects
that are connected to the network. Coevolved with it are software architectures to enable
distributed and scalable applications.

Figure 1: Edge and infrastructure
co-evolution

EDGE 1.0 EDGE 1.5 EDGE 2.0

Origin Site

Origin Site

Origin SiteOrigin Site

Origin Site

Data Center Hybrid Cloud

Azure

Azure

AWS

Multi-Cloud Distributed Cloud

EVERY ENTITY CONSIDERS
ITSELF TO BE AT THE
EDGE FROM ITS POINT
OF VIEW

Edge 2.0 - Core Principles 6

E D G E C O N S E Q U E N C E S : I N C R E A S E D C O M P L E X I T Y

The abundance and hyper-distribution of compute and storage everywhere has created
an opportunity for rapid digital transformation of the enterprise. But this rapid evolution has
its consequences.

Most enterprises are typically comprised of heterogeneous infrastructure, with non-uniform
environments. Effectively scaling such environments demands complex orchestration and
automation from the deployed systems. Rapid changes to the application’s needs, such as
changes in CPU and bandwidth requirements, increase the complexity of operations across
a distributed cloud. This adds stress to the operations teams, who may not be well-equipped
to efficiently respond to the changing needs of the application or the end customer.

The consequences of these issues are operational complexity, which neutralizes any potential
gains for an enterprise going through digital transformation.

Some of the intertwined issues and artifacts that result from complexity are highlighted next.

Security models need to constantly keep up

Hybrid clouds result in increased surface area that can be compromised due to a variety
of attack vectors. Different use cases create multiple security challenges, and as the
infrastructure evolves, we are constantly chasing the puck.

Thus, the problem we anticipate is: will only the technology recommendations change often,
or will the design patterns to implement security change as well?

Here are some of the issues with existing approaches:

• Software Defined Perimeter (SDP) does not scale easily, as popular solutions are agent
based, which does not lend to simple operational deployments.

• Implementing Zero Trust Network Access (ZTNA) is often impractical, due to ZTNA
solutions requiring a constellation of deployed production services like traffic
inspection, centralized log management, global PKI and identity management,
and more.

• Secure Access Service Edge (SASE) combines network-as-a-service and security-as-a-
service, an acronym soup of several technologies non-trivial to implement. Additionally,
the focus of SASE tends to be software-defined wide-area network (SD-WAN) centric,
addressing a small segment of the enterprise networking edge use cases.

• Disparity between different public cloud providers’ infrastructure and already complex
security models (for example IAM) often lead teams to a patchwork hardening of
providers and cumbersome multi-cloud configurations.

DIGITAL TRANSFORMATION
GAINS ARE NEUTRALIZED
IF THE TECHNOLOGY IS
OPERATIONALLY COMPLEX

Edge 2.0 - Core Principles 7

Automation Challenges

One of the primary challenges with the hyper-distribution of low-power and low-cost compute
available at the edge is the ability to orchestrate and schedule the infrastructure in a uniform
manner. Ops teams struggle with scaling and supporting applications that leverage the
distributed cloud—as these applications typically include heterogeneous technologies with
different administration requirements.

While automation platforms like Terraform provide a sophisticated means to customize the
automation, ops teams still need to maintain scripts for multiple permutations: for example, five
different flavors of compute, four different types of firewalls, and three types of load balancers.
The human cost of having to manage and maintain the automation scripts does not scale.

This leads to the infrastructure customer’s continued interaction with ops teams via ticket
driven systems, which are a barrier towards automating existing workflows. Service desk
gets overwhelmed with tickets, needing to prioritize security and stability over agility.

API Sprawl

Microservices architectures have already become the de-facto method of building
new applications with the evolution towards multi-cloud. APIs are published and can
be instantiated whenever and wherever needed, leading to API sprawl. The discovery,
connectivity, and management of these APIs in an autonomous manner becomes
a big challenge.

A paradigm shift is needed in addressing API sprawl. Our internal models demonstrate that
even moderate assumptions of parameters, like the number of global API developers, the
number of APIs developed per dev per year, and API shelf-life, result in many 100s of millions
(if not billions) of APIs being simultaneously active by 2030 (Figure 2). The 2021 API Sprawl
report provides a comprehensive view of this emerging topic.

Poor End-to-End System Visibility

Increased complexity requires enterprises to enable granular and meaningful end-to-end
visibility of the end-to-end system. In distributed cloud environments, applications transcend
multiple heterogeneous infrastructure stacks managed by separate entities.

Figure 2: 10-Year Estimated API
Growth

Millions

10-Year API Growth (Estimated)

2018

200

600

1200

1400

1600

1800

2020 2022 2024 2026 2028 2030

Baseline # Mil. APIs / yr

Conservative # Mil. APIs / yr

Aggresive # Mil. APIs / yr

SECURITY IS A CHASING-
THE-PUCK PROBLEM

Edge 2.0 - Core Principles 8

Moreover, none of the operators today are incentivized to expose native telemetry of their
infrastructure to enterprise customers. Enterprises are essentially running blind when
deploying applications in a distributed cloud and need to resort to multiple observability tools.
To fill these visibility gaps, the tools typically are from different vendor companies working at
different points in the infrastructure or the application stacks.

Non-standard infrastructure metrics add to the woes within an enterprise. Typically,
the metrics are not unified due to operational silos and other factors like non-uniform
infrastructure in different infrastructure environments. For example, metrics across public
cloud providers are different, and on-prem data center technologies also do not follow any
standard metrics.

B U S I N E S S O U T C O M E : D I M I N I S H E D E X P E R I E N C E

Revenue-generating workloads and mission-critical systems typically utilize most of the
operational resources and budget available in an enterprise. Meanwhile smaller projects,
though lower in complexity, tend to make up the volume of the enterprise’s applications.
Figure 3 depicts this as a long-tail distribution of the number of projects that an enterprise is
likely to have in comparison with its operational complexity.

While smaller applications may be lower in operational complexity, the operationalizing
processes and workflows are still in many cases manual, and it can take weeks for service
tickets to successfully transit multiple operational teams. For instance, deploying an
application that requires dedicated network resources with granular security policies may first
require the global security teams to work out the security policy approvals. Then the service
ticket may go to the networking team for planning the subnet and route configurations that
need to happen. Finally, the validation of firewall rules may be required from yet another
operational team that is responsible for firewall management.

Now let us imagine the above complexity needs to be addressed for each application
deployed on a distributed cloud where the enterprise does not own any part of the underlying
infrastructure. The sheer volume of small projects or applications that need to be onboarded
and supported makes it unrealistic for operations teams to support every project, creating
a prioritization issue and self-service opportunity.

Figure 3: Distribution of project size
vs its complexity of deployment

In
fr

as
tr

uc
tu

re
 C

om
pl

ex
it

y

Projects

Dev/Test >
Innovation, Feature Velocity,

Customization, PoCs;
customer delight

Production >
Revenue Generating

Workloads, Critical Systems;
keep-the-lights-on

MANY ENTERPRISES RUN
BLIND DUE TO A LACK
OF AN “OBSERVABILITY
PRACTICE”

Edge 2.0 - Core Principles 9

This prioritization issue is especially noticeable as infrastructure teams’ investments are
focused on supporting critical and revenue-generating systems, leaving little time or budget
for net new projects that involve their own lifecycle of development, testing, and staging
before production. This results in diminished capabilities and investment towards feature
velocity, customization, and the innovation that supports new products, which culminates
in stagnation of the business and its offerings.

Edge Solution Space
The evolution of the edge ecosystem greatly expands the solution space by offering an
opportunity to address these challenges with an application platform.

Figure 4 shows the Edge 2.0 solution space. Here we state everything that comes under
a distributed cloud architecture is the totality of the solution space.

Thus, within the context of the solution space, Edge 2.0 must deliver the experience desired
by all of the following:

• All entities that reside within the solution scope—apps, humans, and devices that act as
consumers, or web backend and headless applications that make up the services.

• The SRE teams and application owners of these apps, while preserving the security
and regulatory guard rails expected of the infrastructure.

Edge 2.0 will be operationally simple, secure, compliant, and deliver a high-quality experience
to all the ecosystem entities that participate in it.

Figure 4: Edge 2.0 solution space

Solution Space Available
Edge 2.0

Apps, Humans
and Devices

Fundamental assuptions:
• Insertion points are virtual
• endpoints are part of the solution space

Solution space is open to:
• Data Location
• Worload relocation
• Packet paths
• Content location

Fixed / Physical

Virtual Web, Backend, and
Headless Applications

THE INFRASTRUCTURE
TEAMS ARE BURIED IN
COMPLEXITY

Edge 2.0 - Core Principles 10

Edge 2.0 Design Considerations

S E C U R E BY D E FAU LT

A distributed cloud amplifies this security-at-scale problem as the number of endpoints
increases exponentially. With such a massive scale, the complexity of implementing a solution
also scales. The security posture should be that the application assumes the environment it is
currently deployed in is already compromised. Similarly, the infrastructure shall not trust any
application that runs in it.

The basis of these ideas is captured in the concepts of the Zero Trust mindset, and the
BeyondCorp1 exemplar demonstrates these concepts for the use case of application access.
Going forward, Edge 2.0 extends this model, based on the following five core principles:

 (a) Identity Is Foundational: In Edge 2.0 identity runs deep, with each entity instance
having its own globally unique identity, but also its place in the org hierarchy
along with its privilege level. Identity should be a key consideration not only for
north-south traffic, but also internally for east-west access.

 (b) Least Privilege: The actions allowed by an actor should be constrained to only
those that the actor requires to perform its role in the system. An example
is limiting the subset of workloads that are allowed to communicate with the
database server based on the design specification.

 (c) Continuous Authentication: Any attestation that a system actor makes must
have a means of verification and should be explicitly verified whenever such an
attestation occurs. Authentication should not be solely explicit through shared
secrets or chain of trust, but also should factor in implicit patterns of behavior and
contextual meta data.

 (d) Constant Monitoring and Assessment: The actions of all actors in the system
must be monitored, reinforcing the key role of data collection and warehousing
technologies in an Edge 2.0 architecture. In addition, these activities must be
continuously assessed to detect and mitigate attempts to perform forbidden or
dangerous actions. The assessment must be near real-time, at scale, implying
liberal use of automation and machine learning techniques.

 (e) Assume Breach: Given the resources available to today’s sophisticated
adversaries, one must assume that any system has been compromised in some
manner. As a result, the entirely deterministic policies rooted in workload and
user identities, enforcing privilege-based access represented by a and b, are
often insufficient to prevent all attacks. Therefore, a fully mature Edge 2.0
system must also be able to make real-time risk/reward assessments based on
continuous monitoring and assessment.

ALWAYS ASSUME
INFRASTRUCTURE IS
ALREADY COMPROMISED.
THE CHALLENGE THEN IS
TO SAFELY DEPLOY AN
APPLICATION ON IT.

Edge 2.0 - Core Principles 11

P R O V I D E S N AT I V E O B S E R VA B I L I T Y

Edge 2.0 must integrate telemetry as a first-class citizen deep within the infrastructure stack,
provide a simple and scalable means to collect cross-layer telemetry within the infrastructure,
and surface it to a common platform. This helps observability teams to surface interrogation
of the “infrastructure state” as needed. This lets application teams focus on the business logic
without explicitly instrumenting their application stacks.

The current state of observability technology has largely been vendor specific and
proprietary. This has led to many vendor-specific agents collecting similar signals that jostle
for expensive memory and CPU.

The next logical step is the use of a vendor-agnostic telemetry collector that enables
infrastructure and traffic data to be streamed to a centralized data platform.

Many product teams struggle to justify the investment in instrumentation, as the effort
needs to map to a revenue opportunity. Infrastructure should be instrumented like any other
business function or process, because the team needs to understand its behavior to optimize
it for the business’s objectives. Thus, the debate should be more on what should
be prioritized to instrument, as opposed to its need.

To achieve granular and more accurate measurements of the application behavior we
anticipate the instrumentation will “shift left” by invoking it at the time of code—Figure 5.

S U P P O R T S A D A P T I V E I N T E R FA C E S

In keeping with distributed cloud, peeling a couple of layers down each cloud within its
scope (local or global) has its own manager, admin, orchestrator, and more. Each behaves
independently, making its own decisions, but providing interfaces for other entities to use
as needed.

Thus, the notion of a distributed cloud, in essence, is decentralized administration and control.
One cannot get away from this fact, and it is important for us to recognize to better realize the
nuances of adaptive vs. declarative and imperative interfaces.

To effectively utilize the Edge 2.0 infrastructure, imperative and declarative interfaces aren’t
enough as they still rely on hand-crafted artifacts that are essentially static constructs that do
not adapt fast enough to rapidly changing conditions.

Vendor Specific
Agents

Vendor Agnostic
Agents

AgentlessFigure 5: Evolution of the telemetry
collector

INSTRUMENTATION MUST
SHIFT LEFT

Edge 2.0 - Core Principles 12

Outcome based is where we need to go, and the systems need to be smart enough to adjust
policies across the infrastructure (end-to-end) to meet those outcomes. We call these adaptive
interfaces.

To be clear—imperative, declarative, and adaptive interfaces are not mutually exclusive:

Imperative: Gets very prescriptive and defines in detail a series of actions to get to the
desired state. Configuration of a router, for instance, is an imperative action. In the above
scenario, the prescriptive actions will be precise—which datacenter, how much CPU/memory,
bandwidth required, specific routes, and more. The input quality of the data model is very
high and thus requires a deeper knowledge and expertise about the infrastructure. There is
an expectation of knowing both the model and structure of the infrastructure.

Declarative: The nuance of declarative is that it focuses describing the desired state, as
opposed to actions that achieve the desired state. The quality of input is lower, though it still
requires the application to know at least the structure of the underlying infrastructure.

Adaptive: Stands separate from imperative or declarative. An adaptive interface focuses on
the desired objective or goal, rather than the state. The adaptive interface’s goal is to capture
the objective of the stakeholder who wants to deploy the application rather than focus on a
pre-knowledge of the underlying system. Adaptive is different as it has no notion of what the
capabilities of the underlying infrastructure are. There are no constraints on how to “get the
job done” and, hence, it stands on its own.

With adaptive, the quality of the input is low and approaches natural language. Application
owners can send a request to tell the infrastructure controller what outcome they expect,
instead of needing to declare the capability required or specifically configure a resource.

S O LV E S T H E I N T E R- C L U S T E R P R O B L E M

A distributed cloud, by definition, accommodates all types of application architectures:
monolithic, microservices, or serverless. Irrespective of the architecture, applications use APIs
to offer the services.

The problems of API discovery, connectivity, and network security are largely addressed by
using a service mesh, but a service mesh only solves this within the cluster (intra-cluster).

Edge 2.0 applications on the other hand leverage APIs across a hyper-distributed cloud
infrastructure, in essence a multi-cluster environment. New applications are written with APIs
crossing organizational and geographic boundaries. Some of the APIs might be private or
partner APIs behind multiple layers of firewalls without an explicit route between them, even
if they are discoverable. This heterogeneous cluster (inter-cluster) problem is without an
elegant, lightweight, scalable, and secure solution that is practical.

PROCLAMATION: WE
DECLARE IT IS
IMPERATIVE FOR EDGE 2.0
TO SUPPORT ADAPTIVE
INTERFACES

Edge 2.0 - Core Principles 13

Scenario/Properties Imperative Declarative Adaptive

Definition The imperative interface defines
the detail control flow based on
the specific capabilities of the
underlying resource.

The declarative interface defines
the logic but not the control flow.
From a programmatic parlance it is
the pseudocode.

The adaptive interface expresses the desired
state as a requirement without making any
assumptions of the capabilities of the underlying
resources.

An adaptive interface is owned by the
infrastructure and enables the infrastructure to
dynamically respond to the changing needs of
the application.

Scenario 1: Package needs to go from
SFO to NYC

Jane tells Mark: (a) Print the
shipping label, (b) Go to the
UPS store, (c) Pick the 72-hour
delivery, (d) Pay for it and ship it

Mark: Has to follow a very
specific set of steps

Jane asks Mark: (a) Please courier
this package to this address, (b)
Package must arrive within 72
hours.

Mark: Can pick any courier company
(UPS, FedEx, DHL etc).

Jane expresses to Mark: (a) This package must
arrive in NYC by Saturday.

Mark: Can do whatever he likes. Potentially even
taking the package himself, flying to NYC, and
delivering it by hand.

Scenario 2: Load balancer example The load balancer already exists.
Task: needs to be configured
with this policy. Here the task
is specific to the load balancer
make, model, version, etc.

A load balancer does not exist.
Task: load balance the application
with a given open policy. Task
assumes that an orchestration
or management layer exists and
declares what needs to be done.
Action: Ultimately task is converted
to an imperative interface to
configure a specific load balancer.

No assumptions about the underlying
infrastructure. Please ensure the application
scales as needed, with a max latency of 10 ms.

Ownership Joint ownership: application
and infrastructure

Joint ownership: application and
infrastructure

Only the infrastructure

Quality of Input Extremely high. Requires deep
knowledge of the underlying
scope. For instance, need to
know which F5 load balancer,
which software version, etc. A
CLI or NMS would be an example
of imperative interfaces.

High: Requires knowledge of what
the infrastructure is capable of.
For instance, in the above example
there is pre-knowledge of the
infrastructure supporting a load
balancer.

Low: Requires no knowledge of the capabilities
of the infrastructure. The input quality
approaches natural language equivalent.

Skill Level (Persona) Function-specific skills. For
example, network admin,
compute admin, storage admin.
Every aspect of the infrastructure
requires the user to be an expert
in that area.

Application deployment skills. The
user knows the type of function
required to deploy the application.
As in the above case, the
application manager knows a load
balancer is needed, and high-level
policies on which the LB must be
configured to support autoscaling.

Application engineer. Can just signal the
infrastructure what the non-functional
requirements of the application are. In this
instance, how fast the application should
respond to a customer request. Other factors like
geographic location, cost, etc., can be added as
needed.

Scope The imperative interfaces have
a highly localized scope. For
instance, infrastructure, network,
data center, rack-level, etc.

The declarative scope is larger.
Typically, associated with an
orchestration engine that talks to
multiple imperative interfaces to
achieve the outcome required.

Very large scope because the outcome of
the interface can call multiple declarative or
imperative interfaces. The execution is more
complex requiring sophisticated implementations
of imperative and declarative interfaces.

Example - name: update web servers
hosts: webservers
remote_user: root
 tasks:
- name: ensure apache is at
the latest version
yum:
name: httpd
 state: latest
- name: write the apache
config file
template:
src: /srv/httpd.j2
dest: /etc/httpd.conf

apache-server:
 version: “latest”

application-latency:
 - lt: 10ms

infrastructure-cost:
 - lt: $200
 - billing: monthly

Table 1: Comparison: Imperative and Declarative vs. Adaptive

Edge 2.0 - Core Principles 14

We covered APIs extensively in the 2021 API Sprawl report2 and address within it many
questions that might surface. Figure 6 shows the difference between inter-cluster and intra-
cluster.

Intra-Cluster: In a monolithic architecture, there might be very few APIs exposed with internal
communication between modules via other inter-process communication methods. Whereas
a micro-service architecture is broken down into dozens, if not hundreds, of APIs.

Whatever the case, each application cluster is developed and managed in an opinionated
manner. For example, in cases of microservice architecture a team might use any flavor of
service mesh—Istio, Linkerd, Aspen Mesh, or others. Every approach has its own means
to manage and control the APIs within its cluster, in other words, intra-cluster.

There are many solutions here, and the goal for Edge 2.0 is not to re-invent or force orgs
or dev teams into adopting yet another new technology.

Inter-Cluster: As the number of services delivered via APIs increases, new applications are
built using services already developed or adopted by different application teams within the
enterprise, as there is no need to reinvent the wheel.

New applications are also being built through different combinations of public and private
APIs. From an architecture standpoint, modern applications leverage services provided by
other clusters. In a distributed cloud these clusters are deployed globally, hence, can be
located on any real estate that can host the application or be part of the application cluster.

Scope of an Application Cluster
To reiterate, the scope of an application cluster does not limit itself just within an organization.
Clusters can be across any two networks, applications, organizational silos, or even between
two enterprises.

The scope spans the full gamut of all permutations and combinations, thus exponentially
increasing the complexity of operations. Figure 7 shows the traffic permutations within the
application deployment scope.

Figure 6: Intra-cluster vs inter-cluster
uService
Cluster A

INTRA
Cluster

uService
Cluster B

INTER
Cluster

Edge 2.0 - Core Principles 15

A typical enterprise will have different application architectures. There could be different
flavors of service mesh, or a web 2.0 application based on service-oriented architecture, or
a monolithic software deployment, depending on which team is developing and deploying it.
APIs are thus scattered across the entire enterprise, be it private APIs or use of public APIs.
This problem is not yet solved. API communication between multiple locations is critical and
a problem with an elusive solution in enterprises of any size.

There are several solutions to manage APIs within a cluster (for example, ingress controller,
API gateway, and more), while inter-cluster API communication is unsolved in a practical,
scalable, and secure manner. Thus, we focus the scope of unified API control and
management to only address inter-cluster issues.

D E L I V E R S AU T O N O M Y

An underappreciated value of the cloud is the autonomy it offers to the “cloud consumer.”
Enterprises and entrepreneurs can instantiate their own infrastructures on-demand while
experiencing a semblance of full-control.

The fundamental design principle an Edge 2.0 platform must follow is to deliver an
autonomous experience to the cloud customer while implementing the right guard-rails. Since
the entities can appear in any infrastructure (trusted or non-trusted) the guard-rails must be
implemented in such a manner so as not to burden the BU or the DevOps team responsible
for building the application.

Summarizing the tenets
The emerging challenge with Edge 2.0 will be that of discovery, identity, trust, and
observability between various services.

Even in medium sized enterprises the number of APIs produced yearly would be large. How
do teams discover these services within the enterprise? Or for that matter, how can they know

Figure 7: Traffic-flow permutations in
modern enterprises

Edge 2.0 - Core Principles 16

if the services are still valid and who owns it? Can they be sure this is a validated service with
an established trust? The problem is compounded when teams want to consume services
created by clusters residing outside the enterprise boundary, for example, SaaS providers
or apps that run on edge devices completely out of the administrative control of enterprise
infrastructure teams.

Edge 2.0 Application Platform
In consideration of the challenges presented in earlier sections, we need to view the entire
distributed cloud as a platform. At an uber level we articulate the goal of the solution: to
autonomously discover (without human intervention), scale, and secure distributed application
across decentralized infrastructure.

Autonomously discover (without human intervention), scale, and secure distributed
application across decentralized infrastructure. In essence we can describe the responsibility
of the Edge 2.0 Application Platform (EAP) as follows:

• API discovery, identity, and trust

• Infrastructure scheduling and orchestration

• Secure application connectivity

E A P S C O P E

The infrastructure is the totality of the solution space where infrastructure elements can
continuously appear and disappear. The ownership of the infrastructure and its resource
vs. the administration and control of those resource are two separate constructs. An
infrastructure owner can assign a specific infrastructure or an instance of it to a different
organization that manages and configures it, or the infra owner can take back control as
required. The organization that manages and configures the elements can further assign it to
individual projects or applications. This notion is not new; for example, cloud service providers
offer hierarchical administrative control that can be used by an enterprise’s IT teams to further
offer Infrastructure-as-a-Service (IaaS) to internal business units, teams, etc. The main concern
for Edge 2.0 is how to pull this off extensively in a hyper-distributed cloud, which is the
ongoing and future state of the edge infrastructure.

This is where the EAP's scope comes into view. Figure 8 below shows the scope of EAP
within the context of different types of interfaces. Each EAP orchestrates with its local scope
using declarative and imperative interfaces. In this instance:

• Declarative / imperatives would be the AWS APIs, Azure APIs, etc.

• Adaptive interfaces would be net new that have to be defined on a case-by-case basis.

AUTONOMOUSLY DISCOVER,
SCALE, AND SECURE
DISTRIBUTED APPS
ACROSS DECENTRALIZED
INFRASTRUCTURE

Edge 2.0 - Core Principles 17

To take advantage of the distributed cloud, the EAP should have the capability to leverage all
the nodes and entities available through a distributed cloud. The vision is for the individual
EAP to become equivalent to the autonomous system3 concept in IP networks, but for the
application layer.

Putting it together (Figure 9 below) we can now construct a high-level view of how multiple
EAPs can be deployed across a decentralized cloud infrastructure interacting with each other
in an autonomous manner.

Adaptive interfaces also make it easy for CI/CD and other application life-cycle apps to
integrate with the distributed cloud. CI/CD platforms can directly interface with the EAP with
simple adaptive interfaces stating only the desired outcome.

It is important to note that inter-EAP communication can also be achieved using adaptive
interfaces.

Figure 8: EAP scope mapped to
interface types Any Infrastructure

(Private/Public/Colo/Edge)

Adaptive

Interfaces
To other EAPs

• EAPs interact with
infrastructure admins that
have a local scope via
Declarative and
Imperative interfaces

• Interact with other EAPs
via Adaptive Interfaces to
effect ‘desired outcomes’
on other infrastructures

Declarative / Imperative
Interfaces

Adaptive

Interfaces

• App admins interact with
the EAP via adaptive
interfaces

• As Declarative /
Imperative interfaces
increase in
sophistication; Adaptive
interfaces become easier
to define

• Integration with CICD
tools becomes simpller

Adaptive
Interfaces Inter EAP

(Adaptive Interfaces)

Figure 9: High-level topology of EAPs
with local scope

Edge 2.0 - Core Principles 18

T H E E A P F R A M E W O R K

The EAP framework, as shown in Figure 10, organizes the responsibilities in terms
of capabilities of each EAP instance. The EAP's role is to interface with the underlay
infrastructure controllers—be it Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
Software as a Service (SaaS)—and to orchestrate and schedule appropriate resources as
needed.

U N I F I E D A P I C O N T R O L A N D M A N A G E M E N T

The future will be an API driven economy, where APIs are more than just a software
architecture approach simplified through service mesh. An API will become the primary
means by which any entity participating in a distributed cloud provides its service.

As established, the global number of public and private APIs that will be available will be in
the 100s of millions, if not billions, within the decade. APIs will reshape our economy and thus
demand a closer look at what the EAP must implement to support this economy.

API Discovery

The impeding API sprawl demands that each API must be discoverable within and outside of
the EAP. With distributed cloud, the APIs can be anywhere across multiple clusters.

The underlying assumption is the API discovery problem is truly an inter-cluster issue. An
EAP’s scope may span many application clusters that use different software approaches
(microservices to monolithic), each implementing its own API gateway strategy. An EAP
provides a common repository for all the APIs to be registered and discoverable within its
scope, not just intra-cluster. This distinction is key to derive the limitations of existing API-
gateway strategies, for example, as in service mesh.

Unified API Control & Management

Edge Infra Management

Software Defined Connectivity

API
Discovery

Identity
Based

Security

Experience
Centric

Telemetry

Infra.
Security

E2E Encrypted Application Overlay
(Agnostic to underlay)

Resource
Discovery

and
Scheduler

Trust Adaptive
Interface

Adaptive
Interface

Adaptive
Interface

Figure 10: The Edge 2.0 Application
Platform (EAP) framework

Edge 2.0 - Core Principles 19

The challenge for the EAP is to enable the discovery of an API, provide the right
documentation on its usage, and manage the lifecycle of the API for consistency, accuracy,
and versioning. The EAP implements a means to inform entities using its APIs on the current
state of specific APIs being used. This could be simply by setting expiry dates or explicitly
informing via some messaging system.

Identity-Driven Security

The security posture adopted is where an application assumes the infrastructure it’s currently
deployed in is already compromised.

The key pillar to implement this security posture is identity driven. Every API endpoint must
have a globally unique identity. Security policies and controls are maintained separately
in a central repository.

APIs must be marked public or private, triggering the underlying infrastructure security
components to be automatically configured for the specific API.

All app-app conversations start with a deny-all policy. Just because an API is visible does not
mean that another application can call it. This must be explicitly configured within the security
policy of the application.

Trust: Reputation over Time

The EAP must ensure all APIs within its scope can be trusted, and at the same time all
external APIs being used by services within its scope can also be trusted.

“You can’t prove trust, that’s what makes it ‘trust’” – From Traitors @ Netflix

Trust is essentially “reputation over time,” and you must continuously revalidate that trust
to ensure it has not dropped below an acceptable level. This has increasingly become a
common approach in modeling and implementing trust in systems, requiring trust to be
continuously assessed instead of statically asserted at initial execution.

The fluidity of trust over time may be a challenge to some enterprises that do not have
the luxury of time to establish mutual reputation between their and third-party systems.
Infrastructure and APIs alike can wreak havoc if the reputation is not closely watched.

Assuming a service within the EAP scope accesses an external API, the platform must
implement a mechanism by which the calling service can be assured of the accuracy of the
received response from the external API. Just because the API response looks valid, does
not mean it can be trusted. Either the response could be inaccurate due to quality issues,
or inaccuracies could have been explicitly inserted to make the business less competitive.
Having this ability to assign a trust factor to each API, internal or external, is unique to the
EAP construct.

EVEN TRUST HAS A
FINITE LIFE, IT MUST BE
PERIODICALLY VERIFIED

Edge 2.0 - Core Principles 20

One strategy to implement trust is to average it across a most recent “time period” instead
of the full history of the service. This is like looking at “Top Reviews” vs “Most Recent” for a
product in Amazon. The product may well have four stars, but if most of the negative ratings
are in the past six months, this indicates a recent break in trust, while an influx of positive
comments in the past six months would indicate a fix or rebuilding of trust.

The trust factor is not just specific to whether an API is a known source of false or misleading
data or not. The reputation of an EAP will also depend on how well it manages and updates
the APIs within its scope. Additionally, “trust” is also relative. Service A can trust Service C, but
Service B may have a different experience with Service C.

E D G E I N F R A S T R U C T U R E M A N A G E R

With a distributed cloud being the basis of Edge 2.0 infrastructure, it becomes imperative that
the resources within the scope of an EAP be easy to discover, secured, and instrumented.
The following can be read as a set of recommendations required of the edge infrastructure
manager’s capabilities.

Discovery and Scheduling

Within an EAP, resources may get scheduled as needed. New resources may arrive or leave
dynamically due to mobility. An EAP can also send or receive requests from other EAPs to
discover and schedule resources as needed on its behalf.

Security

To reiterate the security posture: the infrastructure on which the application is deployed is
already compromised. The EAP must thus ensure security of the application deployed within
its scope.

Irrespective of the administrative level, the EAP framework must consider multiple faces of
security, such as (but not limited to):

External Threats: For example, distributed denial-of-service (DDoS) attacks and advanced
persistent threats (APT). These can be mitigated using existing best practices in security like
DDoS prevention, firewalling, and more. The recommendation is that it is required for all traffic.

Man-in-the-Middle: All traffic must be encrypted and cannot assume the application layer
will do the right thing. This ensures basic data confidentiality from any traffic snooping
devices and protects the integrity of the data from manipulation during transmission.

Internal Threats: The scope of the infrastructure layer must be constrained and primarily
directed to protect itself. The recommendation is to prevent a resource within the
infrastructure from launching an internal attack on the infrastructure manager.

Edge 2.0 - Core Principles 21

Experience Centric Telemetry

If Edge 2.0 is about the experience it delivers and not the asset or its location, it naturally
follows suit that telemetry must also be experience-centric.

The question is, whose experience are we referring to? The experience is that of any entity
that resides in or uses infrastructure to produce or consume a service: apps, devices, humans,
back-end applications, databases, and more. The experiential viewpoint is thus that of the
entity. A service that an entity produces or consumes is directly related to the compute,
storage, and networking resources allocated to it.

But one must not just stop at measuring the experience; there must be a means to remediate
it as well.

Any entity consuming or providing a service can determine whether it is getting the
experience it requested. However, in distributed cloud environments, it may be near
impossible to explain what happened in the infrastructure layer that led to the poor
experience.

High-level metrics like CPU utilization, memory, bandwidth, and latency measurements are not
sufficient to determine why an application is not getting the requested3 experience. Metrics
need to be time granular and be collected deep within the application stack and whenever
available from different layers of the infrastructure stack.

A robust, scalable, and expandable telemetry and data strategy is pivotal to the EAP. Machine
learning (ML) and artificial intelligence (AI) strategies can then be leveraged to make the best
decision on reserving new resources or optimizing the use of existing ones.

S O F T WA R E D E F I N E D A P P L I C AT I O N C O N N E C T I V I T Y

While connectivity and reachability are assumed to be solved problems, many network teams
still struggle with rationalizing their network fabric with the dynamic needs of the application
layer. A platform must address these challenges as well.

A Case to Separate the Application Connectivity Plane

The issue with existing approaches is we translate application connectivity needs to
enterprise WAN connectivity, especially in a distributed cloud. Approaches to addressing a
distributed cloud network could use different SDN strategies or pure routing-based methods.
But these solutions heavily rely on the homogeneity of the infrastructure and hence fall short
on delivering a consistent behavior.

The only means by which we can achieve a globally scalable, secure, and stable network for
the application is to separate the application connectivity plane from the underlying network,
as discussed next.

OCEAN ANALOGY—UNDERLAY
NETWORKS WANT TO BE
LIKE THE BOTTOM OF
THE OCEAN—QUIET,
SERENE, AND ALMOST
UNCHANGING OVER TIME;
BUT NEVERTHELESS A
DARK AND HIGH-PRESSURE
ENVIRONMENT.

AN UNDERLAY-NETWORK
THAT TRIES TO REACT
TO EACH REQUIREMENT
OF EVERY APPLICATION
ONLY BRINGS TURBULENT
TORRENTS AND VORTICES
FROM THE SURFACE DOWN
TO THE SEABED.

Edge 2.0 - Core Principles 22

Proposed Connectivity Stack

In the evolution towards a distributed cloud architecture, the emerging SDN pattern is to
jointly orchestrate both the underlay and the overlay networks and enable end-to-end
programmability of the application path.

With Edge 2.0 we need to bring this semblance of stability even with connecting enterprise
networks. We propose that the application connectivity plane must be separated from the
enterprise network connectivity. The application connectivity pattern may or may not follow
the same SDN connectivity as seen with data center overlay (for example, VXLAN, NVGRE, or
others), or BGP-based SDN patterns.

Not all networks have been separated into overlay and underlay. Network teams are now
seeing the need for this joint programmability as an important requirement to enable end-to-
end automation, for which separation of the underlay and the overlay network is critical.

Separating the application plane from the underlay network and transport negates the need
for the network teams to actively respond to every application request. Its scope becomes
limited to providing robust, stable, and well-defined paths with a focus on optimizing the use
of aggregate bandwidth at the lowest latencies.

A D A P T I V E I N T E R FA C E M O D E L

The key tenet of an EAP is that it is independent, autonomous, and manages a subset of
the overall solution space. But EAPs need a means by which to communicate and offer
their resources or request resources from other EAPs. There are several advantages of this
approach.

Simplified Interface

An interface based on outcomes negates the need for the EAP to know the details about
the other infrastructure. Assume there are two EAPs: A and B. Each EAP has a local scope
of its infrastructure to schedule and reserve resources. EAP-A does not need to know

Figure 11: Recognizes that the
application connectivity plane
is different from the underlay
(enterprise and backbone networks)

Application Connectivity
(Secure Overlay Networks — Policy Drive and end2end encrypted)

Network Connectivity
(Dedicated circuits, Enterprise Networks, Corporate WAN)

Backbone Network
(MPLS, Transport aggregates)

Edge 2.0 - Core Principles 23

the resources provided by EAP-B. If, for example, EAP-A cannot satisfy the needs of the
application and requires resources in the infrastructure which are in EAP-B’s scope, then it
can simply express its desired objective to EAP-B. It then becomes EAP-B’s responsibility
to invoke declarative or imperative interfaces to reserve, allocate, and configure from its
free resources pool. EAP-B is also responsible to ensure the SLOs for that service within its
infrastructure are met.

While a common syntax will be helpful to bootstrap an initial set of adaptive APIs, the
implementation becomes more sophisticated and mature over time with the use of natural
language processing and AI to reduce the required quality of input.

Simplified Operations

Different operational patterns also become simple where only the desired state needs to
be specified. Resiliency patterns, for example, can merely be based on an expected SLO. It
becomes the responsibility of the EAP providing the service to ensure the resources within
its scope are allocated to meet the service level objectives. The calling EAP does not need to
care, but would probably need to monitor the service metrics to know whether they are being
met or not.

E A P F E AT U R E S

• Multi-Tenant: While the mesh of EAPs showing in Figure 9 are for a single deployment,
multiple EAPs per cloud are possible. Another application could talk to a different EAP
or a mesh of EAPs.

• Designed to Scale: Each mesh is a peer-to-peer (P2P) mesh and can horizontally scale.
Peer EAPs can independently keep track of which EAPs have what resource type and
how to connect to the resource. AI/ML will further enhance how each EAP schedules
resources within its own scope or reaches out to other EAPs as needed.

• Built-in Networking: For applications to connect across the distributed cloud, the EAP
must support built-in networking agnostic of the underlying infrastructure.

Edge 2.0 - Core Principles 24

Putting It Together
Figure 12 visualizes the role of different layers when deploying an application on distributed
cloud.

The highlights of this representation are:

• Each EAP has a localized scope, and all of their capabilities are not indicated in Figure
10. The EAP must support the resource discovery and scheduler function. EAPs
schedule resources by interfacing with the appropriate infrastructure controller via
adaptive APIs.

• Application connectivity is not the same as network connectivity—like the service-mesh
sidecar model, the resources to connect applications across multi-cloud must be part
of the application infrastructure. One could argue the infrastructure plane also provides
application network connectivity, thus, should be below the network layer. That
would be technically right as well, but we chose to subsume it inside the “application
connectivity” plane as these are primarily network functions.

• The infrastructure plane must be deemed separate from the application plane.

• Network connectivity is different from the transport, as we are essentially talking about
specific routable networks which are separate from application connectivity.

• The transport plane can be thought of as aggregate backbone networks that can be
provisioned, provided the telecom provider enables processes and APIs to connect the
network layer above.

<adaptive>

<declarative> (?)

<declarative>/
<imperative>

<imperative>

<declarative>/
<imperative>

Figure 12: Reference showing role of
different entities and layers.

©2022 F5, Inc. All rights reserved. F5, and the F5 logo are trademarks of F5, Inc. in the U.S. and in certain other countries. Other F5 trademarks are identified at f5.com.
Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or affiliation, expressed or implied, claimed by F5, Inc.
DC1021 | RPT-CORP-886427544

Summary
This white paper attempts to drill down a few more layers on the original Edge 2.0 manifesto.
We have introduced some new themes, with the goal to inform different stakeholders within
internal organizations and externally to the industry.

Edge 2.0 is built on the notion of a distributed cloud where every entity can participate as
both the source, as well as the destination of services. The primary theme is that Edge 2.0 will
be about the experience and not the asset or location.

The edge application platform (EAP) is introduced as a stack of capabilities to enable Edge
2.0 to be realized over a distributed cloud.

Implementation details have been deliberately skipped to present a vendor-agnostic view.

1 beyondcorp.com

2 https://www.f5.com/pdf/reports/f5-office-of-the-cto-report-continuous-api-sprawl.pdf

3 Wikipedia - An autonomous system (AS) is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network
operators on behalf of a single administrative entity or domain that presents a common, clearly defined routing policy to the Internet.

Resources

beyondcorp.com
https://www.f5.com/pdf/reports/f5-office-of-the-cto-report-continuous-api-sprawl.pdf

