INTEGRATION GUIDE
Load Balancing VMware App Volumes

INTEGRATION GUIDE
Load Balancing VMware App Volumes
Version History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Author</th>
<th>Description</th>
<th>Compatible Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 2020</td>
<td>3.0</td>
<td>Matt Mabis</td>
<td>Documentation Update and Persistence Method Changed</td>
<td>VMware App Volumes 2.x, 3.x, 4.x</td>
</tr>
<tr>
<td>May 2018</td>
<td>2.1</td>
<td>Matt Mabis</td>
<td>Documentation Update and Monitor Changed.</td>
<td>VMware App Volumes 2.x (1)</td>
</tr>
<tr>
<td>Oct 2017</td>
<td>2.0</td>
<td>Matt Mabis</td>
<td>Updated/Revised Documentation</td>
<td>VMware App Volumes 2.x (1)</td>
</tr>
<tr>
<td>Feb 2015</td>
<td>1.0</td>
<td>Justin Venezia</td>
<td>Initial Document with How-To Configure F5 LTM with VMware App Volumes</td>
<td>VMware App Volumes 2.x</td>
</tr>
</tbody>
</table>

NOTES:

(1) This Document by default utilized a source address affinity persistence which was recommended until App Volumes 2.14.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version History</td>
<td>2</td>
</tr>
<tr>
<td>Overview</td>
<td>4</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>5</td>
</tr>
<tr>
<td>Create a Client SSL Profile</td>
<td>6</td>
</tr>
<tr>
<td>SSL Client Profile Configuration</td>
<td>7</td>
</tr>
<tr>
<td>Create a Server SSL Profile</td>
<td>8</td>
</tr>
<tr>
<td>SSL Server Profile Configuration</td>
<td>9</td>
</tr>
<tr>
<td>Create HTTP Profile</td>
<td>10</td>
</tr>
<tr>
<td>HTTP Profile Configuration</td>
<td>11</td>
</tr>
<tr>
<td>Create Persistence Profile</td>
<td>12</td>
</tr>
<tr>
<td>Persistence Profile Configuration (Cookie)</td>
<td>13</td>
</tr>
<tr>
<td>Alternative - Persistence Profile Configuration (Source_Addr)</td>
<td>14</td>
</tr>
<tr>
<td>Create Monitor</td>
<td>15</td>
</tr>
<tr>
<td>Monitor Configuration</td>
<td>16</td>
</tr>
<tr>
<td>Create Pool</td>
<td>17</td>
</tr>
<tr>
<td>Pool Configuration</td>
<td>18</td>
</tr>
<tr>
<td>Create a Port 443 Virtual Server</td>
<td>19</td>
</tr>
<tr>
<td>Create a Port 80 Redirect Virtual Server (Optional)</td>
<td>23</td>
</tr>
<tr>
<td>Testing and Validation</td>
<td>27</td>
</tr>
<tr>
<td>References</td>
<td>27</td>
</tr>
</tbody>
</table>
Overview

VMware App Volumes is a system that delivers applications to desktops and remote hosted applications via virtual disks. Applications are containerized and bundled in "AppStacks" then delivered by attaching a portable standard disk system (Such as VMDK or VHD) file to a virtual machine. App Volumes Manager provides the IT administrator a way for centrally managing and deploying applications without having to modify the specific desktops or individual applications. Applications delivered using App Volumes will provide a native feeling and upgrades/updates can be done with AppStacks in Real-time providing a seamless operation without disrupting users.

All Applications are delivered/provisioned during login time and from the user's perspective have a persistent desktop experience. Users can also be provided a Writable Volume to allow for extended persistence options where users can install their own applications and have them persisted across sessions. In upcoming editions App Volumes will have Computer and User based AppStack assignments which allows for further flexibility.

This document provides step-by-step instructions for setting up the App Volumes Manager(s) within an LTM configuration. It is highly recommended to follow VMware Best Practices for deploying out Multiple App Volumes Managers for Scalability and Redundancy.
Prerequisites

The following are prerequisites for this solution and must be complete before proceeding with the configuration. Step-by-step instructions for prerequisites are outside the scope of this document, see the BIG-IP documentation on support.f5.com for specific instructions.

1. Create/import an SSL Certificate that contains the load balanced FQDN that will be used for VMware App Volumes

2. Upload the following to the BIG-IP system:
 - The SSL Certificate must be uploaded to the BIG-IP.
 - The Private Key used for the load balanced FQDN certificate.
 - The Primary CA or Root CA for the SSL Certificate you uploaded to the BIG-IP.

3. Ensure the new FQDN for App Volumes Manager Servers is in DNS with both forward and reverse records, and points to the Virtual Server IP address on the BIG-IP that will be used for load balancing the App Volumes Servers.

4. You must have deployed at least a single instance of App Volumes Manager.
Create a Client SSL Profile

From the BIG-IP Configuration utility, use the following guidance to create a Client SSL profile.

1. Click **Local Traffic**.
2. Hover over **Profiles** to open the Profiles menu.
3. Hover over **SSL**.
4. Hover over **Client**.
5. Click the Add button (+) to the right of Client to create a new SSL Client Profile.
SSL Client Profile Configuration

Use the following guidance to create a new SSL Client profile.

1. In the Name field, type a unique name, such as AppVolumes-ClientSSL.
2. From the Parent Profile list, ensure clientssl is selected.
3. In the Certificate Key Chain area, click the Custom check box.
4. Click the Add button. The Add SSL Certificate to Key Chain dialog box opens.
5. From the Certificate list, select the certificate with the FQDN that you uploaded to the BIG-IP as specified in the prerequisites.
6. From the Key list, select the certificate key that corresponds with the certificate you selected.
7. From the Chain list, select the primary or root CA/certificate chain that corresponds with the certificate you uploaded to the BIG-IP.
8. Click the Add button to add the certificate key chain to the SSL profile.
9. Click Finished.
Create a Server SSL Profile

From the BIG-IP Configuration utility, use the following guidance to create a Server SSL profile.

1. Click Local Traffic.
2. Hover over Profiles to open the Profiles menu.
3. Hover over SSL.
4. Hover over Server.
5. Click the Add button (+) to the right of Client to create a new SSL Server Profile.
SSL Server Profile Configuration

Use the following guidance to create a new SSL Server profile.

1. In the Name field, type a unique name, such as AppVolumes-ServerSSL.
2. From the Parent Profile list, ensure serverssl is selected.
3. Click Finished.
Create HTTP Profile

The next task is to create an HTTP Profile, use the following guidance.

1. From the Menu bar, click Services (you may need to click Local Traffic > Profiles first).
2. Click HTTP from the list.
3. Click the Create button in the upper right-hand corner of the HTTP Profiles table.
HTTP Profile Configuration

Create a new HTTP Profile with the following settings.

1. In the Name field, type a unique name, such as AppVolumes-HTTP.
2. In the Insert X-Forwarded-For row, click the Custom checkbox.
3. From the Insert X-Forwarded-For list, select Enabled.
4. Click Finished.

Important You must enable X-Forwarded-For headers on your BIG-IP system.
Create Persistence Profile

Use the following guidance to create a Persistence profile.

1. Click **Local Traffic**.
2. Hover over **Profiles**.
3. Hover over **Persistence**.
4. Click the Add button (+) to the right of Persistence to create a new Persistence Profile.
Persistence Profile Configuration (Cookie)

After AppVolumes version 2.14 Cookie is the recommended persistence method for connecting AppVolumes Agents and Servers.

1. From the **Name** field, type a unique name such as **AppVolumes-Persistence**.
2. From the **Persistence Type** list, select **Cookie**.
3. Leave the rest of the **defaults** and Click **Finished**.
Alternative - Persistence Profile Configuration (Source_Addr)

Prior to AppVolumes 2.14 Source Address Affinity is the preferred persistence method for connecting AppVolumes Agents and Servers. This method can also be used in version 2.14+ instead of cookie persistence.

1. From the Name field, type a unique name such as AppVolumes-Persistence.
2. From the Persistence Type list, select Source Address Affinity.
3. Check the Custom checkbox for Mirror Persistence.
4. Check the Custom checkbox for Match Across Services.
5. Check the Custom checkbox for Match Across Virtual Servers.
6. Check the Enable checkbox for Mirror Persistence.
7. Click Finished.
Create Monitor

The next task is to create the Monitor for the BIG-IP Appliance to validate when the webserver is available. Use the following guidance to create a health monitor on the BIG-IP system.

1. Click **Local Traffic**.
2. Hover over **Monitors**.
3. Click the Add button (+) to the right of Monitors to create a new health monitor.
Monitor Configuration
Create a Monitor with the following settings. In previous guides the monitor configuration used the /login page VMware recommends now using the /health_check page to validate server availability.

1. In the **Name** field, type a unique name such as AppVolumes-Monitor.
2. From the **Type** list, select **HTTPS**.
3. Set the **Interval** to **30** Seconds
4. Set the **Timeout** to **15** Seconds
5. In the **Send String** field, type (Change the FQDN-For-App-Volumes to your FQDN)
   ```
   GET /health_check HTTP/1.1\r\nHost: FQDN-For-AppVolumes\r\nConnection: Close\r\n\n   ```
6. In the **Receive String** field, type **200 OK**
7. Click **Finished**.
Create Pool

The next task is to create the App Volumes Managers load balancing pool for the BIG-IP Appliance to monitor.

1. Click Local Traffic.
2. Hover over Pools.
3. Hover over Pool List.
4. Click the Add button (+) to the right of Pool List to create a new Pool.
Pool Configuration

Create a Pool with the following settings.

1. In the **Name** field, type a unique name such as **AppVolumes-Pool**.
2. In the **Health Monitors** area, use the Add (<<) button to move the monitor you created (AppVolumes-Monitor in our example) to the **Active** list.
3. From the **Load Balancing Method** list, select **Least Connections (node)**.
4. In the **New Members** area, complete the following for each App Volumes Manager node
   - In the **Node Name** field, type a unique name such as **AV-MGR-01.bd.f5.com**.
   - In the **Address** field, type IP address of the First AppVolumes Manager Node (Node 1).
   - In the **Service Port** field, type **443** or select **HTTPS** from the list.
   - Click the **Add** button.
   - Repeat this step for each additional App Volumes Manager nodes
5. Click the **Finished** button.
Create a Port 443 Virtual Server

The next task is to create a Virtual Server.

1. Click **Local Traffic**.
2. Hover over **Virtual Servers**.
3. Hover over **Virtual Server List**.
4. Click the Add button (+) to the right of Virtual Server List to create a new Virtual Server.
Virtual Server General Properties Section

Use the following guidance to configure the General Properties of the virtual server.

1. In the **Name** field, type a unique name such as **AppVolumes-VS**.
2. In the **Destination Address/Mask** field, type the IP Address you want to use for the virtual server.
3. In the **Service Port** field, type 443 or select **HTTPS** from the list.
Virtual Server Configuration Section

Use the following guidance to configure the Configuration section of the virtual server.

1. From the Protocol Profile (Client) list, select tcp-wan-optimized.
2. From the Protocol Profile (Server) list, select tcp-lan-optimized.
3. From the HTTP Profile list, select the HTTP profile you created (AppVolumes-HTTP in our example).
4. From the SSL Profile (Client) list, select the Client SSL profile you created (AppVolumes-ClientSSL in our example).
5. From the SSL Profile (Server) list, select the Server SSL profile you created (AppVolumes-ServerSSL in our example).
6. From the Source Address Translation list, select Auto Map.
Virtual Server Resources Section

Use the following guidance to configure the Resource properties of the virtual server.

1. From the Default Pool list, select the pool you created (AppVolumes-Pool in our example).

2. From the Default Persistence Profile list, select the persistence profile you created (AppVolumes-Persistence in our example).

3. After you have completed all three sections, click the Finished button.
Create a Port 80 Redirect Virtual Server (Optional)

After you configure the Port 443 virtual server, you can create another virtual server that redirects any port 80 traffic to the newly created Port 443 virtual server. App Volumes Manager can run on Port 80 as well as 443 but any production deployment should only use a secured port.

1. Click Local Traffic.
2. Hover over Virtual Servers.
3. Hover over Virtual Server List.
4. Click the Add button (+) to the right of Virtual Server List to create a new Virtual Server.
Virtual Server General Properties Section

Use the following guidance to configure the General Properties of the virtual server.

1. In the Name field, type a unique name such as AppVolumes-VS-Redirect.
2. In the Destination Address/Mask field, type the same IP Address you used for the HTTPS (port 443) virtual server.
3. In the Service Port field, type 80 or select HTTP from the list.
Virtual Server Configuration Section

Use the following guidance to configure the Configuration section of the virtual server.

1. From the Protocol Profile (Client) list, select tcp-wan-optimized.
2. From the Protocol Profile (Server) list, select tcp-lan-optimized.
3. From the HTTP Profile list, select the HTTP profile you created (AppVolumes-HTTP in our example).
4. From the Source Address Translation list, select Auto Map.
Virtual Server Resources Section

Under the Resource properties of the Virtual Server, enter the following settings.

1. In the iRules area, use the Add (<<) button to move the redirect iRule (_sys_https_redirect) to the Active list.

2. After you have completed all three sections, click the Finished button.
Testing and Validation

Conduct testing by accessing the App Volumes Manager through its web interface as well as testing App Volumes Agent connectivity.

- App Volumes-enabled desktops will have applications provisioned and de-provisioned on login/logoff, as well as computer startup and shut down.
- App Volumes Manager access through the web interface should be accessible.
- Check the BIG-IP pool member statistics to ensure the App Volume Manager and Agent sessions are being equally distributed between the App Volume pool members.

References

Jeremy Wheeler – Consulting Architect at VMware

Justin Venezia – Senior Architect, End User Computing Office of the CTO at VMware